RU2589304C1 - Method for amplitude-phase modulation of high-frequency signal and device for its implementation - Google Patents

Method for amplitude-phase modulation of high-frequency signal and device for its implementation Download PDF

Info

Publication number
RU2589304C1
RU2589304C1 RU2014144476/08A RU2014144476A RU2589304C1 RU 2589304 C1 RU2589304 C1 RU 2589304C1 RU 2014144476/08 A RU2014144476/08 A RU 2014144476/08A RU 2014144476 A RU2014144476 A RU 2014144476A RU 2589304 C1 RU2589304 C1 RU 2589304C1
Authority
RU
Russia
Prior art keywords
frequency signal
complex
terminal
frequency
amplitude
Prior art date
Application number
RU2014144476/08A
Other languages
Russian (ru)
Inventor
Александр Афанасьевич Головков
Владимир Александрович Головков
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2014144476/08A priority Critical patent/RU2589304C1/en
Application granted granted Critical
Publication of RU2589304C1 publication Critical patent/RU2589304C1/en

Links

Images

Abstract

FIELD: radio engineering, communication.
SUBSTANCE: method for amplitude-phase modulation of a high-frequency signal consists in the fact that a signal is supplied to a modulator made of a four-pole circuit, a controlled two-electrode non-linear element, a source of a control low-frequency signal and a load; amplitude and phase of the signal is changed by changing the amplitude of the control low-frequency signal on the non-linear element; the non-linear element is connected to a longitudinal circuit between the high-frequency signal source and the four-pole circuit input, to the output of which the load is connected. The specified relationships of the ratio of modulus and phase of transfer function of the modulator are provided due to selection of dependence of an element of a resistance matrix of the complex four-pole circuit on frequency.
EFFECT: providing modulation of amplitude and phase of a high-frequency signal at the specified dependences of the ratio of moduli and difference of phases of transfer function of the modulator in two states of the controlled non-linear element, which are determined with two levels of a control low-frequency signal, on frequency in the specified frequency band due to optimisation of the scheme and values of parameters of the complex four-pole circuit.
2 cl, 4 dwg

Description

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.The invention relates to the field of radio communications and radar and can be used for amplitude, phase and amplitude-phase modulation or manipulation of high-frequency signals.

Известен способ манипуляции (модуляции) параметров отраженного сигнала, состоящий в том, что входное сопротивление устройства манипуляции изменяют таким образом, что коэффициент отражения этого устройства изменяет фазу на π, π/2, π/4, причем для разделения входного и отраженного сигналов используют циркулятор [Радиопередающие устройства. / Под редакцией О.А. Челнокова - М.: Радио и связь, 1982, стр. 152-156]. Известно устройство реализации этого способа [там же], состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4, вначале которой включен p-i-n диод.A known method of manipulation (modulation) of the parameters of the reflected signal, consisting in the fact that the input impedance of the manipulation device is changed so that the reflection coefficient of this device changes the phase by π, π / 2, π / 4, and a circulator is used to separate the input and reflected signals [Radio transmitting devices. / Edited by O.A. Chelnokova - M .: Radio and communications, 1982, p. 152-156]. A device for implementing this method is known [ibid.], Consisting of a circulator, the first input of which is connected to a signal source, the third input is connected to a load, and the second is connected to a piece of an open transmission line of length λ / 4, at the beginning of which a p-i-n diode is turned on.

Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π радиан. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.If the diode is closed, then reflection occurs from the cross section in which it is turned on, the reflected wave enters the load with a resistance of 50 Ohms. If the diode is open, then reflection occurs from the end of the line. The phase of the reflected signal in one state of the diode differs from the phase of the reflected signal in another state of the diode by π radians. If necessary, change the phase difference, the length of the length of the transmission line is changed accordingly.

Недостатком этого способа и устройства его реализации является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечивается только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте (один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы или не позволяет обеспечить кодировку передаваемой информации). Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию (модуляцию) амплитуды и фазы проходного сигнала. Основным недостатком является отсутствие возможности обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот при произвольных частотных характеристиках нагрузки.The disadvantage of this method and device for its implementation is that in the two states of the diode only the phase of the reflected signal changes, and the specified values of the phase difference of the reflected signal in the two states of the diode is provided only at one fixed frequency. Another disadvantage is the constancy of the amplitude of the reflected signal in two states of the diode, that is, the absence of amplitude manipulation, which narrows the functionality. For example, this does not allow providing two radio communication channels on the same carrier frequency (one channel can be formed by amplitude manipulation, and the other by phase manipulation or it is not possible to encode the transmitted information). The third disadvantage should be considered large masses and dimensions associated with the need to use segments of the transmission line. Another important disadvantage is that this method and this device do not provide manipulation (modulation) of the amplitude and phase of the transmitted signal. The main disadvantage is the inability to provide manipulation (modulation) of the amplitude and phase of the transmitted signal in a given frequency band at arbitrary frequency characteristics of the load.

Известен способ манипуляции фазы отраженного сигнала, основанный на использовании двухимпедансных устройств СВЧ [В.Г. Соколинский, В.Г. Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр. 146-158]. Известно устройство реализации этого способа [там же], состоящее из определенного количества реактивных элементов типа L, C параметры которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения.A known method of manipulating the phase of the reflected signal, based on the use of two-impedance microwave devices [V.G. Sokolinsky, V.G. Scheinkman. Frequency and phase modulators and manipulators. - M.: Radio and Communications, 1983, pp. 146-158]. A device for implementing this method is known [ibid.], Consisting of a certain number of reactive elements of type L, C parameters of which are selected from the condition of providing the required arbitrary phase difference of the reflection coefficient.

По сравнению с предыдущим способом и устройством данный способ и устройство его реализации не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, С может быть обеспечено заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.Compared with the previous method and device, this method and device for its implementation do not require the use of semiconductor diodes only in open and only closed states. For any diode states determined by two levels of low-frequency control action, for certain values of parameters of type L, C, a predetermined value of the phase difference of the reflected signal at a fixed frequency can be provided. If the amplitude of the control low-frequency signal between these two levels changes continuously, then modulation is ensured.

