RU2589649C1 - Способ и устройство для неинвазивного локального разрушения биологической ткани - Google Patents

Способ и устройство для неинвазивного локального разрушения биологической ткани Download PDF

Info

Publication number
RU2589649C1
RU2589649C1 RU2015109661/14A RU2015109661A RU2589649C1 RU 2589649 C1 RU2589649 C1 RU 2589649C1 RU 2015109661/14 A RU2015109661/14 A RU 2015109661/14A RU 2015109661 A RU2015109661 A RU 2015109661A RU 2589649 C1 RU2589649 C1 RU 2589649C1
Authority
RU
Russia
Prior art keywords
focus
elements
intensity
ultrasound
phased array
Prior art date
Application number
RU2015109661/14A
Other languages
English (en)
Inventor
Леонид Рафаилович Гаврилов
Вера Александровна Хохлова
Олег Анатольевич Сапожников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2015109661/14A priority Critical patent/RU2589649C1/ru
Application granted granted Critical
Publication of RU2589649C1 publication Critical patent/RU2589649C1/ru

Links

Images

Landscapes

  • Surgical Instruments (AREA)

Abstract

Группа изобретений относится к медицинской технике, а именно к ультразвуковой хирургии. Устройство для неинвазивного локального разрушения биологической ткани состоит из фазированной решетки с непериодическим расположением излучающих элементов и центральным отверстием для установки датчика контроля очага воздействия, непериодическое расположение элементов обеспечивается размещением их по спирали, при этом размер элементов выбран из расчета не более 4 длин волн излучаемого ультразвука с заполнением элементами не менее 85% площади активной поверхности решетки. Способ неинвазивного локального разрушения биологической ткани заключается в том, что на ткань воздействуют импульсами фокусированного ультразвука в частотном диапазоне 0.2-3 МГц, генерируемыми фазированной решеткой с интенсивностью, обеспечивающей образование ударных фронтов с амплитудой 50-150 МПа в профиле волны в фокусе, генерация импульсов с интенсивностью, достаточной для образования ударных фронтов в фокусе, обеспечивается за счет использования фазированной решетки, а локальное разрушение тканей в очаге воздействия, обеспечивают электронным перемещением фокуса с угловым отклонением от оси решетки в пределах не менее чем ±8º, допуская при предельных перемещениях снижение интенсивности в фокусе не более чем на 50% по сравнению с максимальной интенсивностью. Применение данной группы позволит повысить эффективность разрушающего действия ультразвука в фокусе. 2 н. и 5 з.п. ф-лы, 5 ил., 1 пр.

