RU2594383C1 - Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации - Google Patents

Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации Download PDF

Info

Publication number
RU2594383C1
RU2594383C1 RU2015113809/28A RU2015113809A RU2594383C1 RU 2594383 C1 RU2594383 C1 RU 2594383C1 RU 2015113809/28 A RU2015113809/28 A RU 2015113809/28A RU 2015113809 A RU2015113809 A RU 2015113809A RU 2594383 C1 RU2594383 C1 RU 2594383C1
Authority
RU
Russia
Prior art keywords
input
output
signal
processor
intruder
Prior art date
Application number
RU2015113809/28A
Other languages
English (en)
Inventor
Владимир Эристович Иванов
Андрей Геннадьевич Белов
Роман Васильевич Долбилкин
Евгений Николаевич Тихонов
Алексей Николаевич Суслов
Original Assignee
Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (ФГУП ФНПЦ ПО "Старт" им. М.В. Проценко")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (ФГУП ФНПЦ ПО "Старт" им. М.В. Проценко") filed Critical Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (ФГУП ФНПЦ ПО "Старт" им. М.В. Проценко")
Priority to RU2015113809/28A priority Critical patent/RU2594383C1/ru
Application granted granted Critical
Publication of RU2594383C1 publication Critical patent/RU2594383C1/ru

Links

Images

Landscapes

  • Burglar Alarm Systems (AREA)

Abstract

Изобретение относится к радиолокации и может использоваться в области охранной сигнализации, в частности для обнаружения нарушителя по факту его вторжения в зону обнаружения, создаваемую двухчастотным импульсно-доплеровским устройством для тревожной сигнализации. Устройство состоит из СВЧ-модуля, генератора СВЧ, первого и второго фильтров, первого, второго и третьего АЦП, процессора, вычитателя, регулируемого усилителя, хронизатора, первого и второго синхронных детекторов и исполнительного устройства (реле). СВЧ-модуль содержит антенну с круговой диаграммой направленности, развязывающее устройство и преобразователь частоты. Процессор выполнен с возможностями изменения коэффициента усиления регулируемого усилителя, оценки параметров принимаемого сигнала, формирования компенсационных импульсов для устранения постоянного уровня в полезном сигнале и принятия окончательного решения об обнаружении нарушителя с формированием сигнала срабатывания устройства (сигнала тревоги). Технический результат заключается в повышении точности обнаружения нарушителя за счет устранения постоянного уровня в полезном сигнале, анализа фаз двух доплеровских сигналов и устранения неоднозначности по определению доплеровской информации о нарушителе. 2 з.п. ф-лы, 4 ил.