Основным недостатком (как и в первом способе и устройстве) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот при произвольных частотных характеристиках нагрузки.The main disadvantage (as in the first method and device) is the inability to simultaneously provide manipulation (modulation) of the amplitude and phase of the transmitted signal in a given frequency band for arbitrary frequency characteristics of the load.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10 1992 года], состоящий в том, что неуправляемую часть (согласующе-фильтрующее устройство) формируют из определенным образом соединенных между собой двухполюсников, сопротивление каждого двухполюсника выбирают из условия обеспечения одинакового заданного двухуровневого закона изменения амплитуды и фазы отраженного сигнала при изменении управляемого элемента из одного состояния в другое под действием управляющего низкочастотного напряжения или тока.The closest in technical essence and the achieved result (prototype) is the method [A. Golovkov A device for modulating the reflected signal. Auth. certificate No. 1800579 dated October 9, 1992], consisting in the fact that the uncontrolled part (matching filtering device) is formed from two-terminal devices connected in a certain way, the resistance of each two-terminal device is selected from the condition of ensuring the same predetermined two-level law of change in the amplitude and phase of the reflected signal when a controlled element changes from one state to another under the influence of a control low-frequency voltage or current.

Известно устройство (прототип) реализации способа [там же], содержащее циркулятор, первое и третье плечи которого являются СВЧ-входом и выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Также, как и в предыдущих способе и устройстве реализации, возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно.A device (prototype) is known for implementing the method [ibid.], Comprising a circulator, the first and third arms of which are a microwave input and output, and a reactive four-terminal and a semiconductor diode connected to a low-frequency control source are included in the second shoulder, while the four-terminal is made in in the form of a T-shaped connection of two-terminal devices with reactance values selected from the conditions for ensuring the required laws of two-level changes in the amplitude and phase of the reflected signal in two given frequencies. Also, as in the previous implementation method and apparatus, phase and amplitude modulation is possible if the control signal changes continuously.

Основным недостатком (как и в предыдущих способах и устройствах) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот по заданному закону при произвольных частотных характеристиках нагрузки. Следующим важным недостатком всех перечисленных способов и устройств является то, что все элементы четырехполюсников выполнены реактивными, что связано со стремлением разработчиков не вносить дополнительных потерь путем использования комплексных двухполюсников на основе как реактивных, так и резистивных элементов. При использовании в согласующих устройствах только реактивных или только резистивных элементов не всегда удается обеспечить условия согласования по критерию обеспечения требуемого отношения модулей и требуемой разности фаз коэффициентов передачи в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями низкочастотного управляющего сигнала, поскольку они имеют определенные области физической реализуемости (области изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки), в пределах которых реализуются эти условия согласования (Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.).The main disadvantage (as in the previous methods and devices) is the lack of the ability to simultaneously provide manipulation (modulation) of the amplitude and phase of the transmitted signal in a given frequency band according to a given law for arbitrary frequency characteristics of the load. The next important drawback of all the above methods and devices is that all elements of the four-terminal devices are made reactive, which is associated with the desire of the developers not to introduce additional losses by using complex two-terminal devices based on both reactive and resistive elements. When using only reactive or only resistive elements in matching devices, it is not always possible to provide matching conditions for the criterion of ensuring the required module ratio and the required phase difference of the transmission coefficients in two states of a controlled nonlinear element defined by two levels of a low-frequency control signal, since they have certain physical realizability areas (the area of change of the real and imaginary components of the resistance of the signal source and load), within the framework of which these coordination conditions are realized (A. Golovkov. Complex electronic devices. M: Radio and communications, 1996. - 128 p.).

Техническим результатом изобретения является расширение областей физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых одновременно обеспечивается модуляция амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника. Возможность изменения варианта включения нелинейного элемента относительно согласующего комплексного четырехполюсника еще более расширяет области физической реализуемости.The technical result of the invention is the expansion of areas of physical feasibility as areas of change of the real and imaginary components of the resistance of the signal source and load, within which the modulation of the amplitude and phase of the high-frequency signal is provided for given dependencies of the ratio of the modules and the phase difference of the transfer function of the modulator in two states of the controlled non-linear element, defined by two levels of the control low-frequency signal, from the frequency in a given band frequencies by optimizing the circuit and the integrated parameter values quadripole. The possibility of changing the option of including a nonlinear element relative to the matching complex quadrupole further expands the field of physical feasibility.

1. Указанный результат достигается тем, что в известном способе амплитудно-фазовой модуляции высокочастотного сигнала, состоящем в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, дополнительно четырехполюсник выполняют комплексным из реактивных и резистивных элементов, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника от частоты с помощью следующего математического выражения:1. The specified result is achieved by the fact that in the known method of amplitude-phase modulation of a high-frequency signal, consisting in the fact that the high-frequency signal is fed to a modulator made of a four-terminal device, a controlled two-electrode nonlinear element, a source of a control low-frequency signal and load, the amplitude and phase of the high-frequency signal change by changing the amplitude of the control low-frequency signal on a nonlinear element, in addition, the four-terminal network is made complex of reactive and resistive elements, a nonlinear element is included in the longitudinal circuit between the high-frequency signal source and the four-terminal input, to the output of which the load is connected, the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by two levels of the control low-frequency signal, on the frequency and the given dependencies of the module and phase of the transfer function of the modulator from the amplitude of the control low-frequency signal, continuously varying from one control level A low-frequency signal to another, in a given frequency band, is provided by selecting the dependence of the element z 11 of the resistance matrix of the complex four-terminal network on the frequency using the following mathematical expression:

Figure 00000001
,
Figure 00000001
,

где

Figure 00000002
; z11, z21 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; m21, φ21 - заданные зависимости отношения модулей и разности фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z1,2 - заданные зависимости комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z0, zn - заданные зависимости комплексных сопротивлений источника высокочастотного сигнала и нагрузки от частоты.Where
Figure 00000002
; z 11 , z 21 are the given dependences of the corresponding elements of the resistance matrix of the complex four-terminal network on frequency; m 21 , φ 21 are the given dependences of the ratio of the modules and the phase difference of the transfer function in two states of the controlled nonlinear element, determined by two levels of the control low-frequency signal, on the frequency in a given frequency band; z 1,2 - given dependences of the complex resistance of a bipolar nonlinear element in two states, determined by two levels of the control low-frequency signal, on the frequency in a given frequency band; z 0 , z n are the given dependences of the complex resistances of the high-frequency signal source and load on frequency.

