RU2589639C1 - Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя - Google Patents

Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя Download PDF

Info

Publication number
RU2589639C1
RU2589639C1 RU2014150898/12A RU2014150898A RU2589639C1 RU 2589639 C1 RU2589639 C1 RU 2589639C1 RU 2014150898/12 A RU2014150898/12 A RU 2014150898/12A RU 2014150898 A RU2014150898 A RU 2014150898A RU 2589639 C1 RU2589639 C1 RU 2589639C1
Authority
RU
Russia
Prior art keywords
unbalance
vibration
output
induction motor
input
Prior art date
Application number
RU2014150898/12A
Other languages
English (en)
Inventor
Григорий Яковлевич Пановко
Александр Евгеньевич Шохин
Ольга Владимировна Бармина
Сергей Александрович Еремейкин
Алексей Александрович Горбунов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority to RU2014150898/12A priority Critical patent/RU2589639C1/ru
Application granted granted Critical
Publication of RU2589639C1 publication Critical patent/RU2589639C1/ru

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Изобретение относится к вибрационной технике и может быть использовано в различных отраслях промышленности. Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя содержит блок управления, частотный преобразователь электроэнергии, два датчика положения дебаланса, датчик колебаний, установленный на рабочем органе вибромашины. Согласно изобретению, датчики положения дебаланса выполнены в виде двух оптопар, установленных на корпусе электродвигателя в точках, расположенных симметрично относительно оси вращения дебаланса на горизонтальной линии, проходящей через эту ось, а дебаланс выполнен с отверстием, центр которого расположен на линии, соединяющей центр вращения и центр масс дебаланса в точке, соответствующей оси чувствительности оптопар, причем датчик колебаний и датчики положения дебаланса соединены с входами блока управления, выход которого соединен с управляющим входом частотного преобразователя, силовой вход которого соединен с внешним источником электропитания, а выход частотного преобразователя соединен с асинхронным двигателем. Технический результат направлен на автоматическую настройку и поддержание резонансных колебаний рабочего органа вибрационной машины, возбуждаемых дебалансным инерционным вибровозбудителем с приводом от асинхронного электродвигателя, при изменении параметров механической системы вибромашины за счет управления частотой питающего напряжения. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к вибрационной технике и может быть использовано в различных отраслях промышленности.
Технический результат направлен на автоматическую настройку и поддержание резонансных колебаний рабочего органа вибрационной машины (вибромашины), возбуждаемых дебалансным инерционным вибровозбудителем с приводом от асинхронного электродвигателя, при изменении параметров механической системы вибромашины за счет управления частотой питающего напряжения.
Известны устройства для резонансной настройки вибромашин, основанные на поддержании угла сдвига между фазой перемещения рабочего органа вибромашины и фазой вынуждающей силы, близким к π/2, за счет введения системы автоматического управления (САУ) с обратной связью [1]. Структура подобных устройств состоит из двух основных частей: узла учета отклонения регулируемого параметра и узла учета фазы. В состав узла учета отклонения регулируемого параметра входят задатчики минимальной и максимальной амплитуд. Недостатками подобных устройств является то, что в них предлагается импульсная САУ, которая поддерживает работу вибромашины только вне зоны нечувствительности, а также требуется задание значения минимальной и максимальной амплитуд, которые в действительности заранее неизвестны. Также в этих устройствах не указано, в какой момент времени начинается поиск резонансного режима, что может привести к застреванию асинхронного двигателя в пусковой зоне. Недостатком также является использование в структуре САУ реле, которые обладают сравнительно невысоким быстродействием и ограниченным ресурсом. Кроме того, в этих устройствах в качестве датчика колебаний используется виброметр, что ограничивает использование других датчиков колебаний, например велосиметров или акселерометров.
Известно устройство поддержания резонансных колебаний механической системы с синхронным электродвигателем, А.С. СССР 1726055, B06B 1/16, 1992 г., в котором измеряют ускорение механической системы с помощью датчика колебаний, затем сдвигают на π/2 фазу сигнала, дифференцируют его, усиливают и подают на одну из обмоток синхронного электродвигателя. На другую обмотку подают постоянное напряжение. Изменяют амплитуду переменного напряжения и поворачивают статор электродвигателя до совпадения движущего момента и момента нагрузки в каждый момент времени, что обеспечивает поддержание резонансных колебаний механической системы. Недостатком данного устройство является невозможность его использования в вибромашинах с приводом от асинхронного электродвигателя.
