RU2591734C1 - Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления - Google Patents

Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления Download PDF

Info

Publication number
RU2591734C1
RU2591734C1 RU2015108562/28A RU2015108562A RU2591734C1 RU 2591734 C1 RU2591734 C1 RU 2591734C1 RU 2015108562/28 A RU2015108562/28 A RU 2015108562/28A RU 2015108562 A RU2015108562 A RU 2015108562A RU 2591734 C1 RU2591734 C1 RU 2591734C1
Authority
RU
Russia
Prior art keywords
launch
measuring
facility
computer
sensors
Prior art date
Application number
RU2015108562/28A
Other languages
English (en)
Inventor
Владимир Евгеньевич Прохорович
Виктор Иванович Дикарев
Александр Васильевич Офтин
Валерий Алексеевич Криков
Алексей Владимирович Федоров
Игорь Юрьевич Кинжагулов
Сергей Владимирович Вдовенко
Сергей Станиславович Меньшиков
Original Assignee
Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ) filed Critical Учреждение науки "Инженерно-конструкторский центр сопровождения эксплуатации космической техники" (Учреждение науки ИКЦ СЭКТ)
Priority to RU2015108562/28A priority Critical patent/RU2591734C1/ru
Application granted granted Critical
Publication of RU2591734C1 publication Critical patent/RU2591734C1/ru

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации. Система, реализующая предлагаемый способ, содержащий набор измерительных преобразователей, блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразователя, линию связи - шину, устройство согласования сигналов - конвертер, пункт контроля, выполненный в виде компьютера, и связанные с последним дисплей, устройство звуковой сигнализации, условное изображение контролируемой конструкции с размещенными на ней цветными метками-индикаторами, планово-высотную геодезическую основу стартового сооружения и комплект контроля изменения полей давления температуры на поверхности защитного покрытия стартового сооружения. В качестве планово-высотной геодезической основы стартового сооружения принята сеть глубинных реперов в виде трех «кустов» и одного референтного пункта 14, расположенных равномерно вокруг стартового сооружения на расстоянии 60-80 метров от него, а также систему деформационных марок. Каждый «куст» включает три глубинных репера. В качестве комплекта контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения приняты датчики давления и температуры, размещенные на защитном покрытии стартового сооружения на одной видимой прямой линии. Технический результат заключается в повышении точности измерений и достоверности долговременного контроля конструкции стартового сооружения. 2 н.п. ф-лы, 4 ил.