2. Указанный результат достигается тем, что в известном устройстве амплитудно-фазовой модуляции высокочастотного сигнала, состоящем из источника высокочастотного сигнала, четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, дополнительно четырехполюсник выполнен комплексным в виде Т-образного соединения трех комплексных двухполюсников, нелинейный элемент включен в продольную цепь между источником высокочастотного сигнала и входом комплексного четырехполюсника, к выходу комплексного четырехполюсника подключена нагрузка, второй двухполюсник Т-образного соединения сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, значения параметров второго двухполюсника Т-образного соединения определены в соответствии со следующими математическими выражениями:2. The specified result is achieved by the fact that in the known device for amplitude-phase modulation of a high-frequency signal, consisting of a source of a high-frequency signal, a four-terminal, a two-electrode nonlinear element, a source of a control low-frequency signal and a load, an additional four-terminal is made complex in the form of a T-shaped connection of three complex two-terminal , a nonlinear element is included in the longitudinal circuit between the high-frequency signal source and the input of the complex four-terminal network, to the output a load is connected to the complex four-terminal, the second T-shaped two-terminal is formed from the first resistive two-terminal with resistance R 1 connected in series, the first inductance coil L 1 and the second resistive two-terminal connected with resistance R 2 and the second coil with inductance L 2 connected in parallel the values of the parameters of the second two-terminal T-shaped connection are determined in accordance with the following mathematical expressions:

Figure 00000003
;
Figure 00000004
;
Figure 00000003
;
Figure 00000004
;

Figure 00000005
;
Figure 00000005
;

Figure 00000006
,
Figure 00000006
,

где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах;

Figure 00000007
- оптимальные значения комплексного сопротивления второго комплексного двухполюсника Т-образного соединения на двух частотах;
Figure 00000008
; Z1n, Z3n - заданные значения комплексного сопротивления первого и третьего комплексных двухполюсников Т-образного соединения на двух частотах; m21n, φ21n - заданные значения отношений модулей и разностей фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z1n, 2n - заданные значения комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z0n, znn - заданные значения комплексных сопротивлений источника высокочастотного сигнала и нагрузки на двух частотах; ω1,2=2π/f1,2; n=1,2 - номера заданных двух частот f1,2.where r 1 , r 2 , x 1 , x 2 are the optimal values of the real and imaginary components of the resistance of the second complex two-terminal complex four-terminal at two frequencies;
Figure 00000007
- the optimal values of the complex resistance of the second complex two-terminal T-shaped connection at two frequencies;
Figure 00000008
; Z 1n , Z 3n - set values of the complex resistance of the first and third complex two-terminal T-shaped connection at two frequencies; m 21n , φ 21n are the given values of the ratios of the modules and the phase differences of the transfer function in two states of the controlled non-linear element, determined by two levels of the control low-frequency signal, at two frequencies; z 1n , 2n - set values of the complex resistance of a bipolar nonlinear element in two states, defined by two levels of the control low-frequency signal, at two frequencies; z 0n , z nn are the set values of the complex resistances of the source of the high-frequency signal and the load at two frequencies; ω 1,2 = 2π / f 1,2 ; n = 1,2 - numbers of the given two frequencies f 1,2 .

На фиг. 1 показана схема устройства модуляции амплитуды и фазы высокочастотных сигналов (прототип), реализующего способ-прототип.In FIG. 1 shows a diagram of a device for modulating the amplitude and phase of high-frequency signals (prototype) that implements the prototype method.

На фиг. 2 показана структурная схема предлагаемого устройства по п. 2, реализующего предлагаемый способ по п. 1.In FIG. 2 shows a structural diagram of the proposed device according to claim 2, which implements the proposed method according to claim 1.

На фиг. 3 приведена схема комплексного четырехполюсника предлагаемого устройства по п. 2.In FIG. 3 shows a diagram of a complex quadrupole of the proposed device according to p. 2.

На фиг. 4 приведена схема второго комплексного двухполюсника, входящего в состав комплексного четырехполюсника предлагаемого устройства по п. 2.In FIG. 4 shows a diagram of the second integrated two-terminal network, which is part of the integrated four-terminal network of the proposed device according to p. 2.

Устройство-прототип содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, четырехполюсник из трех двухполюсников с реактивными сопротивлениями x1k - 5, x2k - 6, x3k - 7, соединенных между собой по T-схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9. Двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.The prototype device contains a circulator 1 with input 2, load 3 and output 4 shoulders, a four-terminal from three two-terminal with reactance x 1k - 5, x 2k - 6, x 3k - 7, interconnected by a T-circuit, as well as a semiconductor a diode 8 connected in parallel to the source of the modulation signal 9. The two-terminal 7 is connected to the diode 8, the two-terminal 5 is connected to the load arm 3 of the circulator 1.

Принцип действия устройства манипуляции и модуляции параметров сигнала (прототипа) состоит в следующем.The principle of operation of a device for manipulating and modulating signal parameters (prototype) is as follows.

