RU2591045C1 - Имитатор источников радиоизлучений - Google Patents

Имитатор источников радиоизлучений Download PDF

Info

Publication number
RU2591045C1
RU2591045C1 RU2015112803/07A RU2015112803A RU2591045C1 RU 2591045 C1 RU2591045 C1 RU 2591045C1 RU 2015112803/07 A RU2015112803/07 A RU 2015112803/07A RU 2015112803 A RU2015112803 A RU 2015112803A RU 2591045 C1 RU2591045 C1 RU 2591045C1
Authority
RU
Russia
Prior art keywords
radio
phase
memory
signal
simulator
Prior art date
Application number
RU2015112803/07A
Other languages
English (en)
Inventor
Виктор Вячеславович Беляев
Александр Александрович Бубеньщиков
Сергей Васильевич Сиденко
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2015112803/07A priority Critical patent/RU2591045C1/ru
Application granted granted Critical
Publication of RU2591045C1 publication Critical patent/RU2591045C1/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к средствам имитации радиосигналов источников радиоизлучений (ИРИ) и может быть использовано при оценке качества и настройке средств радиоконтроля и радиопеленгации, а также для обучения обслуживающего персонала указанных средств. Достигаемый технический результат - расширение функциональных возможностей известного имитатора радиосигналов и повышение технологичности имитации пространственно-разнесенных ИРИ. Указанный результат достигается за счет того, что имитатор источников радиоизлучений содержит генератор синхросигналов, устройство управления, запоминающее устройство, накапливающий сумматор, а также N-каналов формирования сигналов, каждый из которых содержит запоминающее устройство хранения значений фазовых сдвигов, фазосдвигающее устройство и устройство формирования сигнала. Перечисленные средства определенным образом соединены между собой. 2 ил.