Description

Предлагаемые способ и система относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения ракет-носителей в процессе его эксплуатации, позволяющим своевременно выявить превышение допустимых деформаций конструкции, предупредить ее разрушение и оперативно оповестить обслуживающий персонал о возможности возникновения чрезвычайной ситуации.
Известны способы и устройства измерения и контроля состояния конструкции зданий и инженерно-строительных сооружений (авт. свид. СССР №№720215, 860281, 1062512, 1.159.153, 1200123, 1261629, 1415048, 1498289, 1649314, 1682264, 1781504; патенты РФ №№2008534, 2036446, 2082121, 2130593, 2180430, 2247958, 2327105, 2357205, 2410655, 2413055, 2473873; патенты США №№2866059, 3170152, 3226479, 3827514, 4107985; патент ФРГ №2900614; патенты ЕР №№0401133, 0927869; Ренский А.Б. Руководство по тензометрированию строительных конструкций и материалов. М. 1971, с. 133, с. 149-155 и другие).
Из известных способов и устройств наиболее близкими к предлагаемым являются «Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления» (патент РФ №2327105, G01B 7/16, 2006), которые и выбраны в качестве прототипов.
Известный способ заключается в опросе датчиков, установленных в местах диагностирования конструкции, преобразовании полученной с датчиков информации и ее передаче на пункт контроля в виде компьютера. Результаты опроса датчиков отражают в виде наглядной картины текущего состояния конструкции на экране компьютера.
Известное устройство содержит пункт контроля в виде компьютера, датчики, размещенные в местах диагностирования конструкции, связанный с ними блок предварительной обработки сигналов и средства связи блока предварительной обработки сигналов с упомянутым компьютером. При этом блок предварительной обработки сигналов выполнен с возможностью опроса датчиков, приема и регистрации сигналов, содержащих измерительную информацию, и с возможностью сравнения упомянутой информации с заранее внесенными в его память фиксированными величинами.
Однако известные технические решения обеспечивают только тензометрический контроль одного из самых сложных и ответственных объектов космической инфраструктуры - стартового сооружения ракет-носителей, что недостаточно.
Это обусловлено тем, что в районе расположения стартового сооружения, например ракеты-носителя «Ангара» (г. Плесецк), достаточно сложная геологическая обстановка, вызванная наличием большого количества карстовых пород, которые в ходе эксплуатации могут стать источниками нестабильности пространственного положения стартового сооружения с размещенными на нем агрегатами технологического оборудования.
Оказывают определенное влияние на эксплуатацию стартового сооружения изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения при пуске ракеты-носителей, особенно тяжелого класса «Ангара».
Кроме того, важное значение имеет объективный контроль изменения состояния стартового сооружения в течение всего времени его эксплуатации - функции «черного ящика». Особое значение имеет период времени, соответствующий циклу запуска ракеты-носителя.
Все вышеуказанные причины оказывают существенное влияние на точность измерений и достоверность долговременного контроля конструкции стартового сооружения ракет-носителей.
Технической задачей изобретения является повышение точности измерений и достоверности долговременного контроля конструкции стартового сооружения ракет-носителей путем геодезического контроля, контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения и обеспечения функции «черного ящика».
Поставленная задача решается тем, что способ измерения и долговременного контроля конструкции стартового сооружения ракет-носителей, включающий, в соответствии с ближайшим аналогом, опрос датчиков, установленных в местах диагностирования конструкции, преобразование полученной с датчиков информации и ее передачу на пункт контроля, выполненный в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее введенными в память компьютера фиксированными величинами, при этом формируют условное изображение контролируемого объекта, повторяющее его конструкцию, размещают на нем в местах, соответствующих реальному расположению датчиков, цветные метки-индикаторы, выводят упомянутое изображение с метками-индикаторами на экран компьютера, обеспечивая постоянную связь упомянутых меток-индикаторов с датчиками, в качестве фиксированной величины для каждого датчика используют полученное путем предварительных расчетов предельное допустимое значение измеряемого параметра, а результаты опроса датчиков и результаты сравнения последней принятой с них информации отражают в реальном времени через цвет меток-индикаторов и его смену на условном изображении объекта, по которому судят об исправности датчика и состоянии конструкции, отличается от ближайшего аналога тем, что создают планово-высотную основу стартового сооружения, состоящую из «кустов» вековых глубинных реперов, систему деформационных марок, размещаемую в контрольных точках несущих конструкций сооружения, проводят периодический мониторинг пространственного положения двенадцати опор пускового стола с точностью не хуже 1 мм, выполняют измерения относительного положения элементов пускового стола и элементов кабель-заправочной башни с точностью не хуже 2 мм, в случае нештатных ситуаций в период пуска ракеты-носителя регистрируют аномальные процессы динамического состояния защитного покрытия с целью последующего исследования причин их возникновения, фиксируют и сохраняют измерительную информацию в течение всего времени эксплуатации стартового сооружения, выполняя функцию «черного ящика».