Description

Предлагаемое устройство относится к радиолокации и может использоваться в области охранной сигнализации, в частности для обнаружения нарушителя по факту его вторжения в зону обнаружения (ЗО), создаваемую двухчастотным импульсно-доплеровским устройством для тревожной сигнализации. Отличительной особенностью изобретения является повышение функциональной надежности устройства при наличии неподвижных крупных объектов, находящихся как в ЗО, так и за ее пределами. Предлагаемое устройство может использоваться в системах охранной сигнализации в качестве датчика для защиты отдельно расположенных стоек, башен, столбов, опор (например, опор воздушных линий электропередач) и других конструкций, а также для защиты «мертвых» зон передающих и приемных пунктов устройств и систем тревожной сигнализации, расположенных на местности.
Общеизвестны радиоволновые импульсно-доплеровские радары и системы, которые могут быть использованы в качестве устройств охранной тревожной сигнализации (патенты РФ №2117962, 2221260, 2380724, 2529544, патент США (US) №4827263 и другие).
К подобным устройствам можно отнести также двухчастотные импульсно-доплеровские радары и системы (патенты РФ №2144681, 2251710, патенты США (US) №3898655, 4338604 и другие).
Из известных устройств близким к предлагаемому устройству является «Устройство для охранной сигнализации», описанное в патенте RU №2116673, МПК G08B 13/24, опубл. в 1998 г. (аналог). Данное устройство содержит излучатель, генератор излучаемого сигнала, амплитудный модулятор, модулирующий генератор, полосовой фильтр, селектор принимаемого сигнала, преобразователь сигнала, два вычитателя, видеоусилитель, коммутационный (синхронный) фильтр, блок выработки сигнала тревоги, блок формирования импульсов, сумматор, блок выборки-хранения и компаратор. Отличительной особенностью устройства является компенсация среднего уровня принятого сигнала, за счет чего данное устройство обеспечивает охрану пространств, вблизи или в пределах которых на местности расположены крупные предметы. Отражения от таких предметов не вызывают перегрузки видеоусилителя и не приводят к подавлению слабой по сравнению с этими отражениями полезной составляющей принимаемого сигнала, обусловленной присутствием обнаруживаемого нарушителя.
Сходными существенными признаками заявленного устройства и вышеупомянутого устройства являются: излучатель, генератор излучаемого сигнала, вычитатель, видеоусилитель, компаратор и блок выработки сигнала тревоги.
Недостатком устройства является его низкая функциональная надежность при обнаружении человека-нарушителя, обусловленная наличием подвижных объектов, находящихся за пределами ЗО.
Другим близким к предлагаемому устройству является «Метод для разрешения неоднозначности диапазона дальности в доплеровских измерениях» (Method for ambiguity resolution in range-doppler measurements), описанный в патенте US №5276453, МПК G01S 13/58, опубл. в 1994 г. (аналог). Устройство, реализующее данный метод, содержит два генератора частот (f1 и f2), импульсный модулятор, усилитель мощности, передающую и приемную антенны, усилитель высокой частоты, смеситель/гетеродин, усилитель промежуточной частоты, нелинейный детектор, синхронный детектор, сигнальный процессор, целевой классификатор и выходное устройство. В соответствии с приведенным методом данное устройство формирует двухчастотный импульсный сигнал, который передается в сторону цели. При отражении сигнала от цели в приемном тракте устройства формируются два квадратурных сигнала от разности частот. При обработке этих сигналов в сигнальном процессоре определяется диапазон дальности и доплеровская информация о цели. Кроме того, разделение сигналов на два канала позволяет исключить шум, который существует в частотах между двумя сигналами.
Сходными существенными признаками являются: генераторы частот (ft и f2), передающая и приемная антенны, усилитель промежуточной частоты, синхронный детектор, сигнальный процессор и выходное устройство.
Недостатком является низкая функциональная надежность устройства при наличии посторонних неподвижных объектов, находящихся в ЗО на близком расстоянии к передающей и приемной антеннам.
Все упомянутые недостатки частично устраняются в устройстве, наиболее близком по технической сущности к заявленному изобретению, - известном «Детекторе движения, основанном на доплеровском принципе» (Motion detector based on the doppler principle), описанном в патенте US №6380882, МПК G01S 7/40, G01S 13/56, опубл. в 2002 г., которое выбрано в качестве прототипа. Это устройство содержит сверхвысокочастотный (СВЧ) детектор, инфракрасный (ИК) детектор и блок общей обработки. СВЧ-детектор содержит СВЧ-модуль, микроволновый генератор, переключатель (коммутатор), два канала, каждый из которых содержит усилитель и фильтр, два аналого-цифровых преобразователя (АЦП) и блок интегрального преобразования (блок оценки), выполненный с использованием процессора.