Description

Изобретение относится к области радиотехники, в частности к средствам имитации радиосигналов источников радиоизлучений (ИРИ), и может быть использовано при оценке качества и настройке средств радиоконтроля и радиопеленгации, а также для обучения обслуживающего персонала указанных средств.
Известен имитатор навигационных сигналов [1. Россия, патент №123976, G01S 7/40, 2013] космических аппаратов, предназначенный для формирования радиосигналов, сходных по структуре с сигналами, излучаемыми такими устройствами.
Известно также одноканальное устройство для имитации периодических сигналов переменной частоты [2. Патент ЕР №030053, G01S 7/40, 1981]. Оно состоит из генератора синхросигнала заданной частоты, устройства управления, управляемого делителя, ЭВМ и цифроаналогового преобразователя.
Недостатком указанных устройств является низкая технологичность и сложность имитации пространственно-разнесенные ИРИ.
Наиболее близким по технической сущности и достигаемому техническому результату (прототип) является устройство - имитатор радиосигналов [3. Россия, патент №2207586, G01S 7/02, 2001], позволяющий имитировать радиосигналы с заданной начальной фазой и содержащий генератор синхросигналов, последовательно соединенные устройство управления (УУ), запоминающее устройство (ЗУ), накапливающий сумматор и устройство формирования сигнала, при этом выход ЗУ соединен с первым входом накапливающего сумматора, второй вход которого соединен с выходом генератора синхросигналов, а вход ЗУ соединен с выходом устройства управления, а выход устройства формирования сигнала является выходом имитатора.
Недостатком указанного устройства является низкая технологичность и сложность имитации пространственно-разнесенных ИРИ.
Техническим результатом изобретения является расширение функциональных возможностей известного имитатора радиосигналов и повышение технологичности имитации пространственно-разнесенных ИРИ за счет одновременного формирования N-1 сигналов с различными фазовыми сдвигами относительно фазы сигнала одного из каналов, что позволяет имитировать пространственно-разнесенных ИРИ.
Технический результат достигается тем, что в известный имитатор радиосигналов, содержащий генератор синхросигналов и последовательно соединенные УУ, ЗУ и накапливающий сумматор, второй вход которого соединен с выходом генератора синхросигналов, дополнительно введены N каналов формирования сигналов, каждый из которых содержит последовательно соединенные ЗУ хранения значений фазовых сдвигов, фазосдвигающее устройство и устройство формирования сигнала, при этом вторые входы фазосдвигающих устройств всех каналов объединены и соединены с выходом накапливающего сумматора, первый вход ЗУ хранения значений фазовых сдвигов n-го канала формирования сигнала, где n=1…Ν, соединен с n+2 выходом УУ, а вторые входы объединены со вторым входом ЗУ и соединены со вторым выходом УУ, выходы устройства формирования сигнала являются выходами имитатора.
Известно [4. И.С. Кукес, M.Е. Старик. Основы радиопеленгации. - М.: Советское радио, 1964 г., 324 с., с. 33-35], что при пеленговании пространственно-разнесенных ИРИ из-за разности хода лучей сигналы на входе пеленгатора имеют различные фазовые сдвиги относительно фазы одного из сигналов, являющегося опорным. Сущность изобретения заключается в имитации работы реального ИРИ с заданным азимутом путем формирования сигналов с заданными фазовыми сдвигами в каждом из дополнительно введенных каналов относительно сигнала в одном опорном канале. Фазовый сдвиг сигнала в каждом канале определяется заданной геометрией пеленгаторной антенной системы (количество антенных элементов и расстояние между ними) и заданным азимутом ИРИ. Это позволяет при подключении к выходу имитатора ИРИ фазового пеленгатора, осуществляющего измерение пеленга на основе оценки разности фаз в сигналах, проходящих по его каналам, получить на его выходе заданное значение пеленга на ИРИ на определенной частоте излучения.
На фигуре 1 представлена функциональная схема имитатора ИРИ, где введены следующие обозначения: 1 - генератор синхросигналов; 2 - устройство управления; 3 - ЗУ; 4 - ЗУ хранения значений фазовых сдвигов; 5 - накапливающий сумматор; 6 - фазосдвигающее устройство; 7 - устройство формирования сигнала.
На фигуре 2 представлена функциональная схема устройство управления 2, где введены следующие обозначения: 8 - устройство задания кода режима работы; 9 - ЗУ хранения значения частоты; 10 - ЗУ хранения значений пеленгов; 11 - индикатор; 12 - блок расчета значений фазовых сдвигов.
Устройство управления 2 предназначено для выбора режима работы и соответствующих ему параметров формируемого сигнала (центральная частота и начальная фаза, пеленг и соответствующие ему значения фазовых сдвигов в сигналах для каждого канала); передачи кодов частоты и вносимых фазовых сдвигов в сигналы в каналах имитатора в ЗУ 3 и ЗУ хранения значения фазовых сдвигов 4 соответственно и команд на считывание этих кодов в накапливающий сумматор 5 и фазосдвигающее устройство 6 соответственно.
ЗУ хранения значения частоты 9 предназначено для хранения кода значения частоты, формируемого в имитаторе сигнала ИРИ, и его начальной фазы.
ЗУ хранения значений пеленгов 10 предназначено для хранения кодов значений заданных пеленгов на ИРИ.
Блок расчета значений фазовых сдвигов 12 предназначен для алгоритмического вычисления в соответствии с заданным алгоритмом (см. ниже) значений вносимых в соответствии с заданным азимутом (пеленгом) и геометрией антенной системы фазовых сдвигов в формируемые сигналы в каналах имитатора.
ЗУ хранения значения частоты 9, ЗУ хранения значений пеленгов 10 и блок расчета значений фазовых сдвигов 12 могут быть реализованы на основе микроконтроллера, например ATmega64A (http://www.atmel.com/devices/-atmega-64A.aspx).
Устройство задания кода режима работы 8 предназначено для передачи в ЗУ хранения значения частоты 9 и ЗУ хранения значений пеленгов 10 кода режима работы и информации о соответствующих ему частоте формируемого радиосигнала и азимута его источника, а также для передачи в ЗУ 3 и ЗУ хранения значений фазовых сдвигов 4 команды на считывание с их выходов кодов значений частоты и фазовых сдвигов соответственно.
Устройство задания кода режима работы 8 может быть реализовано на основе механического инкрементного валкодера серии РЕС 11 фирмы BOURNS (http://www.stas633.narod.ru/ProVse/Valcoder/Encoder.html).