Поставленная задача решается тем, что система измерений и долговременного контроля конструкции стартового сооружения ракет-носителей, содержащая, в соответствии с ближайшим аналогом, пункт контроля, характеризующийся использованием компьютера, измерительные преобразователи, размещенные в местах диагностирования конструкции, связанный с ними блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразователя, средства связи блока предварительной обработки сигналов с упомянутым компьютером, выполненным с возможностью опроса измерительных преобразователей, приема и регистрации сигналов, содержащих измерительную информацию, и с возможностью сравнения упомянутой информации с заранее внесенными в его память фиксированными величинами, средства наглядного представления информации, включающие выведенное на экран компьютера условное изображение контролируемой конструкции и цветные метки-индикаторы, размещенные на упомянутом изображении в соответствии с размещением измерительных преобразователей и выполненные с возможностью отражения в реальном времени посредством своего цвета и его изменения исправности соответствующего измерительного преобразователя и результатов сравнения последней принятой с него информации, компьютер выполнен с возможностью одновременного со сменой цвета метки-индикатора вывода на экран дополнительных сведений о типе и исполнении элемента конструкции, на котором размещен соответствующий упомянутой метке-индикатору измерительный преобразователь, отличающийся от ближайшего аналога тем, что она снабжена пусковым столом, кабельно-заправочной башней, плитой покрытия стартового сооружения, планово-высотной геодезической основой стартового сооружения, системой деформационных марок и комплектом контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения.
В качестве высотной геодезической основы стартового сооружения принята сеть реперов глубинных в виде «кустов», состоящих из трех реперов глубинных и одного пункта референтного. «Куст», состоящий из трех реперов с одним пунктом референтным заложен в форме двух треугольников с углами около 45°. Глубинные реперы в пределах каждого отдельного «куста» заложены на расстоянии около 30 метров до соответствующего референтного пункта. Референтные пункты расположены на расстоянии примерно 60-80 метров от стартового сооружения.
В качестве системы деформационных марок приняты деформационные марки, размещаемые в контрольных точках несущих конструкций сооружения, а именно равномерно размещены на плите покрытия, вокруг пускового стола.
В качестве комплекта контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения приняты датчики давления и температуры, размещенные на защитном покрытии стартового сооружения на одной видимой прямой линии.
Структурная схема системы, реализующей предлагаемый способ, представлена на фиг. 1. Схема планово-высотной геодезической основы стартового сооружения изображена на фиг. 2. Схема пространственного положения оси между центрами пускового стола и ракеты космического назначения показана на фиг. 3. Комплект контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения представлен на фиг. 4.
Система измерений и долговременного контроля конструкции стартового сооружения ракет-носителей содержит набор измерительных преобразователей 1, блок 2 предварительной обработки сигналов, включающий плату 3 аналого-цифрового преобразователя (АЦП), линию связи - шину 4, устройство согласования сигналов - конвертор 5, пункт контроля, выполненный в виде компьютера 6, и связанные с последним дисплей 7 и устройство 8 звуковой сигнализации. На экран дисплея 7 выведено условное изображение 9 контролируемой конструкции с размещенными на ней цветными метками-индикаторами 10.
Набор измерительных преобразователей 1 в приведенном примере реализации включает тензометрические датчики 1.1, 1.2, …, 1.n.
Блок 2 предварительной обработки сигналов выполняет функции коммутации, подключения датчиков по запросу компьютера, снятие с них информации, необходимые преобразования, в том числе оцифровку информации и ее передачу. Блок 2 может быть реализован на базе микросхемы управляющего контроллера, включающего плату АЦП и согласующего работу всех элементов блока.
К компьютеру 6, который предназначен для управления процессом контроля в соответствии с заложенной программой, а также для регистрации и обработки данных, не предъявляются серьезные технические или системные требования. Это может быть персональный компьютер с тактовой частотой не менее 500 МГц и объемом оперативной памяти не менее 256 Мб. Программа может работать на операционных системах от Windows 98 до Windows ХР.
В качестве планово-высотной геодезической основы стартового сооружения принята сеть глубинных реперов в виде трех «кустов» и одного включает три глубинных репера 13.1, 13.2 и 13.3 (15.1, 15.2 и 15.3, 16.1, 16.2 и 16.3) и один референтный пункт 13 (15, 16), которые расположены в форме двух треугольников с углами около 45° и общей вершиной, в которой помещен референтный пункт 13 (15, 16) на расстоянии около 30 метров от двух ближайших глубинных реперов 13.1 и 13.3 (15.1 и 15.3, 16.1 и 16.3). Стартовое сооружение состоит из пускового стола 11 и опор кабель-заправочной башни 12.1 и 12.2. Система деформационных марок включает деформационные марки (18.1, 18.2, 18,3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 18.10, 18.11, 18.12, 18.13 и 18.14), размещенные в контрольных точках несущих конструкций сооружения, а именно равномерно размещенные на плите покрытия, вокруг пускового стола. В качестве комплекта контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения используются датчики давления и температуры (19.1, 19.2, 19.3 и 19.4), размещенные на защитном покрытии стартового сооружения на одной видимой прямой линии.