Общими существенными признаками с заявляемым решением являются: СВЧ-модуль, микроволновый генератор, переключатель (коммутатор), два канала, каждый из которых содержит усилитель и фильтр, два аналого-цифровых преобразователя (АЦП) и блок интегрального преобразования (блок оценки), выполненный с использованием процессора. Детектор движения на основе принципа Доплера излучает в пространство две частоты, которые, отражаясь от цели, формируют из принятого излучения первый и второй доплеровские сигналы. Эти сигналы имеют разность фаз, которая пропорциональна расстоянию от объекта, отражающего СВЧ-сигнал. Разность фаз измеряется в блоке оценки с помощью процессора. Если разность фаз превышает заданное значение предела, установленного для определенной дальности, то процессор формирует сигнал тревоги.
Недостатком устройства является его низкая функциональная надежность по обнаружению нарушителя в ЗО при наличии подвижных объектов, находящихся за границей ЗО.
Целью настоящего изобретения является повышение функциональной надежности устройства по обнаружению нарушителя за счет устранения постоянного уровня в полезном сигнале, анализа фаз двух доплеровских сигналов и устранения неоднозначности по определению доплеровской информации о нарушителе.
Для достижения этой цели в известное техническое решение введены новые существенные признаки, функциональные элементы и связи, которые позволяют повысить функциональную надежность устройства по обнаружению нарушителя.
Эта цель достигнута в предложенном двухчастотном импульсно-доплеровском устройстве для тревожной сигнализации, которое содержит генератор СВЧ, выход которого соединен со входом СВЧ-модуля, выполненного с возможностью излучения в контролируемое пространство (зону обнаружения) зондирующего двухчастотного сигнала в виде поочередно излучаемых импульсов СВЧ-энергии с несущими частотами f1 и f2, первый и второй фильтры, выходы которых соединены со входами соответствующих первого и второго АЦП, выходы которых соединены соответственно с первым и вторым входами процессора, в устройство введены вычитатель, третий АЦП, регулируемый усилитель, хронизатор, первый и второй синхронные детекторы и исполнительное устройство (реле), причем выход СВЧ-модуля соединен с первым входом вычитателя, выход которого соединен со входом третьего АЦП и с первым входом регулируемого усилителя, выход которого соединен с первым входом первого синхронного детектора и с первым входом второго синхронного детектора, каждый из выходов которых соединен с соответствующими входами первого и второго фильтров, первый выход хронизатора соединен с первым входом генератора СВЧ и со вторым входом первого синхронного детектора, второй выход хронизатора соединен со вторым входом генератора СВЧ и со вторым входом второго синхронного детектора, выход третьего АЦП соединен с третьим входом процессора, первый выход которого соединен со вторым входом регулируемого усилителя, второй выход процессора соединен со вторым входом вычитателя, третий выход процессора соединен со входом исполнительного устройства (реле). СВЧ-модуль содержит антенну с круговой диаграммой направленности, развязывающее устройство и преобразователь частоты, выход преобразователя частоты является выходом СВЧ-модуля, вход развязывающего устройства является входом СВЧ-модуля, вход/выход развязывающего устройства подключен к антенне с круговой диаграммой направленности, выход развязывающего устройства подключен ко входу преобразователя частоты. Процессор выполнен с возможностями изменения коэффициента усиления регулируемого усилителя, оценки параметров принимаемого сигнала, формирования компенсирующих импульсов для устранения постоянного уровня в полезном сигнале, анализа фаз двух доплеровских сигналов с частотами Fд1 и Fд2, устранения неоднозначности по определению доплеровской информации о нарушителе и принятия окончательного решения об обнаружении нарушителя с формированием сигнала срабатывания устройства (сигнала тревоги).
Сущность изобретения поясняется фиг. 1-4, на которых изображено следующее.
На фиг. 1 приведена структурная схема двухчастотного импульсно-доплеровского устройства для тревожной сигнализации, где введены обозначения: СВЧ-модуль - 1, генератор СВЧ - 2, хронизатор - 3, вычитатель - 4, третий АЦП - 5, регулируемый усилитель - 6, первый синхронный детектор - 7, второй синхронный детектор - 8, первый фильтр - 9, второй фильтр - 10, первый АЦП - 11, второй АЦП - 12, процессор - 13, исполнительное устройство - 14. СВЧ-модуль содержит антенну с круговой диаграммой направленности - 15, развязывающее устройство - 16 и преобразователь частоты 17. На фиг. 1 также изображен человек-нарушитель - 18, передвигающийся в ЗО устройства по направлению к СВЧ-модулю 1.