Description

Изобретение относится к области медицины и медицинской техники, а более конкретно к ультразвуковой хирургии. Предлагаемые способ и устройство предназначены для неинвазивного локального разрушения биологических тканей, расположенных за сильно поглощающими ультразвук препятствиями, например, за слоями сильно поглощающих тканей, а также костями черепа или грудной клетки без повреждения тканей по пути прохождения ультразвукового пучка.
Как известно, мощный фокусированный ультразвук (общепринятое сокращение HIFU - от словосочетания High Intensity Focused Ultrasound) используется в медицине для локального разрушения глубоко расположенных тканей организма, в частности опухолей печени, молочной железы, костей, почек, поджелудочной железы и матки. При облучении тканей, расположенных на большой глубине в теле человека, за костями черепа или грудной клетки (например, тканей мозга, печени или сердца), возникают проблемы с фокусировкой ультразвукового пучка. Сильное затухание ультразвука при его прохождении через слои сильно поглощающих тканей, а также кости черепа и грудной клетки уменьшают интенсивность ультразвука, дошедшего до фокуса, в связи с чем она может оказаться недостаточной для разрушения ткани. Наряду с этим одним из главных побочных эффектов облучения является перегрев сильно поглощающих тканей по пути прохождения ультразвукового пучка, например, костей черепа и грудной клетки, а также ожоги кожи. Вышеуказанные проблемы ограничивают применение метода HIFU в медицинской практике.
Известно, что в современных фокусирующих системах, применяемых в ультразвуковой хирургии, значение интенсивности в фокальной области может достигать десятков кВт/см2, что приводит к генерации высших гармоник в спектре распространяющейся волны, асимметричному искажению профиля волны, формированию разрывов (ударных фронтов) и дополнительной диссипации ультразвуковой энергии на указанных разрывах. Амплитуда разрыва может достигать 60-150 МПа. При этом возможен локальный сверхбыстрый, за несколько миллисекунд, нагрев ткани до температур выше 100°C и возникновение кипения [М. Canney, V. Khokhlova, О. Bessonova, М. Bailey, L. Crum. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound. Ultrasound in Medicine & Biology; 2010, 36(2): 250-267]. Приращение температуры ткани при этом может в десятки раз превышать нагрев ткани по сравнению со случаем облучения гармонической волной той же интенсивности. Указанный эффект достигается за счет того, что поглощение энергии ультразвуковой волны на ударных фронтах пропорционально третьей степени амплитуды разрыва, в отличие от квадратичной зависимости давления от амплитуды для гармонической волны [М.Р. Бэйли, В.А. Хохлова, О.А. Сапожников, С.Г. Каргл, Л.А. Крам. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань. Акуст. журн. 2003. Т. 49, №4, С. 437-464].
Известен способ и устройство для разрушения тканей, включающие использование ультразвуковых импульсов с ударными фронтами [Патент США № US 8,876,740 (B2), дата публикации 11.04.2014]. По своей технической сущности это способ неинвазивного механического разрушения биологических тканей, включающий воздействие фокусированными ультразвуковыми импульсами миллисекундной длительности на заданный участок ткани с образованием паровой области кипения в фокальной области внутри каждого из импульсов и визуализацию области воздействия. Способ основан на использовании одиночного излучателя и не предполагает использования электронного перемещения фокуса, что делает облучение клинически значимых объемов ткани технически сложным.
Также известен способ импульсного кавитационного ультразвукового разрушения тканей, включающий использование ультразвуковых волн с ударными фронтами [Патент США № US 2010/0069797 (A1), дата публикации 18.03.2010]. По своей технической сущности это способ неинвазивного механического разрушения биологических тканей, включающий воздействие фокусированным ультразвуком на заданный участок ткани с образованием облака кавитационных пузырьков в фокальной области и визуализацию области воздействия. Облучение производится короткими (несколько микросекунд) импульсами с ударными фронтами, при этом пиковое отрицательное давление, необходимое для создания кавитационного облака, составляет около 20 МПа, а коэффициент заполнения импульсов составляет около 1%. Способ основан на механическом разрушении ткани и не предусматривает теплового воздействия на ткани, а также основан на использовании одиночного излучателя и не предполагает использования электронного перемещения фокуса. Эффективность воздействия определяется большой величиной пикового отрицательного давления, которое труднодостижимо.