Предлагаемый способ контроля осуществляется посредством заявляемой системы следующим образом.
Для тензометрического контроля стартового сооружения ракет-носителей осуществляют установку тензометрических датчиков 1.1, 1.2, …, 1.n в наиболее опасных сечениях конструкции, подверженным наибольшим нагрузкам. По обоснованию выбора датчиков, мест их установки, технологий и конструкторских решений по монтажу и эксплуатации проводилось скрупулезное математическое моделирование и была построена сложная конечно-элементная модель (КЭМ) строительных конструкций стартового сооружения, на которой отрабатывались воздействия возможных нагрузок и рассматривались различные ситуационные сценарии. С использованием КЭМ, откалиброванной на реальном объекте, рассчитывались диапазоны работы тензометрических датчиков и производилась настройка оборудования системы.
На экран дисплея 7 выведено условное изображение 9 контролируемой конструкции с размещенными на ней цветными метками-индикаторами 10, соответствующими датчикам 1. Работа датчиков, измерения которых находятся в допустимых пределах, отражается зеленым цветом метки-индикатора 10. Нерабочее состояние датчика 1 отражается желтым цветом. Для отражения показаний датчиков, превышающих предельно допустимые значения, предусмотрен красный цвет индикатора.
В память компьютера 6 заносят расчетные величины предельно допустимой деформации для каждого контролируемого элемента конструкции стартового сооружения, на который устанавливается датчик, а также сведения о типе конструкции, месте его расположения и другая необходимая при принятии решения информация.
За стартовым сооружением устанавливают постоянный надзор на протяжении всего периода эксплуатации. Система находится в постоянном режиме самодиагностики.
Компьютер 6 в соответствии с заданной программой производит поочередный опрос датчиков 1, для чего на шину 4 выставляется адрес опрашиваемого датчика 1, блок 2 принимает сигнал, расшифровывает и подключает датчик с запрашиваемым адресом для считывания с него информации. Полученная с датчика 1 информация преобразуется в цифровую форму на плате 4 АЦП и передается на шину 4. Конвертер 5 осуществляет преобразование сигналов к виду, пригодному для обработки в компьютере. Компьютер 6 регистрирует сигнал, несущий измерительную информацию, и осуществляет сравнение полученных данных с заранее введенной в память предельной величиной. Сравнение может осуществляться, например, путем нахождения разности между упомянутыми величинами.
При превышении полученной с датчика 1 информации предельно допустимого значения, т.е. когда происходит смена знака полученной разницы, компьютер 6 выдает сигнал на смену цвета соответствующей метки-индикатора 10 и на звуковое устройство 8, осуществляющее подачу звукового сигнала. Одновременно с этим производится обращение к памяти компьютера и извлечение из нее всей имеющейся информации о том элементе строительной конструкции, на котором произошло превышение. Извлеченная информация выводится на экран дисплея 7.
Дежурный, в рабочей зоне которого расположен дисплей 7, фиксирует сигнал «тревоги». Эксплуатация стартового сооружения приостанавливается, производится эвакуация людей, и специалисты производят обследование конструкции, с которой поступил тревожный сигнал. После анализа принимается решение о дальнейшей эксплуатации стартового сооружения.
Для решения задачи по высокоточному мониторингу пространственного положения стартового сооружения, в том числе и по его геотехническому мониторингу, был создан комплект геодезического контроля. Он включает в себя планово-высотную основу стартового сооружения, состоящую из «кустов» вековых глубинных реперов, а также систему деформационных марок, размещаемых в контрольных точках несущих конструкций сооружения (фиг. 2).
Для решения задачи контроля поверхности защитного покрытия стартового сооружения был создан комплект контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения (фиг. 4).
В качестве планово-высотной геодезической основы стартового сооружения принята сеть глубинных реперов в виде трех «кустов» и одного референтного пункта 14, расположенных равномерно вокруг стартового сооружения 17 на расстоянии 60-80 метров от него. При этом каждый «куст» включает три глубинных репера 13.1, 13.2 и 13.3 (15.1, 15.2 и 15.3, 16.1, 16.2 и 16.3) и один референтный пункт 13 (15, 16), которые расположены в форме двух треугольников с углами около 45° и общей вершиной, в которой помещен референтный пункт 13 (15, 16) на расстоянии около 30 метров от двух ближайших глубинных реперов 13.1 и 13.3 (15.1 и 15.3, 16.1 и 16.3). Стартовое сооружение состоит из пускового стола 11 и опор кабель-заправочной башни 12.1 и 12.2.
Система деформационных марок, размещаемых в контрольных точках несущих конструкций сооружения, а именно плите покрытия пускового стола, состоит из деформационных марок (18.1, 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 18.10, 18.11, 18.12, 18.13 и 18.14).