На фиг. 2 приведены временные диаграммы (эпюры) работы генератора СВЧ 2 (эпюра 19) и хронизатора 3 (эпюры 20 и 21). Причем на эпюре 19 изображены чередующиеся импульсы СВЧ-энергии с несущими частотами f1 и f2. На эпюре 20 изображены импульсы напряжения с первого выхода хронизатора 3, а на эпюре 21 - импульсы напряжения со второго выхода хронизатора 3.
На фиг. 3 приведены временные диаграммы (эпюры) сигналов, поясняющие работу предлагаемого устройства. Эпюры 22 и 23 (штриховые линии) показывают форму изменения напряжения импульсов F1 и F2 (амплитудную модуляцию) на выходе СВЧ-модуля 1 при движении человека-нарушителя в ЗО устройства. Последовательность чередующихся импульсов F1 и F2 изображена в меньшем временном масштабе по сравнению с импульсами f1 и f2, изображенными на фиг. 2. Символом Uп обозначен усредненный постоянный уровень напряжения сигналов, определяемый наличием в ЗО устройства крупного неподвижного объекта (например, башни или физического заграждения). Эпюры 24 и 25 (штриховые линии) показывают форму изменения напряжения импульсов F1 и F2 (амплитудную модуляцию) на выходе вычитателя 4 после вычитания из сигналов компенсирующих импульсов с амплитудой, равной усредненному уровню Uп. Эпюры 26 и 27 (штриховые линии) показывают форму огибающих соответствующих составляющих полезного сигнала на выходах первого и второго полосовых фильтров 9 и 10 после их усиления регулируемым усилителем 6. В нижней части фиг. 3 (эпюра 28) изображен сформированный сигнал тревоги в соответствии с применением решающего правила.
На фиг. 4 приведен пример алгоритма обработки сигналов, реализованный процессором 13.
Предложенное устройство (фиг. 1) работает следующим образом.
Устройство излучает в ЗО с помощью СВЧ-модуля 1 зондирующий сигнал в виде поочередно излучаемых импульсов СВЧ-энергии с несущими частотами f1 и f2. Форма этого зондирующего сигнала представлена на фиг. 2 (эпюра 19). Управляет излучением зондирующего сигнала генератор СВЧ 2, который передает импульсы СВЧ-энергии с несущими частотами f1 и f2, на вход СВЧ-модуля и соответственно на вход развязывающего устройства 16 и далее в антенну с круговой диаграммой направленности 15, которая излучает зондирующий СВЧ-сигнал в ЗО устройства. В качестве развязывающего устройства 16 может использоваться, например, циркулятор или направленный ответвитель. Следует отметить, что элементы 1, 2, 15, 16 и 17 конструктивно могут быть выполнены в виде отдельного СВЧ-блока.
При проникновении человека-нарушителя 18 в ЗО зондирующий сигнал отражается от него и принимается СВЧ-модулем 1 предлагаемого устройства. Следует отметить, что при движении в ЗО человека-нарушителя 18 в направлении СВЧ-модуля 1 формируется доплеровский сдвиг частот. Поэтому принятые частоты будут отличаться от переданных частот с учетом доплеровского сдвига (то есть F1=f1+Fд1 и F2=f2+Fд2). Принятый антенной с круговой диаграммой направленности 15 СВЧ-модуля 1 отраженный сигнал поступает на вход/выход развязывающего устройства 16 СВЧ-модуля 1, с выхода которого сигнал поступает на вход преобразователя частоты 17, с выхода которого далее он поступает на первый вход вычитателя 4. Преобразователь частоты 17 предназначен для переноса спектра принятого сигнала в низкочастотную область. Огибающие принятого сигнала (эпюры 22 и 23) на выходе преобразователя частоты 17 представлены на фиг. 3. Следует отметить наличие в сигнале усредненного постоянного уровня Uп, определяемого, например, присутствием в ЗО устройства крупного неподвижного объекта. На второй вход вычитателя 4 поступает из процессора 13 последовательность компенсирующих импульсов с амплитудой, равной усредненному уровню Uп, для устранения постоянного уровня в полезном сигнале. Эпюры 24 и 25 на фиг. 3 показывают результат вычитания из полезного сигнала компенсирующих импульсов. Полезный сигнал с выхода вычитателя 4 (уже без постоянной составляющей) поступает на первый вход регулируемого усилителя 6, где усиливается до определенного уровня и поступает далее на первые входы двух синхронных детекторов (7 и 8), которые образуют два канала обработки полезного сигнала. Эти каналы выделяют доплеровские частоты Fд1 и Fд2, соответствующие излучаемым частотам f1 и f2. Элементы: первый синхронный детектор 7, первый фильтр 8 и первый АЦП 11 образуют первый канал обработки и соответственно второй синхронный детектор 8, второй фильтр 10 и второй АЦП 12 образуют второй канал обработки. Управляет процессом синхронного детектирования хронизатор 3, на первом и втором выходах которого формируются импульсы, представленные на фиг. 2 (эпюры 20 и 21). После синхронного