Для облучения клинически значимых объемов ткани, наряду с одиночными излучателями, используются многоэлементные фазированные решетки, позволяющие электронным образом перемещать фокус в пространстве от центра кривизны решетки вдоль и поперек оси ультразвукового пучка [С.А. Ильин, П.В. Юлдашев, В.А. Хохлова, Л.Р. Гаврилов, П.Б. Росницкий, О.А. Сапожников. Применение аналитического метода для оценки качества акустических полей при электронном перемещении фокуса многоэлементных терапевтических решеток. Акуст. журн., 2015, т. 61, №1, с. 57-64]. В полях таких решеток также удается реализовать нелинейные режимы с образованием высокоамплитудных ударных фронтов в области фокуса в воде [П.В. Юлдашев, В.А. Хохлова. Моделирование трехмерных нелинейных полей ультразвуковых терапевтических решеток. Акуст. журн., 2011, Т. 57, №3 с. 337-347]. Использование решеток также позволяет обеспечить более безопасное облучение при фокусировке через ребра путем выключения элементов, находящихся за ребрами [S. Bobkova, L. Gavrilov, V. Khokhlova, A. Shaw, and J. Hand. Focusing of high intensity ultrasound through the rib cage using a therapeutic random phased array, Ultrasound in Medicine & Biology, 2010, v. 36(6), pp. 888-906].
Недостатком указанного способа использования многоэлементных решеток для реализации ударно-волнового режима в фокусе является то, при прохождении пучка через сильно поглощающие ткани и акустические препятствия, например, в виде ребер, интенсивность ультразвука, дошедшего до фокуса, может оказаться недостаточной для образования ударных фронтов вследствие значительного затухания энергии ультразвукового пучка до фокуса. При этом увеличение интенсивности ультразвука на элементах решетки, а значит, и повышение интенсивности в фокусе становится невозможным, поскольку интенсивность ультразвука на элементах решетки, необходимая для реализации указанного способа, оказывается выше предельно допустимой интенсивности на пьезокерамике (около 30 Вт/см2 при условии хорошего охлаждения и короткого времени работы) [Yuldashev P.V., Shmeleva S.M., Ilyin S.A., Sapozhnikov O.A., Gavrilov L.R., Khokhlova V.A. // Phys. in Med. and Biol. 2013. V. 58. P. 2537]. Превышение указанного значения может привести к выходу из строя фокусирующего устройства. С другой стороны, увеличение апертуры решетки и количества элементов в ней также не позволяет решить проблему не только в силу усложнения конструкции фокусирующей системы, но и потому, что увеличение площади, через которую проходит ультразвук в неоднородной ткани, приводит к большей расфокусировке пучка. В свою очередь, повышение расстояния между решеткой и объектом создает сложности в акустическом согласовании излучателя с объектом, а также в работе устройства для визуализации очага воздействия.
Поэтому, едва ли не единственным резервом для повышения интенсивности в области фокуса и обеспечения амплитудно-зависимых нелинейных режимов становится плотное расположение элементов на поверхности решетки, поскольку интенсивность в фокусе связана квадратичной зависимостью со степенью заполнения решетки. Вместе с тем, способ неинвазивного локального разрушения биологических тканей, находящихся за сильно поглощающими тканями, при мощности ультразвукового пучка, гарантирующей образование ударных фронтов в фокусе, должен обеспечивать возможность электронного перемещения фокуса в сторону от оси решетки без повреждений в побочных максимумах интенсивности, которые возникают в акустических полях решеток, а также без повреждения тканей по пути прохождения ультразвукового пучка.
Известна конструкция ультразвуковой фазированной решетки, позволяющая существенно снизить уровень боковых лепестков в создаваемом решеткой поле, основанная на использовании прореженных решеток с элементами, случайным образом расположенными на ее поверхности и обладающими не слишком узкой диаграммой направленности, для чего размеры элементов не должны превышать нескольких длин волн (как максимум, 5 длин волн) [Патент GB 2347043, дата публикации 23.08.2000; US patent 6488630, дата публикации 03.12.2002; Патент Китая CN 1340184, дата публикации 16.08.2002; Патент Гонконга НК 1045015, дата публикации 11.09.2002]. При этом степень заполнения поверхности подобных решеток элементами должна составлять 40-60%. Недостатком данного устройства является то, что оно не предусматривает воздействия на ткани, расположенные за сильно поглощающими тканями, и не предполагает использования более высоких плотностей заполнения решеток.