Комплект контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения включает датчики давления и температуры (19.1, 19.2, 19.3 и 19.4), размещенные в защитном покрытии стартового сооружения на одной видимой прямой линии.
Разработанная система выполняет особую задачу объективного контроля изменения состояния стартового сооружения - функцию «черного ящика». При этом фиксируется и сохраняется измерительная информация в течение всего времени эксплуатации стартового сооружения. Особое значение имеет период времени, соответствующий циклу запуска ракеты-носителя. Для этого периода разработан особый режим работы системы измерений и долговременного контроля конструкции стартового сооружения.
Перед моментом запуска ракеты-носителя (за 5 минут) система переводится в специальный режим, обеспечивающий максимально возможную плотность записи измерительной информации. Следовательно, система переводится из режима записи медленно меняющихся параметров в режим быстро меняющихся параметров состояния стартового сооружения.
Отметим, что регистрация и сохранение информации обеспечивается не только конечными средствами ее сбора и хранения (персональный компьютер 6), но и периферийными средствами (промежуточные модули сбора и передачи измерительной информации). В периферийных технических средствах измерительная информация записывается на внутреннюю флэш-память.
В случае возникновения чрезвычайных ситуаций (в том числе аварии ракет-носителей) - по результатам «расшифровки» накопленных данных, динамики и характера их изменения будут проводиться работы по установления момента начала и развития нештатной ситуации, а также анализироваться возможные причины ее возникновения.
Массивы информации «черного ящика» стартового сооружения - это наборы данных комплекта тензометрического контроля и комплекта контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения, записанные цифровой подсистемой регистрации системы измерений и долговременного контроля конструкции стартового сооружения в короткий период времени - период схода ракеты носителя с пускового стола.
С использованием планово-высотной геодезической основы стартового сооружения, а также высокоточного цифрового оборудования и оборудования комплекта геодезического контроля в ходе эксплуатации стартового комплекса решаются две задачи пространственных измерений:
1) проводится периодический мониторинг пространственного положения двенадцати опор пускового стола с точностью не хуже 1 мм;
2) выполняются измерения относительного положения элементов пускового стола и элементов кабель-заправочной башни с точностью не хуже 2 мм.
Смысл первой измерительной задачи состоит в измерении величины отклонения каждой из двенадцати контрольных точек (опор) пускового стола от горизонта плоскости, образованной двумя точками (опорами), а также динамики их перемещений относительно высотной геодезической основы до и после пуска ракеты-носителя. Отклонение каждой из двенадцати контрольных точек (опор) пускового стола от горизонта плоскости не должно превышать 1 мм.
Смысл второй измерительной задачи состоит в измерении пространственного положения оси, проходящей через центр пускового стола и центр мнимой окружности, образованной опорами устройства удержания ракеты кабель-заправочной башней.
Сущность этих измерений состоит в построении мнимой окружности и ее центра, проходящего через нанесенные риски на пусковом столе (фиг. 3) и центром мнимой окружности 20, образованной опорами устройства удержания ракеты кабель-заправочной башней стартового сооружения (фиг. 3).
Таким образом, предлагаемые способ и система по сравнению с прототипами и другими техническими решениями аналогичного назначения обеспечивают повышение точности измерений и достоверности долговременного контроля конструкции стартового сооружения ракетносителей, в том числе и семейства ракеты-носителя «Ангара».
Это достигается за счет геодезического контроля, контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения и обеспечения функции «черного ящика».
Разработка автоматизированной системы измерений и долговременного контроля конструкции стартового сооружения ракет-носителей была обусловлена не только требованиями ГОСТ Р 22.1.12-2005, ГОСТ 31937-2011, но и главным образом:
- уникальностью стартового сооружения и его пускового стола;
- необычно размещенной над газоходом кабель-заправочной башней высотой 57 метров с весом 1740 тонн;
- самой ракетой-носителем «Ангара» и особенностью траектории ее движения над стартовым сооружением на начальном этапе пуска.
Разработанная система обладает и некоторыми признаками уникальности.
Первый из них заключается в достигнутом способе высокоточного измерения как пространственного положения заглубленного сооружения, так и деформаций его основных критических элементов.
Другой из отличительных признаков, состоит в реализованном способе объединения разнородных информационных потоков, поступающих в автоматизированную систему:
- перемещений контрольных точек несущих конструкций;
- деформаций и углов наклона критичных элементов несущих конструкций;
- давления газового потока стартующей и температуры в различных зонах поверхности защитного покрытия (металлооблицовки) нулевой отметки стартового сооружения;
параметров окружающей среды: температуры, скорости и направления ветра.