ЗУ хранения значений фазовых сдвигов 4 предназначено для буферного (оперативного) хранения кодов значений вносимых в формируемый сигнал фазовых сдвигов в соответствии с заданным азимутом для каждого канала имитатора.
Фазосдвигающее устройство 6 предназначено для алгоритмического суммирования значений начальной фазы сигнала в каждом канале и дополнительного фазового сдвига, тем самым осуществляя поворот фазы сигнала в соответствии с заданным в УУ 2 значением пеленга на ИРИ.
ЗУ 3, ЗУ хранения значений фазовых сдвигов 4, накапливающие сумматоры 5, фазосдвигающее устройство 6, устройство формирования сигнала 7 могут быть выполнены в виде синтезатора частот прямого цифрового синтеза, например AD9959 (http://www.analog.com/ru/rfif-components/direct-digital-synthesis-dds/ad9959/products/product.html).
Генератор синхросигналов 1 может быть реализован на основе генератора, например KXO-V97 (http://www.compel.ru/infosheet/GEYER/KXO-V97%2050.0%20MHz/)
Индикатор 11 предназначен для отображения частоты формируемого сигнала и азимута его ИРИ, и может быть выполнен на основе LCD индикатора WH1602В (http://www.compel.ru/infosheet/WINSTAR/WH1602B-YGK-CTK/)
Имитатор источников радиоизлучений содержит генератор синхросигналов 1 и последовательно соединенные УУ 2, ЗУ 3 и накапливающий сумматор 5, второй вход которого соединен с выходом генератора синхросигналов 1, дополнительно введенные N-каналов формирования сигналов, каждый из которых содержит последовательно соединенные ЗУ хранения значений фазовых сдвигов 4, фазосдвигающее устройство 6 и устройство формирования сигнала 7, при этом вторые входы фазосдвигающих устройств 6 всех каналов объединены и соединены с выходом накапливающего сумматора 5, первый вход ЗУ хранения значений фазовых сдвигов 4 n-го канала формирования сигнала, где n=1…Ν, соединен с n+2 выходом УУ 2, а вторые входы объединены со вторым входом ЗУ 3 и соединены со вторым выходом УУ 2, выходы устройства формирования сигнала 7 являются выходами имитатора.
Имитатор ИРИ работает следующим образом.
С выхода генератора синхросигналов 1 синхросигнал опорной частоты FT поступает на второй вход накапливающего сумматора 5. С первого выхода устройства управления 2 на первом такте работы на первый вход ЗУ 3 поступают код значения частоты f0 формируемого сигнала и его начальной фазы φ0 и записывается в нем. Одновременно с этим с соответствующего выхода устройства управления 2, начиная с 3-го по j-й в зависимости от номера канала формирования сигнала с заданной фазой, одновременно на первые входы ЗУ хранения значений фазовых сдвигов 4 каждого канала формирования сигнала с заданной фазой поступает код значения соответствующего фазового сдвига Δφi,n, n,i∈[1,N] для заданного азимута (пеленга) на ИРИ Θзад и геометрии пеленгаторной антенной решетки и записывается в нем. После записи кода значения частоты f0 сигнала, его начальной фазы φ0 и кодов значений фазовых сдвигов Δφi,n со второго выхода устройства управления 2 одновременно на объединенные вторые входы ЗУ 3 и ЗУ хранения значений фазовых сдвигов 4 каждого канала формирования сигнала с заданной фазой поступает команда на одновременное считывание кода значения частоты f0 сигнала, его начальной фазы φ0 и записи его в накапливающий сумматор 5, а также считывание кодов значений фазовых сдвигов Δφi,n и записи их в фазосдвигающее устройство 6 соответственно. В этом случае выходной код накапливающего сумматора 5 представляют собой код полной фазы сигнала Δφ=2πf0t+φ0, который поступает одновременно на первые входы фазосдвигающего устройства 6 всех каналов формирования сигнала с заданной фазой. В фазосдвигающем устройстве 6 осуществляется алгоритмическое сложение значения полной фазы сигнала Δφ=2πf0t+φ0 и заданных фазовых сдвигов Δφn=2πf0t+φ0+Δφi,n. При этом в первом канале дополнительный фазовый сдвиг не вносится Δφ1=2πf0t+φ0, т.к. он является опорным. Следовательно, на выходах фазосдвигающих устройств 6 всех каналов формирования сигнала с заданной фазой имитатора ИРИ формируются коды мгновенной фазы Δφn=2πf0t+φ0+Δφi,n сигнала с учетом соответствующих вносимых фазовых сдвигов Δφi,n, определяемых заданным азимутом (пеленгом) Θзад на ИРИ и геометрией имитируемой пеленгаторной антенной решетки. При этом взаимосвязь частоты генерируемого колебания f0 и мгновенного значения фазы Δφn определяется следующим выражением (см. http://www.wubblick.com): f 0 = Δ ϕ n F T 2 m
Figure 00000001
, где Δφn=1, 2, …2m, m - разрядность накапливающего сумматора 5.
После этого с выхода фазосдвигающих устройств 6 каждого канала сформированные коды мгновенного значения фазы Δφn поступают на соответствующие входы устройств формирования сигнала 7. В устройствах формирования сигнала 7 каждого канала в соответствии с пришедшем кодом мгновенного значения фазы Δφn формируется непрерывный синусоидальный сигнал заданной частоты f0 и фазой Δφi,n. Таким образом, на выходе каждого канала формирования сигнала с заданной фазой имитатора ИРИ будет сформирован сигнал, который можно записать в виде:
Figure 00000002
Figure 00000003
Устройство управления 2 работает следующим образом. На первом такте работе с выхода устройства задания кода режима работы 8 для задания соответствующих значений частоты f0 и начальной фазы φ0 формируемого сигнала, а также сдвигов фаз Δφi,n для каждого канала формирования сигнала одновременно на объединенные входы ЗУ хранения значения частоты 9 и ЗУ хранения значений пеленгов 10 поступает код режима, представляющий собой команду на выбор соответствующего этому режиму кода значения частоты f0, начальной фазы φ0 и пеленга Θзад на ИРИ. После этого код значения частоты f0 и начальной фазы φ0 с объединенного выхода ЗУ хранения значения частоты 9 одновременно поступает на первый выход устройства управления 2 и второй вход индикатора 13. Одновременно с этим с выхода ЗУ хранения значений пеленгов 10 код пеленга Θзад на ИРИ поступает на вход блока расчета значений фазовых сдвигов 12, в котором осуществляется алгоритмический расчет значений фазовых сдвигов для сигнала в каждом из N-каналов формирования сигнала с заданной фазой имитатора ИРИ относительно опорного первого канала в соответствии с заданным азимутом (пеленгом) Θзад и геометрией пеленгаторной антенной системы. Например, для модели трехэлементной эквидистантой пеленгаторной антенной решетки расчет заданных фазовых сдвигов осуществляется в соответствии со следующими выражениями:
Figure 00000004
Figure 00000005
где b - расстояние между антенными элементами имитируемой трехэлементной антенной решетки; λ = c f 0
Figure 00000006
- длина волны сигнала ИРИ; с - скорость света.