детектирования и фильтрации в каждом из каналов разделенный на составляющие полезный сигнал оцифровывается с помощью соответствующих первого и второго АЦП (11 и 12) и поступает по первому и второму входам в процессор 13, где осуществляется основная его обработка. Второй вход регулируемого усилителя 6 является входом управления, по которому от процессора 13 поступают сигналы управления на уменьшение или увеличение его коэффициента усиления. Первый и второй полосовые фильтры 9 и 10 обеспечивают фильтрацию соответствующих составляющих полезного сигнала (доплеровские частоты Fд1 и Fд2). Огибающие соответствующих составляющих полезного сигнала на выходах первого и второго полосовых фильтров 9 и 10 после усиления регулируемым усилителем 6 представлены на фиг. 3 (эпюры 26 и 27). Основной алгоритм обработки сигналов в процессоре 13 представлен на фиг. 4. Алгоритм основан на последовательном повторении во времени 6 - и шагов (этапов) обработки, отмеченных на фиг. 4 символами: шаг 1…шаг 6. Обработка составляющих полезного сигнала в процессоре 13 осуществляется на программном уровне с использованием констант, базы данных и управляющих программ, расположенных в его внутренней памяти. При движении человека-нарушителя в ЗО составляющие полезного сигнала будут изменяться во времени по мере движения человека-нарушителя. Причем динамично изменяться будут амплитуда, частота и фаза этих сигналов из-за пространственного наложения отраженного сигнала от движущего человека-нарушителя с отраженными сигналами от неподвижных предметов, находящихся в ЗО, за границей ЗО, а также от подстилающей поверхности (качание травяного покрова, листвы и ветвей кустарника, наличия дождя, града и т.п.). Обработка составляющих полезного сигнала в процессоре 13 начинается с формирования массива отсчетов (шаг 1). Последовательность отсчетов полезного сигнала U(to), U(t1)…U(tk) накапливается в памяти процессора 13 за определенное время. Следующим шагом процесса обработки полезного сигнала (шаг 2) является вычисление усредненного уровня Uп при включении электропитания устройства или при смене погодных условий. Следующим этапом обработки составляющих полезного сигнала является формирование компенсирующих импульсов (шаг 3). Для этого сигнал с выхода вычитателя 4 оцифровывается третьим АЦП 5 и передается в процессор 13, который усредняет этот сигнал за определенный период времени и формирует компенсирующие импульсы, передаваемые на второй вход вычитателя 4 для вычитания из полезного сигнала постоянной составляющей. Следующим этапом обработки составляющих полезного сигнала является приведение в действие решающего правила (шаг 4), которое обеспечивается анализом фаз двух доплеровских сигналов (которые должны находиться в противофазе, см. фиг. 3) с последующим вычислением функции
Figure 00000001
. Знак минус в этом выражении обеспечивает увеличение значений ΔF1 при движении нарушителя в 30, в то время как синфазные изменения двух доплеровских сигналов при отсутствии нарушителя не приводят к увеличению значений ΔFi. На следующем этапе (шаг 5) происходит сравнение текущего значения ΔFi с пороговым значением S и проверяется выполнение условия равенства, превышения или не превышения величиной ΔFi порогового значения S. При неутвердительном результате проверки (отсутствии превышения) повторяется процесс вычисления функции решающего правила (шаг 4). При утвердительном результате проверки (равенстве или превышении) осуществляется переход к следующему этапу (шагу 6), на котором происходит формирование сигнала срабатывания устройства (сигнала тревоги). Пример этого сигнала в момент выполнения решающего правила приведен на фиг. 3 (эпюра 14). Сигнал тревоги с выхода процессора 13 поступает на вход исполнительного устройства 14 и фиксируется в виде замыкания (или размыкания) контактов реле.
Таким образом, повышение функциональной надежности устройства по обнаружению нарушителя обеспечивается за счет устранения постоянного уровня в полезном сигнале, анализа фаз двух доплеровских сигналов и устранения неоднозначности по определению доплеровской информации о нарушителе.
В качестве примера реализации процессора 13 предлагаемого устройства может быть использован микропроцессор A Txmega 256А3 фирмы «Atmel». Наличие во внутренней структуре данного микропроцессора нескольких АЦП позволило использовать их вместо первого 11, второго 12 и третьего 5 АЦП, которые представлены в предлагаемом устройстве в виде отдельных элементов.
Действующий лабораторный макет предлагаемого устройства подвергался всесезонным испытаниям в течение одного года. Была подтверждена устойчивая работоспособность действующего лабораторного макета по обнаружению нарушителей с формированием сигналов тревоги в моменты проникновения нарушителей в ЗО.