Известны решетки с плотной упаковкой элементов, основанные на использовании прямоугольных элементов, плотно примыкающих друг к другу, а также элементов, расположенных в виде мозаики Пенроуза [Raju, В.I., Hall, С.S. & Seip R. 2011. Ultrasound therapy transducers with space-filling non-periodic arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58, 5, 944-954]. Известна прореженная антенная решетка с непериодическим расположением элементов, состоящая из совокупности логарифмических спиральных решеток меньшего размера и обеспечивающая относительно низкий уровень лепестков решетки [Патент США №6,433,754 В1, дата публикации 13.08.2002]. Известна прореженная антенная решетка с непериодическим расположением элементов на спирали, предназначенная для ультразвуковой диагностики [Патент США № US 6,359,367 В1, дата публикации 19.03.2002]. Известны диагностические решетки с относительно небольшим числом элементов (128, 256), основанные на использовании спиралей Ферма различных модификаций, в том числе и многозаходных [Martínez-Graullera О., Martín C.J., Godoy G, Ullate L.J. 2D array design based on Fermat spiral for ultrasound imaging. Ultrasonics 50 (2010) 280-289]. Известны фазированные решетки, в которых элементы расположены на архимедовой спирали наружу от центральной оси решетки [Morrison К.Р., Keilman G.W. Single Archimedean spiral close packed phased array HIFU. 2014 IEEE International Ultrasonics Symposium Proceedings. 400-404]. Элементы решетки изготовлены в виде дисков. Оценки показывают, что в подобных случаях реальный коэффициент заполнения решетки не превышает 50%.
Недостатком всех описанных выше конструкций решеток является то, что они предполагают низкую степень заполнения решеток и, таким образом, не предусматривают воздействия на ткани, расположенные за сильно поглощающими тканями.
Наиболее близкими аналогами (прототипом) изобретения является предложенный с участием авторов данной заявки способ и устройство для неинвазивного разрушения расположенных за костями грудной клетки биологических тканей [Патент РФ №2472545, дата публикации 20.01.2013]. По своей технической сущности способ заключается в том, что на биологическую ткань воздействуют фокусированным ультразвуком высокой интенсивности в частотном диапазоне 0.8-2 МГц, при этом воздействие осуществляют при мощности ультразвукового пучка, обеспечивающей образование ударных фронтов в основном фокусе с пиковым положительным давлением 30-80 МПа, и создают локальное разрушение в месте нахождения основного фокуса без повреждений в побочных фокусах. Данный способ относится к случаю прохождения ультразвука через периодическую структуру ребер с последующим расщеплением фокуса. Недостатком данного способа является то, что он предполагает относительно низкую плотность заполнения решеток, поскольку элементы решетки выполнены в виде дисков и имеют квазислучайное прореженное расположение, при этом реальный коэффициент заполнения решетки не превышает 50%, т.е. не предполагает воздействия на ткани, расположенные за акустическими препятствиями типа слоев тканей с сильным затуханием ультразвука, а также костей черепа.
Техническим результатом настоящего изобретения является увеличение глубины воздействия на ткани и повышение интенсивности в фокусе решетки при сохранении ее апертуры и интенсивности на элементах решетки и, как следствие, повышение эффективности разрушающего действия ультразвука в фокусе, а также при сохранении безопасности применения способа и устройства за счет снижения влияния побочных максимумов интенсивности в создаваемом решеткой поле и уменьшения теплового воздействия на сильно поглощающие ткани и акустические препятствия на пути прохождения ультразвукового пучка.
Технический результат достигается за счет того, что для неинвазивного локального разрушения биологической ткани используется устройство, представляющее собой фазированную решетку с непериодическим (рандомизированным) расположением излучающих элементов и центральным отверстием для установки датчика для контроля очага воздействия, в которой непериодическое расположение элементов обеспечивается размещением их по спирали, при этом размер элементов выбран из расчета не более 4 длин волн излучаемого ультразвука с заполнением элементами не менее 85% площади активной поверхности решетки. Элементы, используемые в устройстве, имеют форму квадрата или равнобочной трапеции с отношением оснований в пределах 1.01-1.1 (фиг. 4). Центры этих элементов расположены вдоль однозаходной архимедовой спирали либо вдоль многозаходной архимедовой спирали с 2-32 лепестками (фиг. 2, 3). Первые элементы спирали расположены на периметре отверстия, предназначенного для установки диагностического датчика для контроля очага воздействия и регистрации кипения в нем. Размещение элементов на спирали обеспечивает непериодичность (рандомизацию) их расположения на поверхности решетки, при этом эффективный размер элементов выбирается по возможности минимальным, но не превышающим 4 длин волн (см. пример реализации изобретения).
