RU2588757C2 - Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу - Google Patents

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу Download PDF

Info

Publication number
RU2588757C2
RU2588757C2 RU2014131614/02A RU2014131614A RU2588757C2 RU 2588757 C2 RU2588757 C2 RU 2588757C2 RU 2014131614/02 A RU2014131614/02 A RU 2014131614/02A RU 2014131614 A RU2014131614 A RU 2014131614A RU 2588757 C2 RU2588757 C2 RU 2588757C2
Authority
RU
Russia
Prior art keywords
blade
processing
frequency
machined
frequencies
Prior art date
Application number
RU2014131614/02A
Other languages
English (en)
Other versions
RU2014131614A (ru
Inventor
Олег Евгеньевич Барышников
Владимир Дмитриевич Вермель
Сергей Анатольевич Болсуновский
Глеб Анатольевич Губанов
Валерий Викторович Зиняев
Евгений Иванович Калитин
Ираклий Нугзарович Качарава
Артемий Борисович Кудряшов
Андрей Владимирович Шиняев
Татьяна Сергеевна Чекрыгина
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2014131614/02A priority Critical patent/RU2588757C2/ru
Publication of RU2014131614A publication Critical patent/RU2014131614A/ru
Application granted granted Critical
Publication of RU2588757C2 publication Critical patent/RU2588757C2/ru

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности. Выбирают оптимальную частоту вращения шпинделя, для чего для обрабатываемой лопатки строят расчетную последовательность математических конечно-элементных моделей с моделированием условий закрепления, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке. Рассчитывают значения собственных частот обрабатываемой лопатки для каждой зоны. Проводят оценку совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки. Строят графики для визуализации выбора частоты вращения шпинделя. Осуществляют ступенчатую регулировку частоты вращения шпинделя в процессе обработки и регулировку частоты вращения по линейному закону по заданной программе. Исключается резонанс при обработке лопатки. 6 ил.