Высокочастотный сигнал от источника (на фиг. 1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо (нагрузка не показана) 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников значения фаз и амплитуд отраженных сигналов на двух частотах оказывается такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9, отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞. Отношения модулей и разности фаз коэффициента отражения реализуются на обеих частотах одинаковыми.The high-frequency signal from the source (not shown in Fig. 1) through the input arm 2 of the circulator 1 enters the load arm (the load is not shown) 3. As a result of the interaction of the received signal with the reactive elements and the diode and due to the special choice of the values of the reactive elements of the two-terminal devices, the phase and the amplitudes of the reflected signals at two frequencies is such that, as a result of their interference, signals are output to the output arm 4 of the circulator 1, the amplitude and phase of which are in the same state of diode 8, determined by one m extreme value of the modulation signal source 9 are different from the amplitude and phase of these signals in a different state of the diode 8 at the specified values at the respective two frequencies. The maximum phase deviation can be 360 °, the minimum is zero, and the maximum amplitude ratio is ∞. The ratios of the modules and the phase difference of the reflection coefficient are realized at the same frequencies at both frequencies.

Основные недостатки этого способа и устройства описаны выше.The main disadvantages of this method and device are described above.

Структурная схема предлагаемого устройства по п. 2 (фиг. 2) состоит из двухэлектродного нелинейного элемента - 8 с сопротивлениями z1,2, в двух состояниях управляющего низкочастотного сигнала, источника управляющего низкочастотного сигнала 9, источника высокочастотного сигнала с комплексным сопротивлением z0 10, комплексного четырехполюсника (КЧ) 11 и нагрузки с комплексным сопротивлением zн 12. Комплексный четырехполюсник выполнен в виде Т-образного соединения трех комплексных двухполюсников (фиг. 3) с сопротивлениями Ζ1,2,3 13, 14, 15. Частотные зависимости элемента матрицы сопротивлений z22 КЧ 11 и сопротивления второго комплексного двухполюсника Ζ2 14 выбраны из условия достижения технического результата, а сопротивления первого и третьего комплексных двухполюсников Ζ1,3 13, 15 могут быть выбраны произвольно или из каких-либо физических соображений.The structural diagram of the proposed device according to claim 2 (Fig. 2) consists of a two-electrode nonlinear element - 8 with resistances z 1.2 , in two states of the control low-frequency signal, the source of the control low-frequency signal 9, the source of the high-frequency signal with complex resistance z 0 10, complex quadripole (CN) 11 and the load impedance with complex 12. complex z n quadripole formed as a T-fitting three integrated two-terminal (FIG. 3) with resistances Ζ 1,2,3 13, 14, 15. The frequency of dependence matrix element resistances z 22 CN 11 and the resistance of the second two-terminal integrated Ζ February 14 are selected from the conditions for achieving the technical result, a resistance of the first and third complex Ζ 1,3-ports 13, 15 may be selected arbitrarily or from any physical considerations.

Источник сигнала, нелинейный элемент в продольной цепи, КЧ и нагрузка включены по каскадной схеме в порядке перечисления. Частотные зависимости элемента матрицы сопротивлений z11 КЧ 11 и сопротивления второго комплексного двухполюсника Z2 14 выбраны из условий обеспечения заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданных зависимостей модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот. Реализация этой зависимости осуществлена вторым комплексным двухполюсником 14 комплексного четырехполюсника 11 в виде последовательно соединенных первого резистивного двухполюсника с сопротивлением R1 16, первой катушки с индуктивностью L1 17 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 17 и второй катушки с индуктивностью L2 18 (фиг. 4), значения параметров которых выбраны из указанных условий с помощью определенных математических выражений.The signal source, a nonlinear element in the longitudinal circuit, the inverter, and the load are included in a cascade scheme in the order listed. The frequency dependences of the element of the matrix of resistances z 11 KCH 11 and the resistance of the second complex two-terminal Z 2 14 are selected from the conditions for ensuring the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by two levels of the control low-frequency signal, on the frequency and the given dependences of the module and phase the transfer function of the modulator from the amplitude of the control low-frequency signal, continuously varying from one level of the control low-frequency s Nala to another (in this case the levels are selected from the conditions of realization of a quasi-linear portion of the modulation characteristic) in a predetermined frequency band. This dependence was realized by the second complex two-terminal 14 of the complex four-terminal 11 in the form of series-connected first resistive two-terminal with resistance R 1 16, the first coil with inductance L 1 17 and parallel to each other the second resistive two-terminal with resistance R 2 17 and the second coil with inductance L 2 18 (Fig. 4), the parameter values of which are selected from the indicated conditions using specific mathematical expressions.

Принцип действия данного устройства состоит в том, что при подаче несущего высокочастотного сигнала от источника 10 с сопротивлением z0 в результате специального выбора значений элементов второго комплексного двухполюсника 14 комплексного четырехполюсника 11 будут реализованы заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. В результате возникают свойства формирования дискретных или аналоговых модулированных по амплитуде и фазе высокочастотных сигналов при увеличенных областях физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых одновременно обеспечивается модуляция амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот.The principle of operation of this device is that when a carrier high-frequency signal is supplied from a source 10 with resistance z 0 as a result of a special choice of the values of the elements of the second complex two-terminal 14 of the complex four-terminal 11, the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states will be realized, defined by two levels of the control low-frequency signal, on frequency and given dependences of the module and phase of the transfer function of the modulator on amplitudes rows baseband control signal continuously varies from one level of the baseband signal manager to another in a given frequency band. As a result, the formation properties of discrete or analog high-frequency signals amplitude and phase modulated in amplitude and phase arise with increased areas of physical feasibility as areas of change in the real and imaginary components of the signal source and load resistances, within which the amplitude and phase of the high-frequency signal are simultaneously modulated for given dependencies of the ratio of modules and phase difference of the transfer function of the modulator in two states of a controlled nonlinear element, consumed by two levels of the control low-frequency signal, from the frequency in a given frequency band.

Докажем возможность реализации указанных свойств.Let us prove the feasibility of implementing these properties.