Известно также устройство для поддержания резонансных механических колебаний, патент РФ 2335352, B06B 1/14, 2004 г., содержащее рабочий орган, источник возмущающей периодической силы, основную и виброизолирующую упругие связи, отличающееся тем, что рабочий орган соединен с основанием виброизолирующей упругой связью, в качестве источника возмущающей периодической силы применен инерционный вибратор, связанный с рабочим органом через основную упругую связь. Инерционный вибратор подключен к устройству управления колебаниями рабочего органа, на рабочем органе установлен датчик колебаний, выход которого подключен к входу устройства управления колебаниями рабочего органа, при этом устройство управления колебаниями рабочего органа выполнено с возможностью обработки сигнала датчика колебаний, сравнения его с заданным опорным сигналом и формирования сигнала управления инерционным вибратором по угловой частоте возмущающей периодической силы, а также с возможностью работы в двух режимах: режиме ручной настройки колебаний рабочего органа и режиме автоматического поддержания заданных колебаний рабочего органа. Недостатками данного устройства является невозможность его использования для автоматической настройки на резонансный режим вследствие неопределенности массы рабочего органа с технологической нагрузкой при ее произвольном изменении и, соответственно, неопределенности резонансной частоты системы и опорного сигнала, а также невозможности оценки резонансной частоты в системах с нелинейными характеристиками восстанавливающей силы и с двигателем ограниченной мощности.
Задачей настоящего изобретения является создание устройства для автоматической настройки на резонансный режим колебаний рабочего органа вибромашины, возбуждаемых дебалансными инерционными вибровозбудителями с приводом от асинхронного двигателя, при изменении параметров механической системы вибромашины в широких пределах за счет управления частотой питающего напряжения.
Решение задачи достигается тем, что в предлагаемом устройстве частота вращения дебалансов регулируется за счет изменения частоты питающего напряжения в зависимости от величины сдвига фаз между колебаниями рабочего органа вибрационной машины и периодической возмущающей силой, которая определяется угловым положением дебалансов, а измерение величины сдвига фаз вычисляется по сигналам с датчиков углового положения дебаланса и датчика колебаний рабочего органа (виброметра, велосиметра или акселерометра). Необходимое изменение частоты питающего напряжения с учетом динамических характеристик вибромашины и асинхронного двигателя вычисляется в блоке управления таким образом, чтобы сдвиг фаз между колебаниями рабочего органа и возмущающей силой был равен π/2. Дополнительное к измерению колебаний (перемещения, скорости или ускорения) рабочего органа вибромашины измеряют угловое положение дебаланса, что позволяет определить сдвиг фаз между колебаниями рабочего органа вибромашины и возмущающей силой, определяют отличие сдвига фазы от сдвига фазы, соответствующего резонансному режиму, в зависимости от которого изменяют частоту вращения дебаланса. Это позволяет достичь устойчивой резонансной настройки и может применяться для вибромашин с нелинейными механическими характеристиками их элементов и вибромашин с вибровозбудителем с ограниченной мощностью.
На фиг. 1 показана принципиальная схема устройства.
Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя включает в себя рабочий орган вибромашины в виде платформы 1, установленной на неподвижном основании 2 с помощью упруговязких опор 3. На платформе 1 установлены асинхронный двигатель 4 с вращающимся дебалансом 5 и датчик колебаний 6. На корпусе асинхронного двигателя 4 закреплены датчики положения дебаланса 5, выполненные в виде двух оптопар 7 и 8, которые расположены на корпусе электродвигателя 4, в точках, симметричных относительно оси вращения дебаланса на горизонтальной линии, проходящей через эту ось. В дебалансе выполнено отверстие 9, центр которого расположен на линии, соединяющей центр вращения и центр масс дебаланса 5 в точке, соответствующей оси чувствительности оптопар 7 и 8. Датчик колебаний 6 и датчики положений 7 и 8 соединены с блоком управления 10, выход которого соединен с входом управляющего преобразователя электроэнергии 11, соединенный с внешним источником электропитания и имеющий выход на асинхронный двигатель 4.
Блок управления 10 состоит из устройства согласования сигналов 12, блока вычисления фазового сдвига 13 и программируемого логического контроллера 14, причем к выходу устройства согласования сигналов 12 подключен датчик колебаний 6, а его выход соединен с аналоговым входом блока вычисления фазового сдвига 13, к цифровым входам которого присоединены датчики положения дебаланса 7 и 8, причем выход блока вычисления фазового сдвига 13 также соединен с входом частотного преобразователя 11 через контроллер 14. Датчик колебаний 6 может быть выполнен в виде виброметра, велосиметра или акселерометра.
Принцип работы устройства основан на периодическом измерении фазового сдвига между направлением возмущающей силы, которое однозначно определяется угловым положением дебаланса, и колебаниями рабочего органа, в результате чего определяется режим работы вибромашины (дорезонансный, резонансный или зарезонансный) и формируются управляющие воздействия. Известно, что при резонансе фазовый сдвиг возмущающей силы составляет π/2 относительно перемещения рабочего органа.