Claims (2)

1. Способ измерений и долговременного контроля состояния конструкции стартового сооружения ракет-носителей, включающий опрос датчиков, установленных в местах диагностирования конструкции, преобразование полученной с датчиков информации и ее передачу на пункт контроля, выполненный в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее введенными в память компьютера фиксированными величинами, при этом формируют условное изображение контролируемого объекта, повторяющее его конструкцию, размещают на нем в местах, соответствующих реальному расположению датчиков, цветные метки-индикаторы, выводят упомянутое изображение с метками-индикаторами на экран компьютера, обеспечивая постоянную связь упомянутых меток-индикаторов с датчиками, в качестве фиксированной величины для каждого датчика используют полученное путем предварительных расчетов предельное допустимое значение измеряемого параметра, а результаты опроса датчиков и результаты сравнения последней принятой с них информации отражают в реальном времени через цвет меток-индикаторов и его смену на условном изображении объекта, по которому судят об исправности датчика и состоянии конструкции, отличающийся тем, что создают планово-высотную основу стартового сооружения, состоящую из «кустов» вековых глубинных реперов, систему деформационных марок, размещаемых в контрольных точках несущих конструкций сооружения, проводят периодический мониторинг пространственного положения двенадцати опор пускового стола с точностью не хуже 1 мм, выполняют измерения относительного положения элементов пускового стола и элементов кабель-заправочной башни с точностью не хуже 2 мм, в случае нештатных ситуаций в период пуска ракеты-носителя регистрируют аномальные процессы динамического состояния защитного покрытия с целью последующего исследования причин их возникновения, фиксируют и сохраняют измерительную информацию в течение всего времени эксплуатации стартового сооружения, выполняя функцию «черного ящика».
2. Система измерений и долговременного контроля конструкции стартового сооружения ракет-носителей, содержащая пункт контроля, характеризующийся использованием компьютера, измерительные преобразователи, размещенные в местах диагностирования конструкции, связанный с ними блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразователя, средства связи блока предварительной обработки сигналов с упомянутым компьютером, выполненным с возможностью опроса измерительных преобразователей, приема и регистрации сигналов, содержащих измерительную информацию, и с возможностью сравнения упомянутой информации с заранее внесенными в его память фиксированными величинами, средства наглядного представления информации, включающие выведенное на экран компьютера условное изображение контролируемой конструкции и цветные метки-индикаторы, размещенные на упомянутом изображении в соответствии с размещением измерительных преобразователей и выполненные с возможностью отражения в реальном времени посредством своего цвета и его изменения исправности соответствующего измерительного преобразователя и результатов сравнения последней принятой с него информации, компьютер выполнен с возможностью одновременного со сменой цвета метки-индикатора вывода на экран дополнительных сведений о типе и исполнении элемента конструкции, на котором размещен соответствующий упомянутой метке-индикатору измерительный преобразователь, отличающаяся тем, что она снабжена планово-высотной геодезической основой стартового сооружения стартового комплекса и комплектом контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения стартового комплекса, причем в качестве планово-высотной геодезической основы стартового сооружения принята сеть глубинных реперов в виде трех «кустов» и одного референтного пункта, расположенных равномерно вокруг стартового сооружения на расстоянии 60-80 метров от него, при этом каждый «куст» включает три глубинных репера и один референтный пункт, которые расположены в форме двух треугольников с углами около 45° и общей вершиной, в которой помещен референтный пункт на расстоянии около 30 метров от двух ближайших глубинных реперов, и система деформационных марок, размещаемых в контрольных точках несущих конструкций стартового сооружения, а, именно, равномерно размещаемые на плите покрытия, вокруг пускового стола, при этом комплект контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения стартового комплекса включает датчики давления и температуры, размещаемые на защитном покрытии стартового сооружения на одной видимой прямой линии.
RU2015108562/28A 2015-03-11 2015-03-11 Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления RU2591734C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015108562/28A RU2591734C1 (ru) 2015-03-11 2015-03-11 Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015108562/28A RU2591734C1 (ru) 2015-03-11 2015-03-11 Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления

Publications (1)

Publication Number Publication Date
RU2591734C1 true RU2591734C1 (ru) 2016-07-20

Family

ID=56412665

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015108562/28A RU2591734C1 (ru) 2015-03-11 2015-03-11 Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления

Country Status (1)

Country Link
RU (1) RU2591734C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697916C1 (ru) * 2018-09-14 2019-08-21 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ контроля состояния конструкции инженерно-строительного сооружения
CN116588359A (zh) * 2022-12-30 2023-08-15 北京天兵科技有限公司 一种液体火箭加注及发射的异构热备系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452087A (en) * 1982-04-05 1984-06-05 Antonio Nicholas F D Pipeline monitoring system
RU2327105C2 (ru) * 2006-05-23 2008-06-20 Общество с ограниченной ответственностью "Батиз" Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления
RU2472129C1 (ru) * 2011-07-05 2013-01-10 Вячеслав Адамович Заренков Система мониторинга безопасной эксплуатации зданий и инженерно-строительных сооружений

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452087A (en) * 1982-04-05 1984-06-05 Antonio Nicholas F D Pipeline monitoring system
RU2327105C2 (ru) * 2006-05-23 2008-06-20 Общество с ограниченной ответственностью "Батиз" Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления
RU2472129C1 (ru) * 2011-07-05 2013-01-10 Вячеслав Адамович Заренков Система мониторинга безопасной эксплуатации зданий и инженерно-строительных сооружений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Руководство по тензометрированию строительных конструкций и материалов. - М., 1971, с.133, с.149-155. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697916C1 (ru) * 2018-09-14 2019-08-21 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ контроля состояния конструкции инженерно-строительного сооружения
CN116588359A (zh) * 2022-12-30 2023-08-15 北京天兵科技有限公司 一种液体火箭加注及发射的异构热备系统和方法
CN116588359B (zh) * 2022-12-30 2024-05-28 北京天兵科技有限公司 一种液体火箭加注及发射的异构热备系统和方法

Similar Documents

Publication Publication Date Title
RU2327105C2 (ru) Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления
US10627219B2 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
CN107063352A (zh) 高层建筑健康监测系统和监测方法
Chang et al. Non-contact measurement of inter-story drift in three-layer RC structure under seismic vibration using digital image correlation
Alamdari et al. Non-contact structural health monitoring of a cable-stayed bridge: Case study
Lynch et al. Post-seismic damage assessment of steel structures instrumented with self-interrogating wireless sensors
CN103604644A (zh) 线位移时应变监测的问题索集中载荷递进式识别方法
CN103616245A (zh) 索力监测受损索集中载荷支座角位移递进式识别方法
RU2576548C2 (ru) Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления
RU2591734C1 (ru) Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления
CN103913340A (zh) 线位移应变监测受损索载荷识别方法
CN103604627A (zh) 混合监测问题索集中载荷广义位移递进式识别方法
CN103604654A (zh) 空间坐标监测问题索集中载荷广义位移递进式识别方法
CN103604550A (zh) 索力监测受损索集中载荷广义位移递进式识别方法
CN103604656A (zh) 索力监测受损索集中载荷线位移递进式识别方法
CN103604651A (zh) 索力监测受损索集中载荷广义位移识别方法
CN103852288A (zh) 索力监测受损索载荷递进式识别方法
CN103616230A (zh) 索力监测的受损索和集中载荷递进式识别方法
CN103630392A (zh) 线位移时混合监测的问题索集中载荷递进式识别方法
RU2767263C1 (ru) Способ комплексной оценки показателей, определяющих техническое состояние трубопроводных систем, и система мониторинга для его реализации
CN103913336A (zh) 索力监测受损索载荷角位移递进式识别方法
CN104743445B (zh) 基于连通管和姿态的塔吊安全性能检测装置及其分析方法
CN103604626A (zh) 混合监测受损索集中载荷广义位移递进式识别方法
CN113280953A (zh) 一种基于区块链的桥梁施工应力检测系统
CN103852280A (zh) 索力监测受损索载荷识别方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170312