Description

Предлагаемое изобретение относится к области обработки металлов резанием и может быть использовано в машиностроении, а именно в авиадвигателестроении, при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности лопаток компрессора, концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ).
При изготовлении аэродинамических моделей лопаток роторов газотурбинных двигателей, предъявляются особые требования к точности изготовления (~0,02-0,05 мм), существенно превышающие требования к конструкциям в составе серийных изделий. Основную сложность представляет изготовление аэродинамических поверхностей лопаток, имеющих малые относительные толщины при выраженном осевом габарите (200-300 мм). Толщина профиля в концевом сечении может достигать 0,7-0,8 мм при длине хорды ~40 мм. При таких толщинах наряду с требованиями по точности изготовления возникает ряд эффектов, существенно осложняющих изготовление таких деталей.
Сила резания при фрезеровании отжимает деталь от инструмента. При малых относительных толщинах, характерных для лопаток вентиляторов, величина отжима может существенно превышать точность обработки, что приведет к недоработке припуска в зонах с малой жесткостью и соответственно большим прогибам. Определяющее влияние на величину прогиба оказывают сила резания, последовательность удаления и величина припуска, повышающего жесткость обрабатываемой поверхности тонкостенных деталей и их элементов. При этом сила резания определяется положением фрезы относительно обрабатываемой поверхности (пространственной ориентацией), направлением движения фрезы относительно поверхности, величинами технологических параметров обработки (подача на зуб, величина припуска на обработку, шага между строчками), которые определяют производительность. При обработке лопаток выбор стратегии обработки и технологических параметров диктуется требованиями к точности изготовления.
Известен способ обработки нежестких деталей (описание изобретения к авторскому свидетельству SU 1400798, МПК4 B23C 3/00, 1988 г.), преимущественно лопаток газотурбинных двигателей, концевой фрезой, при котором определяют величину снимаемого припуска, ведут обработку за один проход и перемещают фрезу вдоль обрабатываемой поверхности эквидистантно ей. Обработку ведут периферийной частью концевой фрезы. После обработки первой детали определяют погрешность ее изготовления, замеряют величину отжима детали на ширине обработки и корректируют положение фрезы и детали относительно друг друга с учетом величины этого отжима. При данном способе обработки получается невысокая точность обработки при малых скоростях резания. Для уменьшения брака от вибраций оставляют значительный (0,1-0,15 мм) припуск для слесарной доработки, которая увеличивает время изготовления деталей и снижает точность изготовления.
Известен способ изготовления аэродинамических моделей лопаток роторов на станках с ЧПУ (патент РФ №2481177, МПК B23C 3/18, 2013 г.). При данном способе изготовления аэродинамических моделей лопаток роторов достигается высокая точность при высоких скоростях резания, но необходимо изготовить дополнительно с высокой точностью лонжерон, который наклеивают на обработанную поверхность аэродинамической модели лопатки, а затем удаляют наклеенный лонжерон нагревая лопатку до температуры перехода клея в жидкое состояние. Такой способ оправдывает себя при обработке большой партии аэродинамических моделей лопаток роторов, так как затрачивается 70-80 нормочасов на изготовление лонжерона.
Наиболее близким к предлагаемому техническому решению является изобретение «Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с ЧПУ» по патенту РФ 2500506, МПК B23C 3/18, 2013 г., согласно которому лопатку обрабатывают концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности, при этом для обрабатываемой лопатки строят последовательность конечно-элементных математических моделей с моделированием условий закрепления лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, рассчитывают значения собственных частот обрабатываемой лопатки для каждой зоны, для коррекции полученных значений собственных частот дополнительно измеряют собственные частоты обрабатываемой лопатки экспериментально для каждой зоны с использованием системы «возбудитель-датчик», оценивают совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, объединяют зоны с близкими частотными характеристиками таким образом, чтобы исключить резонанс при взаимодействии со спектральными составляющими силы резания, определяют рабочую частоту вращения шпинделя, выбранную частоту используют в управляющей программе обработки лопаток для станка с ЧПУ.
Основным недостатком рассматриваемого технического решения является то, что при значительном изменении собственных частот колебаний обрабатываемой заготовки оказывается невозможным выбрать режим обработки, исключающий возникновение вибраций для всей детали. В этом случае для определенных участков (по длине лопатки) резонансные вибрации возникают при любой выбранной частоте вращения шпинделя и соответственно частоте воздействия силы резания. Вибрации при обработке деталей с малой относительной толщиной приводят к возникновению глубоких рисок на поверхности, отжиму обрабатываемой детали от инструмента и, как следствие, к браку.
Задачей предлагаемого изобретения является изготовление аэродинамических поверхностей лопаток роторов газотурбинных двигателей, имеющих малые относительные толщины при выраженном осевом габарите и максимально возможное сокращение сроков их изготовления.
Техническим результатом является исключение резонанса между частотами колебаний фрезы, воздействующих на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки.