Датчики углового положения дебаланса представляют собой оптоэлектронные устройства - оптопары ДП1 и ДП2, формирующие импульсы электрического напряжения при прохождении оптического луча через отверстие в дебалансе (фиг. 1). Отверстие в дебаланса расположено на радиальной линии, соединяющей центр вращения вала с центром масс дебаланса. Датчики положения дебаланса установлены на корпусе электродвигателя в точках, расположенных на горизонтальном диаметре, так, чтобы при прохождении дебалансом горизонтальной линии происходило срабатывание оптопар ДП1 или ДП2 и формирование электрического импульса, соответствующего углу поворота дебаланса (фиг. 1).
Датчик колебаний ДК рабочего органа, жестко установленный на рабочем органе, формирует электрическое напряжение, соответствующее его колебаниям.
Сигнал с ДК поступает на блок СС, в котором в случае измерения перемещения сигнал без преобразования поступает в блок ВФС; в случае измерения скорости сигнал интегрируется один раз, а в случае измерения ускорения сигнал интегрируется дважды.
В блоке ВФС, построенном с использованием электронных микросхем, вычисляется рассогласование между измеренным сдвигом фазы φ и сдвигом фазы, соответствующим резонансному режиму колебаний, равным π/2. По знаку величины рассогласования определяется режим работы машины: дорезонансный, если φ<π/2, резонансный, если φ=π/2 или зарезонансный, если φ>π/2. Из блока ВФС в блок ПЛК поступает сигнал, соответствующий текущему режиму работы, в зависимости от которого в блоке ПЛК генерируется сигнал, соответствующий необходимой корректировке частоты вращения дебаланса. Этот сигнал передается на ЧП, что приводит к изменению питающего напряжения электродвигателя и соответственно частоты его вращения.
Блок вычисления фазового сдвига (ВФС) работает следующим образом (фиг. 2). Пуск двигателя происходит под управлением ПЛК с номинальными значениями частоты и напряжения, блок ВФС во время пуска выключен. После завершения пускового режима и выхода электродвигателя в рабочую область его механической характеристики сигнал от ПЛК сбрасывает триггеры Т1 и Т2, что приводит к сбрасыванию триггера T3 и обнулению счетчиков СТ1 и СТ2. Затем ПЛК формирует сигнал «А», равный логической единице, который включает работу блока ВФС.
В момент времени, когда угол поворота дебаланса относительно вертикальной оси по направлению движения составит π/2, срабатывает оптопара ДП1 (светодиод VD1 и фотодиод VD3). В результате кратковременный световой импульс установит триггер Т1, который разрешает работу счетчика СТ1 (при R=0 счетчик формирует выходной код, при R=1 - обнуляется). СТ1 выполняет подсчет тактовых импульсов «Т». Все счетчики, используемые в схеме, работают в режиме суммирования. Выходы СТ1 подсоединены к входам регистра RG1. Установленный Т1 переводит триггер Т3 в режим работы D-триггера.
В момент времени, когда угол поворота дебаланса 4 относительно вертикальной оси по направлению движения составит 3π/2, срабатывает оптопара ДП2 (светодиод VD2 и фотодиод VD4). В результате кратковременный световой импульс, проходя через логический элемент «И», одновременно устанавливает триггер Т2 и записывает в регистр RG1 двоичный код, соответствующий 1/4 периода колебаний. Фактически СТ1 фиксирует полупериод колебаний, но, сдвинув разряды при подаче их в регистр, получим деление полупериода на два. Установленный Т2 разрешает прохождение импульсов с выхода одновибратора G1 на тактовый вход C триггера T3. Сигнал с датчика ДК через блок СС поступает на оптопару VD5, подключенную к входу ST3 одновибратора G1.
Одновибратор G1 формирует короткие импульсы при подаче на его вход ST3 положительного фронта сигнала. Импульс на выходе G1 будет формироваться в момент, когда перемещение рабочего органа принимает нулевое значение при переходе из отрицательной области в положительную. Импульс от G1 устанавливает T3, который запускает счетчик СТ2, а также запрещает повторную запись кода в RG1.
После этого схема ожидает прихода импульса, при котором формируется сигнал «Б», записывающий двоичный код на выходе СТ2 в регистр RG3, а код из RG1 - в RG2. Выходы регистра RG2 подключены к входам X, а выходы регистра RG3 - к входам Y двоичного компаратора, который сравнивает значения на входах и формирует соответствующий сигнал на выходе, поступающий в ПЛК. Если числовой код в RG2 меньше, чем в RG3, то на выходе «X<Y» компаратора появится логическая единица, а на выходах «Χ=Υ» и «Х>Y» - нули, и режим работы системы будет определен как дорезонансный, а это значит, что ПЛК будет увеличивать частоту вращения вибровозбудителя. Если числовой код в RG2 больше, чем в RG3, то на выходе «Χ>Υ» компаратора появится логическая единица, а на выходах «Χ=Υ» и «Χ<Υ» - нули, и режим работы системы будет определен как зарезонансный, а это значит, что ПЛК будет уменьшать частоту вращения вибровозбудителя. Если числовые коды в RG2 и в RG3 равны, то на выходе «Χ=Υ» компаратора появится логическая единица, а на выходах «Χ>Υ» и «Χ<Υ» - нули, и режим работы системы будет определен как резонансный, а это значит, что ПЛК оставит частоту вращения вибровозбудителя без изменения. С целью учета погрешностей на компаратор подаются старшие разряды двоичных кодов.
Сигнал «Б» также сбрасывает триггеры T1 и T2, подготавливая схему к следующему такту работы.
Список литературы
1. Вибрации в технике: справочник. В 6 т. Т. 4. Вибрационные процессы и машины / под. ред. Э.Э. Лавендела. - М.: Машиностроение, 1981. - 509 с., стр. 460-467.