Также предлагается способ неинвазивного локального разрушения биологической ткани, заключающийся в том, что на ткань воздействуют импульсами фокусированного ультразвука в частотном диапазоне 0.2-3 МГц, генерируемыми фазированной решеткой с интенсивностью, обеспечивающей образование ударных фронтов с амплитудой 50-150 МПа в профиле волны в фокусе, при этом осуществляют электронное перемещение фокуса в пределах очага воздействия и контроль за состоянием разрушаемых тканей, отличающийся тем, что генерацию импульсов с интенсивностью, достаточной для образования ударных фронтов в фокусе, обеспечивают за счет использования указанной выше фазированной решетки, а локальное разрушение тканей в очаге воздействия, исключающее их повреждения по пути распространения ультразвукового пучка и в побочных максимумах интенсивности, обеспечивают электронным перемещением фокуса с угловым отклонением пучка от оси решетки в пределах не менее чем ±8°, допуская при предельных перемещениях снижение интенсивности в фокусе не более чем на 50% по сравнению с максимальной интенсивностью.
Предлагаемые способ и устройство поясняются чертежами.
Фиг. 1. Схематическое изображение фазированной решетки с непериодическим (рандомизированным) расположением 256 элементов и отверстием на оси для установки датчика для визуализации тканей. а) - проекция на плоскость; б) - трехмерное изображение, в) - фотография опытного образца конструкции.
Фиг. 2. Некоторые конфигурации предлагаемого спирального расположения элементов на поверхности решеток: однозаходная и многозаходная архимедова спирали.
Фиг. 3. Две рандомизированные решетки (частота 1 МГц), состоящие из 512 элементов с разной плотностью упаковки: Слева решетка из элементов в виде дисков диаметром 6 мм, расположенных квазислучайным образом на поверхности решетки; степень заполнения 45%. Справа решетка из квадратных элементов (6×6 мм), центры которых расположены на архимедовой спирали; степень заполнения 90-95%.
Фиг. 4. Различные формы элементов в плотно упакованных решетках: трапециевидная и квадратная.
Фиг. 5. Результаты расчетов интенсивностей в фокусе, а также качества акустических полей двух рандомизированных решеток с разной степенью упаковки элементов в режиме перемещения одиночного фокуса. а) решетка с элементами в виде диска диаметром 6 мм, размещенными квазислучайным образом; б) решетка с квадратными элементами размером 6×6 мм, размещенными на архимедовой спирали. Оценки качества даны в соответствии с работой [Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery and therapy. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 2000, 41, №1, 125-139]:
Figure 00000001
градация А;
Figure 00000002
градация В;
Figure 00000003
градация С;
Figure 00000004
градация D. Заполненные кружки соответствуют градации качества А, что означает, что в поле решетки отсутствуют вторичные максимумы интенсивности (за исключением самого фокуса), в которых интенсивность была бы ≥0.1 Imax, где Imax - максимальная интенсивность в фокусе. Цифры рядом со значками соответствуют интенсивности в фокусе (в Вт/см2) при его перемещении в данную точку. Кривая внутри графика соответствует области, ограниченной значением интенсивности 0.5 Imax. Интенсивность на поверхности решетки 5 Вт/см2.
Заявляемые способ и устройство реализуются с помощью двумерной акустической фазированной решетки, состоящей из отдельных элементов, число которых в современных решетках может составлять от десятков до нескольких тысяч. Для иллюстрации на фиг. 1 представлены эскиз одной из модификаций подобной решетки с непериодическим (рандомизированным) расположением 256 элементов в виде дисков и отверстием на оси для установки датчика для визуализации тканей, а также реальная конструкция данной решетки.
В большинстве современных решеток, предназначенных для активного воздействия на глубоко расположенные биологические ткани, элементы изготавливаются из пьезокомпозитных материалов, что позволяет минимизировать акустические и электрические взаимодействия между соседними элементами. При этом каждый элемент питается от отдельного усилителя, позволяющего варьировать (как правило, цифровым образом) амплитуду и фазу электрического сигнала, приходящего на элемент. Фазы сигналов подбираются таким образом, чтобы акустические сигналы с каждого элемента приходили в заданную точку поля в одно и то же время. Это позволяет осуществлять динамическую фокусировку ультразвука и перемещать фокус как по глубине, так и в направлении, перпендикулярном оси решетки. Как правило, элементы устанавливаются на поверхности в виде части сферы (фиг. 1), что позволяет сочетать электронную фокусировку с геометрической и тем самым увеличить интенсивность ультразвука в фокальной области. Частоты известных по литературе решеток для активного воздействия на биологические среды и объекты варьируются в диапазоне от 0.2 до 2 МГц. Суммарная акустическая мощность, излучаемая подобными решетками, может достигать 1 кВт и даже выше, при этом решетки работают в импульсном режиме, чтобы предотвратить их разрушение. Мощные фазированные решетки могут быть изготовлены по известным из уровня техники технологиям, которые отражены, в частности, в книгах Гаврилов Л.Р. Фокусированный ультразвук высокой интенсивности в медицине. М: Фазис, 2013; Gavrilov L.R., Hand J.W. High-Power Ultrasound Phased Arrays for Medical Applications, Nova Science Publishers. N.Y. 2014.