Claims (3)

1. Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации, содержащее генератор СВЧ, выход которого соединен со входом СВЧ-модуля, выполненного с возможностью излучения в контролируемое пространство (зону обнаружения) зондирующего двухчастотного сигнала в виде поочередно излучаемых импульсов СВЧ-энергии с несущими частотами f1 и f2, первый и второй фильтры, выходы которых соединены со входами соответствующих первого и второго АЦП, выходы которых соединены соответственно с первым и вторым входами процессора, отличающееся тем, что в устройство введены вычитатель, третий АЦП, регулируемый усилитель, хронизатор, первый и второй синхронные детекторы и исполнительное устройство (реле), причем выход СВЧ-модуля соединен с первым входом вычитателя, выход которого соединен со входом третьего АЦП и с первым входом регулируемого усилителя, выход которого соединен с первым входом первого синхронного детектора и с первым входом второго синхронного детектора, каждый из выходов которых соединен с соответствующими входами первого и второго фильтров, первый выход хронизатора соединен с первым входом генератора СВЧ и со вторым входом первого синхронного детектора, второй выход хронизатора соединен со вторым входом генератора СВЧ и со вторым входом второго синхронного детектора, выход третьего АЦП соединен с третьим входом процессора, первый выход которого соединен со вторым входом регулируемого усилителя, второй выход процессора соединен со вторым входом вычитателя, третий выход процессора соединен со входом исполнительного устройства (реле).
2. Устройство по п. 1, отличающееся тем, что СВЧ-модуль содержит антенну с круговой диаграммой направленности, развязывающее устройство и преобразователь частоты, выход преобразователя частоты является выходом СВЧ-модуля, вход развязывающего устройства является входом СВЧ-модуля, вход/выход развязывающего устройства подключен к антенне с круговой диаграммой направленности, выход развязывающего устройства подключен ко входу преобразователя частоты.
3. Устройство по п. 1, отличающееся тем, что процессор выполнен с возможностями изменения коэффициента усиления регулируемого усилителя, оценки параметров принимаемого сигнала, формирования компенсирующих импульсов для устранения постоянного уровня в полезном сигнале, анализа фаз двух доплеровских сигналов с частотами Fд1 и Fд2, устранения неоднозначности по определению доплеровской информации о нарушителе и принятия окончательного решения об обнаружении нарушителя с формированием сигнала срабатывания устройства (сигнала тревоги).
RU2015113809/28A 2015-04-14 2015-04-14 Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации RU2594383C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015113809/28A RU2594383C1 (ru) 2015-04-14 2015-04-14 Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015113809/28A RU2594383C1 (ru) 2015-04-14 2015-04-14 Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации

Publications (1)

Publication Number Publication Date
RU2594383C1 true RU2594383C1 (ru) 2016-08-20

Family

ID=56697052

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015113809/28A RU2594383C1 (ru) 2015-04-14 2015-04-14 Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации

Country Status (1)

Country Link
RU (1) RU2594383C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769603A (zh) * 2017-10-30 2018-03-06 西安理工大学 二极管箝位型逆变器双频感应加热电源的解耦控制方法
RU185726U1 (ru) * 2018-06-20 2018-12-17 Акционерное общество "Федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (АО "ФНПЦ ПО "Старт" им. М.В. Проценко") Радиоволновое устройство для тревожной сигнализации с двухчастотным импульсно-доплеровским принципом действия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009521C1 (ru) * 1991-04-08 1994-03-15 Берсенев Андрей Антонович Доплеровская радарная система
RU2042150C1 (ru) * 1992-08-28 1995-08-20 Товарищество с ограниченной ответственностью "ЭЛЕС" Способ обнаружения движущихся объектов и устройство для его осуществления
US6380882B1 (en) * 1999-07-03 2002-04-30 Siemens Building Technologies Ag Motion detector based on the doppler principle
US6700528B2 (en) * 2002-09-27 2004-03-02 The United States Of America As Represented By The Secretary Of The Army Motion detection and alerting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009521C1 (ru) * 1991-04-08 1994-03-15 Берсенев Андрей Антонович Доплеровская радарная система
RU2042150C1 (ru) * 1992-08-28 1995-08-20 Товарищество с ограниченной ответственностью "ЭЛЕС" Способ обнаружения движущихся объектов и устройство для его осуществления
US6380882B1 (en) * 1999-07-03 2002-04-30 Siemens Building Technologies Ag Motion detector based on the doppler principle
US6700528B2 (en) * 2002-09-27 2004-03-02 The United States Of America As Represented By The Secretary Of The Army Motion detection and alerting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769603A (zh) * 2017-10-30 2018-03-06 西安理工大学 二极管箝位型逆变器双频感应加热电源的解耦控制方法
CN107769603B (zh) * 2017-10-30 2019-12-24 西安理工大学 二极管箝位型逆变器双频感应加热电源的解耦控制方法
RU185726U1 (ru) * 2018-06-20 2018-12-17 Акционерное общество "Федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (АО "ФНПЦ ПО "Старт" им. М.В. Проценко") Радиоволновое устройство для тревожной сигнализации с двухчастотным импульсно-доплеровским принципом действия

Similar Documents

Publication Publication Date Title
US7679545B2 (en) Suppressing motion interference in a radar detection system
US20080231496A1 (en) Method for determining noise floor level and radar using the same
US9268008B1 (en) Detection of low observable objects in clutter using non-coherent radars
US8384587B2 (en) Radar for aerial target detection fitted to an aircraft notably for the avoidance of obstacles in flight
Schroeder et al. X-band FMCW radar system with variable chirp duration
RU2594383C1 (ru) Двухчастотное импульсно-доплеровское устройство для тревожной сигнализации
KR101527772B1 (ko) Fmcw 레이더의 타겟 탐색 방법 및 타겟 탐색을 수행하는 fmcw 레이더
DK2610634T3 (en) Method of Determining an Estimate of the Radial Velocity of Radar Echoes Using Doppler Information
Samczynski et al. Passive radars utilizing pulse radars as illuminators of opportunity
Yang et al. Ground moving target indication using an InSAR system with a hybrid baseline
JP2015148577A (ja) 電波センサおよび検知方法
Smith et al. Extended time processing for passive bistatic radar
JP7399706B2 (ja) レーダ装置及びそのレーダ信号処理方法
de Quevedo et al. X-band ubiquitous radar system: First experimental results
Alivizatos et al. Towards a range-doppler UHF multistatic radar for the detection of non-cooperative targets with low RCS
RU185726U1 (ru) Радиоволновое устройство для тревожной сигнализации с двухчастотным импульсно-доплеровским принципом действия
Ariffin et al. FMCW radar for slow moving target detection: Design and performance analysis
RU2584496C1 (ru) Радиоволновое устройство для тревожной сигнализации с непрерывным излучением частотно-модулированных колебаний
Mandlik et al. FMICW radar simulator
Setsu et al. Super-resolution Doppler velocity estimation by Gaussian-kernel based range-Doppler conversion for UWB radar
Liu et al. Effects of non-uniform motion in through-the-wall SAR imaging
Kumawat et al. Moving target detection in foliage environment using FMCW radar
Wei et al. Realtime multi-target vital sign detection with 79ghz fmcw radar
He et al. Key Points Analysis and Simulation for System Design of Airborne WAS-GMTI Radar
Pulutan et al. Design trade-offs in a combined FMCW and pulse Doppler radar front-end

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20181009