Решение задачи и технический результат достигаются тем, что в способе обработки профиля пера лопатки ротора газотурбинного двигателя на станках с ЧПУ, включающем обработку аэродинамической поверхности лопатки концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности и выбор оптимальной частоты вращения шпинделя для обрабатываемой лопатки путем построения расчетной последовательности математических конечно-элементных моделей с моделированием условий закрепления обрабатываемой лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, расчета значения собственных частот обрабатываемой лопатки для каждой зоны и оценки совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, строят графики для визуализации выбора частоты вращения шпинделя, определяемой частотой импульсного воздействия зубьев торовой фрезы на заготовку, применяют ступенчатую регулировку частоты вращения шпинделя в процессе обработки, далее регулировку частоты вращения выполняют непрерывно по линейному закону, участок выполнения заданной программы из нескольких строчек определяется совокупностью локальных перемещений торовой фрезы, а размер участка выбирают из условия отсутствия пересечений частот спектра сил резания, воздействующих на обрабатываемую лопатку, и собственных частот обрабатываемой лопатки.
- выполняют регулировку частоты вращения непрерывно по линейному закону при отработке участка программы из нескольких строчек - локальных перемещений инструмента по программе;
- выбирают размер участка перемещений торовой фрезы с изменяемой частотой по линейному закону из условия отсутствия пересечений частот спектра силы резания, определяемых частотами вращения шпинделя, воздействующими на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки при плавном изменении частоты вращения шпинделя.
Частоты импульсного воздействия зубьев фрезы на заготовку определяются на основе спектрального разложения силы резания. На фиг. 2 показано изменение силы резания в направлении нормали к поверхности обрабатываемой заготовки. Сила отрицательна, так как фреза отжимает заготовку. Периодический сигнал сил резания раскладывается в спектр с использованием разложения Фурье и может быть представлен в виде частотных гармоник (фиг. 3) с заданной амплитудой и кратными частотами. Наибольшую амплитуду имеет первая гармоника, для остальных гармоник - их амплитуда уменьшается с увеличением частоты. Частотные гармоники воздействуют на заготовку и вызывают вибрации, при этом, чем больше амплитуда гармоники в спектре, тем интенсивнее вызываемые ею вибрации.
На графике, приведенном на фиг. 4, показаны условия, при которых невозможно выбрать оптимальную постоянную частоту вращения шпинделя, обеспечивающую исключение резонанса между частотами колебаний фрезы, воздействующих на обрабатываемую поверхность (кратные частоты f возб. на фиг. 4, 5, 6), и собственными частотами обрабатываемой лопатки, закрепленной в приспособлении, см. фиг. 1 (форма 1, форма 2 на фиг. 4, 5, 6), так как отсутствуют частотные окна для выбора режима обработки оптимальной постоянной частоты вращения шпинделя. Крестами на графике обозначены частоты с возможным возникновением явлений резонанса. Поэтому производят дополнительные расчеты и коррекцию частоты вращения шпинделя на нескольких участках, в результате получают, что для каждого из участков возможно подобрать соответствующий режим обработки, исключающий резонанс (фиг. 5). Изменение частоты вращения между участками соответствует скачкообразному изменению частот спектра возбуждения вибраций на диаграмме. Изменения режимов обработки соответствуют ступенькам на пунктирных линиях, определяющих частотный спектр силы резания. Недостатком в этом случае является образование «ступеньки» на поверхности лопатки из-за резкого изменения частоты вращения шпинделя и соответственно скорости резания.
На фиг. 6 показано как регулировка частоты вращения может быть выполнена непрерывно с изменением частоты вращения по линейному закону при отработке участка программы из нескольких строчек (строчка - совокупность локальных перемещений инструмента, выполняемых по заложенной программе). Современные обрабатывающие центры с ЧПУ и средства программирования обработки позволяют выполнять регулировку режимов обработки для каждой группы локальных перемещений, заложенных в программу обработки изделия в отдельности. Размер участка программы с изменением частоты вращения по линейному закону определяют из условия, что он с одной стороны должен быть достаточно большим, чтобы уйти от следа на поверхности, оставляемого при ступенчатом изменении частоты вращения, с другой - ограничивается отсутствием пересечений частотного спектра и собственных частот деталей при плавном изменении частоты. Из графика фиг. 6 видно, что для исключения резонанса между частотами вращения шпинделя, определяемыми изменением частот спектра силы резания, воздействующими на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки, выбирают частоты вращения шпинделя лежащие на графике выше второй формы собственных частот обрабатываемой лопатки.
Поскольку решением задачи и техническим результатом изобретения является изготовление аэродинамических поверхностей лопаток роторов газотурбинных двигателей, имеющих малые относительные толщины при выраженном осевом габарите и максимально возможное сокращение сроков их изготовления, то найденные оптимальные частоты вращения шпинделя станка, исключающие явление резонанса, позволяют решить эту задачу. Данный метод был успешно применен к изготовлению аэродинамических моделей лопаток роторов газотурбинных двигателей.