Ниже представлен пример, подтверждающий работоспособность предлагаемого способа и устройства для его осуществления.
Пример 1.
Разработка и изготовление многоэлементной фазированной решетки с плотной упаковкой элементов и соответствующего многоканального усилителя для управления перемещением фокуса является высокозатратным процессом; разработка и изготовление схожих по конструкции решеток в США и Великобритании оценивается в несколько десятков тысяч долларов. Поэтому было проведено численное моделирование влияния плотной упаковки элементов на величину максимальной интенсивности в фокусе и выполнено сравнение качества распределений интенсивности «обычных» рандомизированных решеток и решеток с плотной спиральной упаковкой элементов на поверхности.
Сравнивались поля двух рандомизированных решеток из 512 элементов с рабочей частотой ультразвука 1 МГц. Они отличались тем, что первая из них состояла из элементов в виде диска диаметром 6 мм, расположенных на поверхности решетки квазислучайным образом (фиг. 3 слева), а вторая - из квадратных элементов размером 6×6 мм, центры которых расположены на архимедовой спирали (фиг. 3 справа). В обеих решетках предусмотрено центральное отверстие для диагностического датчика, позволяющего визуализировать очаг воздействия.
Параметры первой из решеток:
Диаметр решетки 200.6 мм
Радиус кривизны 150 мм
Диаметр центрального отверстия 75 мм
Интенсивность на поверхности элементов 5 Вт/см2
Минимальное и максимальное расстояния между краями соседних элементов были, соответственно, 0.44 и 1.35 мм. Коэффициент заполнения данной решетки составлял 45%.
Элементы во второй решетке были расположены на архимедовой спирали (фиг. 3 справа). Минимальный зазор между ними был 0.5 мм, метод их расположения показан на фиг. 4 справа. Коэффициент заполнения данной решетки составлял 90%. При наличии сравнительно большого центрального отверстия расстояние между соседними витками спирали было постоянным и равным сумме величин размера элемента и заданного технологического зазора 0.5 мм. Другие параметры второй решетки были следующими:
Диаметр решетки 191.3 мм
Радиус кривизны поверхности 150 мм
Диаметр центрального отверстия 75 мм
Интенсивность на поверхности элементов 5 Вт/см2
Расчеты и оценки качества распределений интенсивности в акустических полях, создаваемых описанными выше решетками, были выполнены с использованием разработанных нами ранее методов расчета [Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery and therapy. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 2000, 41, №1, 125-139]; полученные результаты приведены на фиг. 5.
Заполненные кружки соответствуют градации качества A [Gavrilov L.R., Hand J.W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery and therapy. IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 2000, 41, №1, 125-139], что означает, что в поле решетки отсутствуют вторичные максимумы интенсивности (за исключением самого фокуса), в которых интенсивность была бы ≥0.1 Imax, где Imax - максимальная интенсивность в фокусе. Цифры рядом со значками соответствуют интенсивности в фокусе (в Вт/см2) при его перемещении в данную точку. Кривая внутри графика соответствует области, ограниченной значением интенсивности 0.5 Imax. При практическом использовании решеток, с учетом повышенных требований к интенсивности в фокусе, нецелесообразно перемещать фокус за пределы этой области.
Видно, что в обоих случаях максимальная интенсивность в фокусе соответствует не геометрическому центру кривизны решетки, а точке (0, 0, 140 мм), которая на 10 мм ближе к решетке, чем геометрический фокус. Для «обычной» рандомизированной фазированной решетки (фиг. 3 слева) максимальная интенсивность в фокусе составляет 22199 Вт/см2, тогда как для второй, плотно упакованной решетки она равна 34864 Вт/см2, что в 1.57 раз больше.
Из фиг. 5 видно, что рандомизация расположения элементов на поверхности решетки, а также выбор квадратных элементов с размером 6×6 мм (т.е. 4 длины волны при частоте 1 МГц) позволяет при относительно низком уровне боковых лепестков в создаваемом решеткой поле не только существенно повысить интенсивность в фокусе, но и обеспечить возможность его электронного перемещения в пределах, как минимум, ±18 мм в сторону от оси (при указанных выше параметрах решетки). Это эквивалентно перемещению фокуса в пределах угла отклонения ±8° от оси решетки, при этом интенсивность в фокусе при предельных перемещениях уменьшается не более чем на 50% по сравнению с максимальной интенсивностью. Отметим, что с целью еще большего повышения плотности упаковки целесообразно использовать элементы в форме равнобочной трапеции с отношением оснований в пределах 1.01-1.1, что для решеток из пьезокомпозитных материалов не усложнило бы существенно технологию их изготовления.