Пусть известны зависимости действительных составляющих комплексных сопротивлений нагрузки zн и источника высокочастотного сигнала z0 от частоты. Известна также зависимость комплексных сопротивлений двухполюсного управляемого нелинейного элемента z1,2 в двух состояниях, определяемых двумя уровнями амплитуды низкочастотного сигнала, от частоты. Здесь и далее аргумент (частота) для простоты опущен. Таким образом, нелинейный элемент характеризуется матрицей передачи:Let the dependences of the real components of the complex load resistances z n and the source of the high-frequency signal z 0 on frequency be known. The dependence of the complex resistances of a bipolar controlled nonlinear element z 1,2 in two states, determined by two levels of the amplitude of the low-frequency signal, on the frequency is also known. Hereinafter, the argument (frequency) is omitted for simplicity. Thus, a nonlinear element is characterized by a transfer matrix:

Figure 00000009
Figure 00000009

Комплексный четырехполюсник (КЧ) описывается матрицей передачи:The complex four-terminal network (CC) is described by the transfer matrix:

Figure 00000010
Figure 00000010

где

Figure 00000011
; z11, z21, z22 - определитель и элементы матрицы сопротивлений СФУ с учетом условия взаимности z12=-z21 [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с].Where
Figure 00000011
; z 11 , z 21 , z 22 - determinant and elements of the matrix of resistances of SFU taking into account the reciprocity condition z 12 = -z 21 [Feldstein A.L., Yavich L.R. Microwave four-terminal and eight-terminal synthesis. M.: Communication, 1965. 40 s].

Общая нормированная классическая матрица передачи манипулятора (модулятора) получается путем перемножения матриц (1) и (2) с учетом условий нормировки:The general normalized classical transfer matrix of the manipulator (modulator) is obtained by multiplying the matrices (1) and (2) taking into account the normalization conditions:

Figure 00000012
Figure 00000012

Используя известную связь элементов матрицы рассеяния с элементами матрицы передачи и (3), получим выражение для коэффициента передачи манипулятора в двух состояниях диода:Using the well-known relationship between the elements of the scattering matrix and the elements of the transfer matrix and (3), we obtain the expression for the transfer coefficient of the manipulator in two states of the diode:

Figure 00000013
Figure 00000013

Пусть требуется определить схему комплексного четырехполюсника и значения комплексных сопротивлений двухполюсников, входящих в него, при которых возможно обеспечить заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты:Let it be required to determine the complex four-terminal circuit and the values of the complex resistances of the two-terminal circuits included in it, at which it is possible to provide the given dependences of the ratio of the modules m 21 and the phase difference φ 21 of the transmission coefficients in two states of the diode on the frequency:

Figure 00000014
Figure 00000014

После подстановки (4) в (5) получим комплексное уравнение, решение которого имеет вид взаимосвязи между элементами искомой матрицы сопротивлений СФУ, оптимальной по критерию обеспечения заданного закона изменения параметров проходного сигнала (5) во всем частотном диапазоне:After substituting (4) in (5), we obtain a complex equation, the solution of which has the form of a relationship between the elements of the desired resistance matrix of the SFU, which is optimal according to the criterion for ensuring a given law for changing the parameters of the transmitted signal (5) in the entire frequency range:

Figure 00000015
Figure 00000015

где

Figure 00000016
Where
Figure 00000016

Полученная взаимосвязь (6) между элементами матрицы передачи комплексного четырехполюсника означает, что двухуровневые манипуляторы амплитуды и (или) фазы проходного сигнала должны содержать не менее одного независимого двухполюсника с комплексным сопротивлением, значение которого должно удовлетворять уравнению, сформированному на основе этой взаимосвязи. Для отыскания оптимальных значений параметров комплексного четырехполюсника необходимо выбрать какую-либо схему из M≥1 двухполюсника с комплексным сопротивлением, найти ее матрицу сопротивлений, элементы которой выражены через параметры схемы комплексного четырехполюсника, и подставить их в (6). Сформированное таким образом уравнение должно быть решено относительно сопротивления выбранного комплексного двухполюсника. Значения параметров остальных М-1 комплексных двухполюсников могут быть заданы произвольно или выбраны из каких-либо других физических соображений. В соответствии с описанным алгоритмом получена оптимальная по критерию (5) зависимость сопротивления второго комплексного двухполюсника Т-образного соединения трех комплексных двухполюсников (фиг. 3) от частоты:The obtained relationship (6) between the elements of the transmission matrix of a complex four-terminal network means that two-level manipulators of the amplitude and (or) phase of the transmitted signal must contain at least one independent two-terminal device with complex resistance, the value of which must satisfy the equation generated on the basis of this relationship. In order to find the optimal values of the parameters of the complex four-terminal network, it is necessary to select some circuit from M≥1 two-terminal network with complex resistance, find its resistance matrix, the elements of which are expressed through the parameters of the complex four-terminal scheme, and substitute them in (6). The equation thus formed must be solved with respect to the resistance of the selected complex bipolar. The values of the parameters of the remaining M-1 complex two-terminal networks can be set arbitrarily or selected from any other physical considerations. In accordance with the described algorithm, the frequency dependence of the resistance of the second complex two-terminal T-shaped connection of three complex two-terminal (Fig. 3) on frequency is optimal according to criterion (5):

Figure 00000017
Figure 00000017

где n=1, 2… - номера частот интерполяции. Сопротивления Z1n,3n могут быть выбраны произвольно или исходя из каких-либо других физических соображений. Индекс n необходимо ввести и в другие обозначения физических величин, явным образом зависящих от частоты. При частотной характеристике (7) второго комплексного двухполюсника Т-образного соединения обеспечивались бы заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты на всем спектре частот. Однако реализация (7) в сплошной, даже очень узкой полосе частот, не возможна.where n = 1, 2 ... are the numbers of the interpolation frequencies. Resistances Z 1n, 3n can be chosen arbitrarily or on the basis of any other physical considerations. The index n must also be introduced in other notation of physical quantities that explicitly depend on the frequency. Given the frequency response (7) of the second complex two-terminal T-connection, the given dependences of the ratio of the moduli m 21 and the phase difference φ 21 of the transmission coefficients in the two states of the diode on the frequency over the entire frequency spectrum would be provided. However, the implementation of (7) in a continuous, even very narrow frequency band, is not possible.