Claims (3)

1. Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя, содержащее блок управления, частотный преобразователь электроэнергии, два датчика положения дебаланса, датчик колебаний, установленный на рабочем органе вибромашины, отличающееся тем, что датчики положения дебаланса выполнены в виде двух оптопар, установленных на корпусе электродвигателя в точках, расположенных симметрично относительно оси вращения дебаланса на горизонтальной линии, проходящей через эту ось, а дебаланс выполнен с отверстием, центр которого расположен на линии, соединяющей центр вращения и центр масс дебаланса в точке, соответствующей оси чувствительности оптопар, причем датчик колебаний и датчики положения дебаланса соединены с входами блока управления, выход которого соединен с управляющим входом частотного преобразователя, силовой вход которого соединен с внешним источником электропитания, а выход частотного преобразователя соединен с асинхронным двигателем.
2. Устройство по п. 1, отличающееся тем, что блок управления состоит из устройства согласования сигналов, блока вычисления фазового сдвига и программируемого логического контроллера, причем к входу устройства согласования сигналов подключен датчик колебаний, а выход соединен с аналоговым входом блока вычисления фазового сдвига, к цифровым входам которого присоединены датчики положения дебаланса, а выход блока вычисления фазового сдвига соединен с входом программируемого логического контроллера, выход которого соединен с управляющим входом частотного преобразователя.
3. Устройство по п. 1, отличающееся тем, что датчик колебаний выполнен в виде виброметра, велосиметра или акселерометра.
RU2014150898/12A 2014-12-16 2014-12-16 Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя RU2589639C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014150898/12A RU2589639C1 (ru) 2014-12-16 2014-12-16 Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014150898/12A RU2589639C1 (ru) 2014-12-16 2014-12-16 Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя

Publications (1)

Publication Number Publication Date
RU2589639C1 true RU2589639C1 (ru) 2016-07-10

Family

ID=56371276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014150898/12A RU2589639C1 (ru) 2014-12-16 2014-12-16 Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя

Country Status (1)

Country Link
RU (1) RU2589639C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653961C1 (ru) * 2017-03-09 2018-05-15 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ управления амплитудой при автоматической настройке на резонансный режим колебаний вибрационной машины с приводом от асинхронного двигателя
RU2753983C1 (ru) * 2020-12-29 2021-08-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный аграрный университет" (ФГБОУ ВО Алтайский ГАУ) Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя
RU2767210C1 (ru) * 2021-05-11 2022-03-16 Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук Способ расчетно-экспериментального определения динамического момента в энергосиловом блоке транспортной машины
RU2816833C1 (ru) * 2022-12-16 2024-04-05 Публичное акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" Вибратор с резонансной настройкой