Claims (7)

1. Устройство для неинвазивного локального разрушения биологической ткани, представляющее собой фазированную решетку с непериодическим расположением излучающих элементов и центральным отверстием для установки датчика контроля очага воздействия, отличающееся тем, что непериодическое расположение элементов обеспечивается размещением их по спирали, при этом размер элементов выбран из расчета не более 4 длин волн излучаемого ультразвука с заполнением элементами не менее 85% площади активной поверхности решетки.
2. Устройство по п. 1, отличающееся тем, что использованы элементы квадратной формы.
3. Устройство по п. 1, отличающееся тем, что использованы элементы в форме равнобочной трапеции с отношением оснований в пределах 1.01-1.1.
4. Устройство по п. 1, отличающееся тем, что элементы расположены в форме однозаходной архимедовой спирали.
5. Устройство по п. 1, отличающееся тем, что элементы расположены в форме многозаходной архимедовой спирали с 2-32 лепестками.
6. Устройство по п. 1, отличающееся тем, что первые элементы спирали расположены на периметре отверстия для установки датчика.
7. Способ неинвазивного локального разрушения биологической ткани, заключающийся в том, что на ткань воздействуют импульсами фокусированного ультразвука в частотном диапазоне 0.2-3 МГц, генерируемыми фазированной решеткой с интенсивностью, обеспечивающей образование ударных фронтов с амплитудой 50-150 МПа в профиле волны в фокусе, при этом осуществляют электронное перемещение фокуса в пределах очага воздействия и контроль за состоянием разрушаемых тканей, отличающийся тем, что генерацию импульсов с интенсивностью, достаточной для образования ударных фронтов в фокусе, обеспечивают за счет использования фазированной решетки, выполненной по п. 1, а локальное разрушение тканей в очаге воздействия, исключающее их повреждения по пути распространения ультразвукового пучка и в побочных максимумах интенсивности, обеспечивают электронным перемещением фокуса с угловым отклонением от оси решетки в пределах не менее чем ±8°, допуская при предельных перемещениях снижение интенсивности в фокусе не более чем на 50% по сравнению с максимальной интенсивностью.
RU2015109661/14A 2015-03-19 2015-03-19 Способ и устройство для неинвазивного локального разрушения биологической ткани RU2589649C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015109661/14A RU2589649C1 (ru) 2015-03-19 2015-03-19 Способ и устройство для неинвазивного локального разрушения биологической ткани