Для реализации оптимальной аппроксимации (7) на конечном числе частот методом интерполяции необходимо сформировать двухполюсник с сопротивлением Z2n из не менее чем 2N (N - число частот интерполяции) элементов типа R, L, C, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсника на заданных частотах, определенным по формулам (7), и решить сформированную таким образом систему 2N уравнений относительно 2N выбранных параметров R, L, C. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия физической реализуемости. Пусть второй двухполюсник КЧ с сопротивлением Z2n сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 (фиг. 4). Комплексное сопротивление второго двухполюсника КЧ:To implement the optimal approximation (7) on a finite number of frequencies by interpolation, it is necessary to form a two-terminal network with a resistance of Z 2n from at least 2N (N is the number of interpolation frequencies) of elements of type R, L, C, find expressions for their resistances, equate their optimal values resistances of a two-terminal network at given frequencies, determined by formulas (7), and solve the system of 2N equations formed in this way with respect to 2N selected parameters R, L, C. The values of the parameters of the remaining elements can be chosen arbitrarily or based on any other physical considerations, such as the condition of physical realizability. Let the second KP bipolar with resistance Z 2n be formed from the first resistive bipolar with resistance R 1 connected in series, the first inductor with L 1 and the second resistive bipolar with resistance R 2 and the second coil with inductance L 2 connected in parallel (Fig. 4) . The complex resistance of the second two-terminal KCH:

Figure 00000018
Figure 00000018

Разделим в (8) между собой действительную и мнимую части и для N=2 составим систему четырех уравнений:We divide the real and imaginary parts in (8) and for N = 2 we compose a system of four equations:

Figure 00000019
;
Figure 00000020
;
Figure 00000021
Figure 00000019
;
Figure 00000020
;
Figure 00000021

Решение:Decision:

Figure 00000022
;
Figure 00000023
;
Figure 00000022
;
Figure 00000023
;

Figure 00000024
;
Figure 00000024
;

Figure 00000025
Figure 00000025

r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах.r 1 , r 2 , x 1 , x 2 are the optimal values of the real and imaginary components of the resistance of the second complex two-terminal complex four-terminal at two frequencies.

Реализация оптимальных аппроксимаций частотных характеристик КЧ (6) с помощью Т-образного соединения трех комплексных двухполюсников и частотных характеристик второго комплексного двухполюсника (7) этого соединения с помощью (8), (10) обеспечивает увеличение полосы частот, в пределах которой с определенными отклонениями обеспечиваются заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты (5). Это позволяет при разумном выборе положений заданных частот ω1, ω2 относительно друг друга расширить полосу частот, в пределах которой обеспечиваются заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. При разумном выборе обоих уровней амплитуды управляющего сигнала при этом будут сформированы квазилинейные участки фазовой и амплитудной модуляционных характеристик для осуществления режима модуляции. Переменное использование обоих уровней обеспечивает режим манипуляции. Частотные характеристики сопротивлений источника сигнала и нагрузки могут быть заданы любыми.The implementation of the optimal approximations of the frequency characteristics of the CN (6) using the T-shaped connection of three complex two-terminal devices and the frequency characteristics of the second complex two-terminal network (7) of this connection using (8), (10) provides an increase in the frequency band within which, with certain deviations, the given dependences of the ratio of the modules m 21 and the phase difference φ 21 of the transmission coefficients in the two states of the diode on the frequency (5). This allows, with a reasonable choice of the positions of the given frequencies ω 1 , ω 2 relative to each other, to expand the frequency band within which the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by the two levels of the control low-frequency signal, on the frequency and the given dependencies are provided modulus and phase of the transfer function of the modulator from the amplitude of the control low-frequency signal, continuously varying from one level of the control low-frequency signal Filed to another, in a given frequency band. With a reasonable choice of both levels of the amplitude of the control signal, quasilinear sections of the phase and amplitude modulation characteristics will be formed for the implementation of the modulation mode. Variable use of both levels provides a manipulation mode. The frequency characteristics of the resistance of the signal source and the load can be set by any.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестны способ и устройство амплитудно-фазовой модуляции, обеспечивающие заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот за счет специального выбора частотной зависимости элемента z22 матрицы сопротивлений комплексного четырехполюсника, реализуемой выполнением этого четырехполюсника в виде Т-образного соединения трех комплексных двухполюсников, формированием второго комплексного двухполюсника Т-образного соединения из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 и выбором указанных параметров по соответствующим математическим выражениям.The proposed technical solutions are new, since the method and device for amplitude-phase modulation, which provide the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states determined by two levels of the control low-frequency signal, on the frequency and the given dependences of the module and phase of the transfer, are unknown from publicly available information. the modulator function of the amplitude of the control low-frequency signal, continuously varying from one level of the control low astotnogo signal to another (in this case the levels are selected from the conditions of implementation of a quasi-linear portion of the modulation characteristic) in a predetermined frequency band due to the particular choice of the frequency dependence of the element z 22 matrix resistances integrated quadrupole realizable implementation of the quadrupole in a T-fitting three complex two-poles, the formation of the second complex two-terminal T-connection from the series-connected first resistive two-terminal with resistance leniem R 1, with the first coil and the inductance L 1 connected in parallel between a second two-terminal resistive with a resistance R 2 and a second coil with inductance L 2 and selecting said parameters relevant to mathematical expressions.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника комплексным в виде указанной выше схемы, включение двухполюсного нелинейного элемента между четырехполюсником и нагрузкой в продольную цепь, реализация оптимальной частотной зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника выполнением этого четырехполюсника в виде Т-образного соединения трех комплексных двухполюсников, формированием второго комплексного двухполюсника Т-образного соединения из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 и выбором указанных параметров по соответствующим математическим выражениям) обеспечивают заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого.The proposed technical solutions have an inventive step, since it does not explicitly follow from the published scientific data and the known technical solutions that the claimed sequence of operations (the execution of a four-terminal complex in the form of the above scheme, the inclusion of a two-pole nonlinear element between the four-terminal and the load in the longitudinal circuit, the implementation of the optimal frequency dependences of element z 11 of the resistance matrix of a complex four-terminal network by performing this four-terminal network in the form of T -shaped connection of three complex two-terminal, the formation of the second complex two-terminal T-shaped connection from a series of connected first resistive two-terminal with resistance R 1 , the first coil with inductance L 1 and parallel to each other, the second resistive two-terminal with resistance R 2 and the second coil with inductance L 2 and the choice of the indicated parameters according to the corresponding mathematical expressions) provide the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by two levels of the control low-frequency signal, on the frequency and the given dependences of the module and phase of the transfer function of the modulator on the amplitude of the control low-frequency signal, continuously changing from one level of the control low-frequency signal to another.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды (параметрические диоды, p-i-n диоды, ЛПД, туннельные диоды, диоды Ганна и т.д.), индуктивности и емкости, сформированные в заявленную схему устройства модуляции. Частотные характеристики КЧ и второго комплексного двухполюсника Т-образного соединения, значения сопротивлений резистивных элементов и индуктивностей могут быть определены с помощью математических выражений, приведенных в формуле изобретения.The proposed technical solutions are practically applicable, since semiconductor diodes (parametric diodes, pin diodes, power supply diodes, tunnel diodes, Gunn diodes, etc.), inductances and capacitances formed in the claimed modulation device circuit can be used for their implementation . The frequency characteristics of the RF and the second complex two-terminal T-connection, the values of the resistances of the resistive elements and inductances can be determined using mathematical expressions given in the claims.