Claims (1)

  1. Имитатор источников радиоизлучений, содержащий генератор синхросигналов и последовательно соединенные УУ, ЗУ и накапливающий сумматор, второй вход которого соединен с выходом генератора синхросигналов, отличающийся тем, что дополнительно введены N каналов формирования сигналов, каждый из которых содержит последовательно соединенные ЗУ хранения значений фазовых сдвигов, фазосдвигающее устройство и устройство формирования сигнала, при этом вторые входы фазосдвигающих устройств всех каналов объединены и соединены с выходом накапливающего сумматора, первый вход ЗУ хранения значений фазовых сдвигов n-го канала формирования сигнала, где n=1…N, соединен с n+2 выходом УУ, а вторые входы объединены со вторым входом ЗУ и соединены со вторым выходом УУ, выходы устройства формирования сигнала являются выходами имитатора.
RU2015112803/07A 2015-04-07 2015-04-07 Имитатор источников радиоизлучений RU2591045C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015112803/07A RU2591045C1 (ru) 2015-04-07 2015-04-07 Имитатор источников радиоизлучений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015112803/07A RU2591045C1 (ru) 2015-04-07 2015-04-07 Имитатор источников радиоизлучений

Publications (1)

Publication Number Publication Date
RU2591045C1 true RU2591045C1 (ru) 2016-07-10

Family

ID=56372268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015112803/07A RU2591045C1 (ru) 2015-04-07 2015-04-07 Имитатор источников радиоизлучений

Country Status (1)

Country Link
RU (1) RU2591045C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627689C1 (ru) * 2016-07-25 2017-08-10 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Имитатор пространственно-разнесенных источников радиоизлучения
RU2682716C1 (ru) * 2017-11-14 2019-03-21 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Устройство наземного контроля радиолокационной системы управления
RU2687270C1 (ru) * 2018-04-02 2019-05-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство имитации радиоэлектронной обстановки
RU2758591C1 (ru) * 2020-12-21 2021-11-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный ордена Жукова университет радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "Военный ордена Жукова университет радиоэлектроники" МО РФ) Устройство имитации радиоэлектронной обстановки