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015109661/14A RU2589649C1 (ru) 2015-03-19 2015-03-19 Способ и устройство для неинвазивного локального разрушения биологической ткани

Publications (1)

Publication Number Publication Date
RU2589649C1 true RU2589649C1 (ru) 2016-07-10

Family

ID=56371278

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015109661/14A RU2589649C1 (ru) 2015-03-19 2015-03-19 Способ и устройство для неинвазивного локального разрушения биологической ткани

Country Status (1)

Country Link
RU (1) RU2589649C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662902C1 (ru) * 2017-05-11 2018-07-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ и устройство создания высокоинтенсивных фокусированных ультразвуковых полей для неинвазивного локального разрушения биологических тканей

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347043A (en) * 1999-02-19 2000-08-23 Imp College Innovations Ltd Ultrasound transducer arrays
US6433754B1 (en) * 2000-06-20 2002-08-13 Northrop Grumman Corporation Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements
RU2472545C1 (ru) * 2011-07-28 2013-01-20 Вера Александровна Хохлова Способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347043A (en) * 1999-02-19 2000-08-23 Imp College Innovations Ltd Ultrasound transducer arrays
US6433754B1 (en) * 2000-06-20 2002-08-13 Northrop Grumman Corporation Phased array including a logarithmic spiral lattice of uniformly spaced radiating and receiving elements
RU2472545C1 (ru) * 2011-07-28 2013-01-20 Вера Александровна Хохлова Способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTINEZ-GRAULLERA O. et al., 2D array design based on Fermat spiral for ultrasound imaging, 10.09.2009. MORRISON K.P. et al., Single Archimedean spiral close packed phased array HIFU, 2014. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662902C1 (ru) * 2017-05-11 2018-07-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ и устройство создания высокоинтенсивных фокусированных ультразвуковых полей для неинвазивного локального разрушения биологических тканей
WO2018208189A1 (ru) * 2017-05-11 2018-11-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ и устройство создания высокоинтенсивных фокусированных ультразвуковых полей для неинвазивного локального разрушения биологических тканей

Similar Documents

Publication Publication Date Title
US10420961B2 (en) Method for operating a device for treatment of a tissue and device for treatment of a tissue
US7806839B2 (en) System and method for ultrasound therapy using grating lobes
US8162858B2 (en) Ultrasonic medical treatment device with variable focal zone
KR101935375B1 (ko) Hifu와 초음파 영상을 위한 초음파 치료 장치 및 그 제어 방법
US20120191020A1 (en) Uniform thermal treatment of tissue interfaces
Yuldashev et al. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array
Ramaekers et al. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral
Khokhlova et al. Design of HIFU transducers to generate specific nonlinear ultrasound fields
Kim et al. Lesion generation through ribs using histotripsy therapy without aberration correction
RU2589649C1 (ru) Способ и устройство для неинвазивного локального разрушения биологической ткани
RU2472545C1 (ru) Способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей
KR101330901B1 (ko) 초음파 치료 장치
US11406848B2 (en) Ultrasonic therapy device using HIFU and control method thereof
Jeong Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: A simulation study
RU2662902C1 (ru) Способ и устройство создания высокоинтенсивных фокусированных ультразвуковых полей для неинвазивного локального разрушения биологических тканей
Zubair et al. Simulation of a modified multielement random phased array for image guidance and therapy
Rosnitskiy et al. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures
Khokhlova et al. Design of a transrectal probe for boiling histotripsy ablation of prostate
Zubair et al. 3D ultrasound image guidance and therapy through the rib cage with a therapeutic random phased array
Gavrilov Two-dimensional phased arrays for surgical applications: Multiple focus generation and scanning
Bobkova et al. Feasibility of HIFU tissue ablation in the presence of ribs using a 2D random phased array
Ilyin et al. Simulation of thermal lesions in biological tissues irradiated by high-intensity focused ultrasound through the rib cage
Gavrilov Evolution of high-intensity focusing systems for different applications in medicine
Lu et al. Treatment envelope of transcranial histotripsy: challenges and strategies to maximize the treatment location profile
Gao et al. Effect of focus splitting on ultrasound propagation through the rib cage in focused ultrasound surgery