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1727928A1 (ru) * 1990-03-14 1992-04-23 Рижский политехнический институт им.А.Я.Пельше Способ настройки на заданный режим колебаний вибромашины с нелинейными упругими св з ми и с рабочей массой
RU2335352C2 (ru) * 2004-06-30 2008-10-10 Анатолий Иванович КОСТЮК Способ получения и поддержания резонансных механических колебаний и устройство для его осуществления
RU2441714C1 (ru) * 2010-06-07 2012-02-10 Василий Иванович Антипов Способ возбуждения резонансных механических колебаний
JP2012121024A (ja) * 2012-02-09 2012-06-28 Fujita Corp 起振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1727928A1 (ru) * 1990-03-14 1992-04-23 Рижский политехнический институт им.А.Я.Пельше Способ настройки на заданный режим колебаний вибромашины с нелинейными упругими св з ми и с рабочей массой
RU2335352C2 (ru) * 2004-06-30 2008-10-10 Анатолий Иванович КОСТЮК Способ получения и поддержания резонансных механических колебаний и устройство для его осуществления
RU2441714C1 (ru) * 2010-06-07 2012-02-10 Василий Иванович Антипов Способ возбуждения резонансных механических колебаний
JP2012121024A (ja) * 2012-02-09 2012-06-28 Fujita Corp 起振装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653961C1 (ru) * 2017-03-09 2018-05-15 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ управления амплитудой при автоматической настройке на резонансный режим колебаний вибрационной машины с приводом от асинхронного двигателя
RU2753983C1 (ru) * 2020-12-29 2021-08-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный аграрный университет" (ФГБОУ ВО Алтайский ГАУ) Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя
RU2767210C1 (ru) * 2021-05-11 2022-03-16 Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук Способ расчетно-экспериментального определения динамического момента в энергосиловом блоке транспортной машины
RU2816833C1 (ru) * 2022-12-16 2024-04-05 Публичное акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" Вибратор с резонансной настройкой

Similar Documents

Publication Publication Date Title
RU2589639C1 (ru) Устройство для автоматической настройки и поддержания резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя
JPS6156633B2 (ru)
JP6600672B2 (ja) 半球共振型ジャイロスコープ
JP4741667B2 (ja) 角速度センサ
RU2572657C1 (ru) Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя
Pacas et al. Automatic identification and damping of torsional vibrations in high-dynamic-drives
EP1806570A2 (en) Rotor balancing method and device
RU2653961C1 (ru) Способ управления амплитудой при автоматической настройке на резонансный режим колебаний вибрационной машины с приводом от асинхронного двигателя
JP2004223511A (ja) アンバランスダイナミックロード発生器
KR101829027B1 (ko) 코리올리 자이로스코프의 스위치 온 시간의 최적화 방법 및 그에 적합한 코리올리 자이로스코프
Eremeikin et al. Experimental analysis of the operability of a system to control the oscillations of a mechanical system with self-synchronizing vibration exciters
RU2637578C1 (ru) Система виброизоляции с автоматической настройкой и поддержанием резонансных режимов колебаний вибрационной машины
JP5349199B2 (ja) 角速度センサ
RU2753983C1 (ru) Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя
JP2006250643A (ja) 角速度センサの異常検出装置
WO2019168436A1 (ru) Электромеханический кинетический мотор-вибратор
RU2354939C1 (ru) Способ вибрационного измерения массового расхода потока и устройство для его осуществления
RU2544870C2 (ru) Твердотельный волновой гироскоп
Lin et al. Digital closed-loop controller design of a micromachined gyroscope based on auto frequency swept
RU2153652C2 (ru) Устройство для измерения расхода массы
RU2814668C1 (ru) Устройство управления вибрационной машиной с двумя дебалансными вибровозбудителями
DK166974B1 (da) Fremgangsmaade til maaling af stroemningshastigheder med ultralyd
CN103635956A (zh) 用于声学转换器的主动阻尼的方法和装置
SU1465382A1 (ru) Вибрационное транспортирующее устройство
RU161310U1 (ru) Чувствительный элемент датчика угловых скоростей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191217