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067041A (en) * 1998-10-15 2000-05-23 Northrop Grumman Corporation Moving target simulator
RU2207586C2 (ru) * 2001-01-30 2003-06-27 Государственное конструкторское бюро аппаратно-программных систем "Связь" Всероссийского НИИ "Градиент" Имитатор радиосигналов
RU2291461C2 (ru) * 2004-08-24 2007-01-10 Федеральное государственное унитарное предприятие "Государственное конструкторское бюро аппаратно-программных систем "Связь" (ФГУП "ГКБ "Связь") Двухканальный имитатор радиосигналов
JP2010216885A (ja) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp 電波源シミュレータ
CN102508214A (zh) * 2011-09-29 2012-06-20 北京振兴计量测试研究所 雷达辐射源模拟器
RU2530544C1 (ru) * 2013-07-31 2014-10-10 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Способ моделирования сигнала, отраженного от земной поверхности, в режиме картографирования реальным лучом
RU149476U1 (ru) * 2014-02-06 2015-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Имитатор радиосигналов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067041A (en) * 1998-10-15 2000-05-23 Northrop Grumman Corporation Moving target simulator
RU2207586C2 (ru) * 2001-01-30 2003-06-27 Государственное конструкторское бюро аппаратно-программных систем "Связь" Всероссийского НИИ "Градиент" Имитатор радиосигналов
RU2291461C2 (ru) * 2004-08-24 2007-01-10 Федеральное государственное унитарное предприятие "Государственное конструкторское бюро аппаратно-программных систем "Связь" (ФГУП "ГКБ "Связь") Двухканальный имитатор радиосигналов
JP2010216885A (ja) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp 電波源シミュレータ
CN102508214A (zh) * 2011-09-29 2012-06-20 北京振兴计量测试研究所 雷达辐射源模拟器
RU2530544C1 (ru) * 2013-07-31 2014-10-10 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Способ моделирования сигнала, отраженного от земной поверхности, в режиме картографирования реальным лучом
RU149476U1 (ru) * 2014-02-06 2015-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Имитатор радиосигналов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627689C1 (ru) * 2016-07-25 2017-08-10 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Имитатор пространственно-разнесенных источников радиоизлучения
RU2682716C1 (ru) * 2017-11-14 2019-03-21 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Устройство наземного контроля радиолокационной системы управления
RU2687270C1 (ru) * 2018-04-02 2019-05-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство имитации радиоэлектронной обстановки
RU2758591C1 (ru) * 2020-12-21 2021-11-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный ордена Жукова университет радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "Военный ордена Жукова университет радиоэлектроники" МО РФ) Устройство имитации радиоэлектронной обстановки

Similar Documents

Publication Publication Date Title
Taylor et al. Mining gravitational-wave catalogs to understand binary stellar evolution: A new hierarchical Bayesian framework
RU2591045C1 (ru) Имитатор источников радиоизлучений
Shang et al. A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network
McKee et al. A glitch in the millisecond pulsar J0613− 0200
Jian et al. Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC
Wilkins et al. The origin of the lag spectra observed in AGN: reverberation and the propagation of X-ray source fluctuations
Samushia et al. The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from Λ and general relativity using anisotropic clustering of galaxies
Hu CMB temperature and polarization anisotropy fundamentals
Derekas et al. Period and light-curve fluctuations of the Kepler Cepheid V1154 Cygni
Chen et al. A brief history of gravitational wave research
Jian et al. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center
Dettmering et al. Global calibration of Jason-2 by multi-mission crossover analysis
Wang et al. Comparison of pulsar positions from timing and very long baseline astrometry
Fernandez et al. Stars and reionization: the cross-correlation of the 21 cm line and the near-infrared background
Celletti et al. Dynamical investigation of minor resonances for space debris
Paul et al. Inevitable imprints of patchy reionization on the cosmic microwave background anisotropy
Uemura et al. Reconstruction of the structure of accretion disks in dwarf novae from the multi-band light curves of early superhumps
Covas Effects of proper motion of neutron stars on continuous gravitational-wave searches
Hinterreiter et al. Why are ELEvoHI CME arrival predictions different if based on STEREO‐A or STEREO‐B heliospheric imager observations?
Herron et al. Probes of turbulent driving mechanisms in molecular clouds from fluctuations in synchrotron intensity
Dinda Analytical Gaussian process cosmography: unveiling insights into matter-energy density parameter at present
Simms et al. Predicting geostationary 40–150 keV electron flux using ARMAX (an autoregressive moving average transfer function), RNN (a recurrent neural network), and logistic regression: A comparison of models
Montalto A search for planetary transits on a set of 1.4 million multisector DIAmante light curves
Garg et al. Measuring eccentricity and gas-induced perturbation from gravitational waves of LISA massive black hole binaries
RU2544761C1 (ru) Устройство для моделирования каталога разведки разнотипных подвижных объектов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180408