Технико-экономическая эффективность предложенного способа и устройства заключается в одновременном обеспечении заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, что способствует формированию модулированных или манипулированных по амплитуде и (или) по фазе высокочастотных сигналов в большей полосе частот при увеличенных областях физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки.The technical and economic efficiency of the proposed method and device consists in simultaneously providing predetermined dependencies of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by two levels of the control low-frequency signal, on the frequency and the given dependences of the module and phase of the transfer function of the modulator on the amplitude of the control low-frequency signal, continuously varying from one level of the control low-frequency signal to another, which contributes to framing of modulated or manipulated in amplitude and (or) phase high-frequency signals in a larger frequency band with increased areas of physical feasibility as areas of change of the real and imaginary components of the resistance of the signal source and load.

Claims (2)

1. Способ амплитудно-фазовой модуляции высокочастотного сигнала, состоящий в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, отличающийся тем, что четырехполюсник выполняют комплексным из реактивных и резистивных элементов, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника от частоты с помощью следующего математического выражения:
Figure 00000026
,
где
Figure 00000027
; z11, z21 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; m21, φ21 - заданные зависимости отношения модулей и разности фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z1,2 - заданные зависимости комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z0, zn - заданные зависимости комплексных сопротивлений источника высокочастотного сигнала и нагрузки от частоты.
1. The method of amplitude-phase modulation of a high-frequency signal, consisting in the fact that the high-frequency signal is fed to a modulator made of a four-terminal device, a controlled two-electrode nonlinear element, a source of a control low-frequency signal and load, the amplitude and phase of the high-frequency signal is changed by changing the amplitude of the control low-frequency signal to non-linear element, characterized in that the four-terminal device is made complex of reactive and resistive elements, the non-linear element includes In the longitudinal circuit between the source of the high-frequency signal and the input of the four-terminal, the output of which the load is connected, the given dependences of the ratio of the modules and the phase difference of the transfer function of the modulator in two states, determined by the two levels of the control low-frequency signal, on the frequency and the given dependences of the module and phase of the transfer function of the modulator from the amplitude of the control low-frequency signal, continuously varying from one level of the control low-frequency signal to another, in the given frequency band is provided by choosing the dependence of the element z 11 of the resistance matrix of the complex quadripole on frequency using the following mathematical expression:
Figure 00000026
,
Where
Figure 00000027
; z 11 , z 21 are the given dependences of the corresponding elements of the resistance matrix of the complex four-terminal network on frequency; m 21 , φ 21 are the given dependences of the ratio of the modules and the phase difference of the transfer function in two states of the controlled nonlinear element, determined by two levels of the control low-frequency signal, on the frequency in a given frequency band; z 1,2 - given dependences of the complex resistance of a bipolar nonlinear element in two states, determined by two levels of the control low-frequency signal, on the frequency in a given frequency band; z 0 , z n are the given dependences of the complex resistances of the high-frequency signal source and load on frequency.
2. Устройство амплитудно-фазовой модуляции высокочастотного сигнала, состоящее из источника высокочастотного сигнала, четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, отличающееся тем, что четырехполюсник выполнен комплексным в виде Т-образного соединения трех комплексных двухполюсников, нелинейный элемент включен в продольную цепь между источником высокочастотного сигнала и входом комплексного четырехполюсника, к выходу комплексного четырехполюсника подключена нагрузка, второй двухполюсник Т-образного соединения сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, значения параметров второго двухполюсника Т-образного соединения определены в соответствии со следующими математическими выражениями:
Figure 00000028
;
Figure 00000029
;
Figure 00000030
;
где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах;
Figure 00000031
- оптимальные значения комплексного сопротивления второго комплексного двухполюсника Т-образного соединения на двух частотах;
Figure 00000032
; Z1n, Z3n - заданные значения комплексного сопротивления первого и третьего комплексных двухполюсников Т-образного соединения на двух частотах; m21n, φ21n - заданные значения отношений модулей и разностей фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z1n, 2n - заданные значения комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z0n, znn - заданные значения комплексных сопротивлений источника высокочастотного сигнала и нагрузки на двух частотах; ω1,2=2πf1,2; n=1,2 - номера заданных двух частот f1,2.
2. The device for amplitude-phase modulation of a high-frequency signal, consisting of a high-frequency signal source, a four-terminal, a two-electrode nonlinear element, a source of a control low-frequency signal and a load, characterized in that the four-terminal is made complex in the form of a T-shaped connection of three complex two-terminal, non-linear element is included in a longitudinal circuit between the source of the high-frequency signal and the input of the complex four-terminal, connected to the output of the complex four-terminal load, the second two-terminal T-shaped connection is formed from a series-connected first resistive two-terminal with a resistance R 1 , a first coil with inductance L 1 and parallel to each other a second resistive two-terminal with a resistance R 2 and a second coil with inductance L 2 , the values of the parameters of the second two-terminal T-joints are defined in accordance with the following mathematical expressions:
Figure 00000028
;
Figure 00000029
;
Figure 00000030
;
where r 1 , r 2 , x 1 , x 2 are the optimal values of the real and imaginary components of the resistance of the second complex two-terminal complex four-terminal at two frequencies;
Figure 00000031
- the optimal values of the complex resistance of the second complex two-terminal T-shaped connection at two frequencies;
Figure 00000032
; Z 1n , Z 3n - set values of the complex resistance of the first and third complex two-terminal T-shaped connection at two frequencies; m 21n , φ 21n are the given values of the ratios of the modules and the phase differences of the transfer function in two states of the controlled non-linear element, determined by two levels of the control low-frequency signal, at two frequencies; z 1n , 2n - set values of the complex resistance of a bipolar nonlinear element in two states, defined by two levels of the control low-frequency signal, at two frequencies; z 0n , z nn are the set values of the complex resistances of the source of the high-frequency signal and the load at two frequencies; ω 1,2 = 2πf 1,2 ; n = 1,2 - numbers of the given two frequencies f 1,2 .
RU2014144476/08A 2014-11-05 2014-11-05 Method for amplitude-phase modulation of high-frequency signal and device for its implementation RU2589304C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014144476/08A RU2589304C1 (en) 2014-11-05 2014-11-05 Method for amplitude-phase modulation of high-frequency signal and device for its implementation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014144476/08A RU2589304C1 (en) 2014-11-05 2014-11-05 Method for amplitude-phase modulation of high-frequency signal and device for its implementation