Claims (1)

  1. Способ обработки профиля пера лопатки ротора газотурбинного двигателя на станках с ЧПУ, включающий обработку аэродинамической поверхности лопатки концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности, и выбор оптимальной частоты вращения шпинделя для обрабатываемой лопатки путем построения расчетной последовательности математических конечно-элементных моделей с моделированием условий закрепления обрабатываемой лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, расчета значения собственных частот обрабатываемой лопатки для каждой зоны и оценки совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, отличающийся тем, что строят графики для визуализации выбора частоты вращения шпинделя, определяемой частотой импульсного воздействия зубьев торовой фрезы на заготовку, при этом в процессе обработки осуществляют ступенчатую регулировку частоты вращения шпинделя и плавную по линейному закону регулировку частоты вращения шпинделя на участке перемещения торовой фрезы, размер которого выбирают из условия отсутствия пересечения частот спектра сил резания, определяемых частотами вращения шпинделя, и собственных частот обрабатываемой лопатки.
RU2014131614/02A 2014-07-31 2014-07-31 Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу RU2588757C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014131614/02A RU2588757C2 (ru) 2014-07-31 2014-07-31 Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014131614/02A RU2588757C2 (ru) 2014-07-31 2014-07-31 Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Publications (2)

Publication Number Publication Date
RU2014131614A RU2014131614A (ru) 2016-02-20
RU2588757C2 true RU2588757C2 (ru) 2016-07-10

Family

ID=55313421

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014131614/02A RU2588757C2 (ru) 2014-07-31 2014-07-31 Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Country Status (1)

Country Link
RU (1) RU2588757C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688987C1 (ru) * 2018-10-17 2019-05-23 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Способ изготовления маложестких лопаток роторов при одноопорном закреплении на станках с ЧПУ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2419520C1 (ru) * 2009-09-07 2011-05-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ обработки лопаток газотурбинных двигателей
RU2500506C1 (ru) * 2012-04-27 2013-12-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2419520C1 (ru) * 2009-09-07 2011-05-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ обработки лопаток газотурбинных двигателей
RU2500506C1 (ru) * 2012-04-27 2013-12-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688987C1 (ru) * 2018-10-17 2019-05-23 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Способ изготовления маложестких лопаток роторов при одноопорном закреплении на станках с ЧПУ

Also Published As

Publication number Publication date
RU2014131614A (ru) 2016-02-20

Similar Documents

Publication Publication Date Title
Tapoglou Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation
JP2022547408A (ja) 歯車加工装置における自動プロセス制御
EP2206577A1 (de) Verfahren zur Herstellung der Schaufelspitzen von in BLISK-Bauweise gefertigten Laufrädern
Zhu et al. An overview of turn-milling technology
Ventura et al. Modeling of cutting forces in helical milling by analysis of tool contact angle and respective depths of cut
Xie A genuine face milling cutter geometric model for spiral bevel and hypoid gears
Bas et al. Assessment of the production quality in machining by integrating a system of high precision measurement
EP3145672B1 (en) Method of grinding a workpiece and method for determining processing parameters
RU2588757C2 (ru) Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу
Wu et al. Research on formation mechanism and optimization method of surface waviness of TC4 blisk blade
RU2500506C1 (ru) Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу
Leal-Muñoz et al. Identification of the actual process parameters for finishing operations in peripheral milling
CN110052654A (zh) 断屑型铣刀的设计方法
Hilligardt et al. A holistic approach for gear skiving design enabling tool load homogenization
RU2678222C1 (ru) Способ изготовления крупногабаритных лопаток газотурбинного двигателя
Fan et al. Error prediction and clustering compensation on shaft machining
JP6781228B2 (ja) 外乱成分特定方法及び外乱成分特定装置
CN108351630B (zh) 用于在工件上产生或加工啮合齿的方法
Brecher et al. Local simulation of the specific material removal rate for generating gear grinding
CN110102829B (zh) 一种锥齿轮加工工艺的对比方法
CN110045685B (zh) 检验齿轮机床工作精度的方法
RU2689476C1 (ru) Способ обработки лопаток блиска газотурбинного двигателя
Talar et al. New method of machining teeth on unspecialised machine tools
Lo et al. Compensation method for profile deviations caused by the complex shape of electrodes in orbital electrical discharge machining
RU2818545C1 (ru) Способ строгания нелинейных поверхностей тонкостенных деталей лопаточных машин и инструмент для его реализации

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170801

NF4A Reinstatement of patent

Effective date: 20181002

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200801