Publications (1)

Publication Number Publication Date
RU2589304C1 true RU2589304C1 (en) 2016-07-10

Family

ID=56371124

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014144476/08A RU2589304C1 (en) 2014-11-05 2014-11-05 Method for amplitude-phase modulation of high-frequency signal and device for its implementation

Country Status (1)

Country Link
RU (1) RU2589304C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663554C1 (en) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method of high-frequency signal amplitude and phase modulation and device for implementation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1800579A1 (en) * 1990-10-11 1993-03-07 Voron K B Radiosvyazi Device for modulation of return signal
RU2486639C1 (en) * 2011-11-21 2013-06-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method
RU2488947C2 (en) * 2011-10-13 2013-07-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Method for amplitude, phase and frequency modulation of high-frequency signals and multifunctional apparatus for realising said method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1800579A1 (en) * 1990-10-11 1993-03-07 Voron K B Radiosvyazi Device for modulation of return signal
RU2488947C2 (en) * 2011-10-13 2013-07-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Method for amplitude, phase and frequency modulation of high-frequency signals and multifunctional apparatus for realising said method
RU2486639C1 (en) * 2011-11-21 2013-06-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663554C1 (en) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method of high-frequency signal amplitude and phase modulation and device for implementation thereof

Similar Documents

Publication Publication Date Title
RU2342769C2 (en) Device for modulating amplitude and phase of radio-frequency signals
RU2354039C1 (en) Method for modulation of amplitude and phase of radio frequency signals and device for its realisation
RU2462811C2 (en) High-frequency signal generation method, and device for its implementation
RU2341006C2 (en) Method of radio-frequency signal amplitude and phase modulation and related device of implementation thereof
RU2341866C2 (en) Device for modulation of amplitude and phase of radio frequency signals
RU2341867C2 (en) Method for modulation of amplitude and phase of multiple-frequency signals and device for its realisation
RU2354040C1 (en) Method for modulation of amplitude and phase of radio frequency signals and device for its realisation
RU2589304C1 (en) Method for amplitude-phase modulation of high-frequency signal and device for its implementation
RU2353049C1 (en) Radio frequency signal amplitude and phase modulation method and associated device
RU2341011C2 (en) Multiple frequency signal amplitude and phase modulator
RU2496224C2 (en) Method for amplitude-phase modulation of high-frequency signal and apparatus for realising said method
RU2342768C2 (en) Device for modulating amplitude and phase of radio-frequency signals
RU2568931C1 (en) Method for amplitude-phase modulation of high-frequency signal and device for its implementation
RU2589864C1 (en) Method of amplitude-phase modulation of high-frequency signal and device for its implementation
RU2494529C2 (en) Method for amplitude-phase modulation of high-frequency signal and apparatus for realising said method
RU2341008C2 (en) Radio-frequency signal amplitude and phase modulators
RU2341007C2 (en) Radio-frequency signal amplitude and phase modulators
RU2341865C2 (en) Device for modulation of amplitude and phase of mf signals
RU2342770C2 (en) Method of demodulating amplitude and phase of radio-frequency signals and device to this end
RU2341010C2 (en) Multiple frequency signal amplitude and phase modulator
RU2665903C1 (en) Method of high-frequency signal amplitude and phase modulation and device for implementation thereof
RU2663558C1 (en) Method of high-frequency signal amplitude and phase modulation and device for implementation thereof
RU2341012C2 (en) Method of radio-frequency signal amplitude and phase modulation and related device of implementation thereof
RU2354038C1 (en) Method for modulation of amplitude and phase of radio frequency signals and device for its realisation
RU2341868C2 (en) Device for modulation of amplitude and phase of multiple-frequency signals

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161106