RU2587199C1 - Шихта для получения теллуритно-молибдатных стекол (варианты) - Google Patents

Шихта для получения теллуритно-молибдатных стекол (варианты) Download PDF

Info

Publication number
RU2587199C1
RU2587199C1 RU2015114735/03A RU2015114735A RU2587199C1 RU 2587199 C1 RU2587199 C1 RU 2587199C1 RU 2015114735/03 A RU2015114735/03 A RU 2015114735/03A RU 2015114735 A RU2015114735 A RU 2015114735A RU 2587199 C1 RU2587199 C1 RU 2587199C1
Authority
RU
Russia
Prior art keywords
moo
glass
mixture
tellurite
oxides
Prior art date
Application number
RU2015114735/03A
Other languages
English (en)
Inventor
Михаил Федорович Чурбанов
Алексей Алексеевич Сибиркин
Олег Андреевич Замятин
Ирина Геннадьевна Горева
Станислав Андреевич Гаврин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2015114735/03A priority Critical patent/RU2587199C1/ru
Application granted granted Critical
Publication of RU2587199C1 publication Critical patent/RU2587199C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Заявляемое изобретение относится к области химии и касается шихты для получения теллуритно-молибдатных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и среднего ИК-диапазонов. Теллуритные стекла, содержащие оксиды редкоземельных элементов, могут быть использованы для изготовления компактных магнитооптических фильтров для защиты лазерных установок от отраженного излучения. Шихта для получения теллуритных стекол содержит смесь сложных оксидов элементов, бинарные оксиды которых являются компонентами стекла. Основным компонентом является Te2MoO7, к которому добавляют сложные оксиды теллура и трехвалентных элементов или сложные оксиды молибдена и вольфрама и трёхвалентных элементов (редкоземельных элементов и висмута). Техническим результатом от использования предлагаемого изобретения является повышение оптической прозрачности теллуритно-молибдатных стекол с высоким содержанием в них триоксида молибдена в видимой и ближней ИК-областях спектра. 3 н. и 3 з.п. ф-лы, 2 табл., 5 пр.

Description

Заявляемое изобретение относится к области химии и касается шихты для получения теллуритных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и среднего ИК-диапазонов. Теллуритные стекла, содержащие оксиды редкоземельных элементов, могут быть использованы для изготовления компактных магнитооптических фильтров для защиты лазерных установок от отраженного излучения.
Традиционный способ получения теллуритных стекол заключается в сплавлении шихты, в качестве которой используют мелко растертые оксиды теллура (IV), молибдена (VI), вольфрама (VI) и других элементов. которые являются макрокомпонентами стекла с заданным их содержанием, в тигле, изготовленном из платины, или золота, или оксида алюминия, с последующим охлаждением полученного расплава (например, Takao Sekiya, Norio Mochida, Shinji Ogawa. Structural Study of MoO3-TeO2 Glasses // Journal of Non-Crystalline Solids 185 (1995) 135-144; Hong-Wei Li, Shi-Qing Man. Optical Properties of Er3+ in МоО3-Bi2O3-TeO2 Glasses // Optics Communications 282 (2009) 1579-1583; R.A. El-Mallawany, L.M. Sharaf El-Deen, M.M. Elkholy. Dielectric Properties and Polarizability of Molybdenum Tellurite Glasses // Journal of Materials Science 31 (1996) 6339-6343). Во всех упомянутых источниках плавление шихты ведут при 700-900°С.
Недостатком упомянутого способа является относительно высокая температура синтеза, из-за которой полученные стекла обладают высоким светопоглощением в видимой и ближней ИК-областях спектра, причем светопоглощение усиливается по мере повышения в стекле относительного содержания триоксида молибдена. В процессе синтеза стекол происходит восстановление молибдена (VI). что приводит к появлению в системе соединений молибдена в низших состояниях окисления. Эти соединения молибдена обусловливают высокие оптические потери в видимой и смежной с ней части ИК-области спектра.
Известен способ получения теллуритно-молибдатных стекол плавлением шихты из мелко растертых оксидов теллура (IV) и молибдена (VI), которые являются макрокомпонентами стекла с заданным их содержанием, в тигле, изготовленном из оксида алюминия, при температуре 900-950°С с последующим охлаждением полученного сплава.
Поставленная задача достигается тем, что шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена, сложного оксида теллура и висмута и сложного оксида висмута и молибдена, бинарные оксиды которых являются компонентами стекла; используются Bi2TeO6, и Bi2Mo3O12, и Te2MoO7, или Bi6Te2O15, и Bi2Mo3O12, и Те2МоО7, или Bi2TeO6, и Bi2MoO6, и Te2MoO7, или Bi6Te2O15, и Bi2MoO6, и Те2МоО7, или Bi2TeO6, и Bi2Mo3O12, и Те2МоО7, или Bi6Te2O15, и Bi2Mo3O12, и Te2MoO7.
Поставленная задача достигается также тем, что шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена, сложного оксида теллура и лантана и сложного оксида лантана и молибдена, бинарные оксиды которых являются компонентами стекла; используются La2Te4O11, и La2Mo3O12, и Te2MoO7, или La2Te4O11, и La2Mo2O9, и Te2MoO7, или La2TeO6, и La2Mo2O9, и Te2MoO7, или La2TeO6, и La2Mo3O12, и Te2MoO7.
Поставленная задача достигается также тем, что шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена и сложного оксида лантана и вольфрама, бинарные оксиды которых являются компонентами стекла: используются Te2MoO7 и La2W22O81, или Te2MoO7 и La2W3O12, или Te2MoO7 и La2W2O9.
На фиг. 1 представлены кривые зависимости удельного поглощения от длины волны (спектры поглощения) стекла состава (TeO2)0.58(МоО3)0.29(BiO1.5)0.13, полученного из: 1 - сложных оксидов Bi2TeO6, Bi2MoO6, Te2MoO7, 2 - бинарных оксидов TeO2, MoO3, Bi2O3.
На фиг. 2 приведены кривые зависимости удельного поглощения от длины волны (спектры поглощения) стекла состава (TeO2)0.50(МоО3)0.25(LaO1.5)0.25, полученного из сложных оксидов La2TeO6, La2Mo2O9, Te2MoO7.
В качестве исходных компонентов шихты для получения теллуритно-молибдатных стекол используются сложные оксиды теллура, молибдена, вольфрама, висмута и редкоземельных элементов. В составе шихты оказываются представленными вещества, характеризующиеся более низкой температурой плавления, чем традиционно используемые для синтеза теллуритных стекол бинарные оксиды, а также вещества, содержащие атомы теллура (VI), что создает возможность создавать окислительную среду, благоприятствующую сохранению высшего состояния окисления молибдена, непосредственно в расплаве.
К числу применяемых в качестве компонентов шихты сложных оксидов относится прежде всего гептаоксид молибдена-дителлура Те2МоО7, являющийся преобладающим компонентом шихты для синтеза теллуритно-молибдатных стекол во всей области стеклования.
Вторую группу составляют сложные оксиды теллура (VI) и трехвалентных элементов (например, редкоземельных элементов и висмута) Bi2TeO6 и La2TeO6, устойчивые в индивидуальном состоянии до температуры 700-1000°С и разлагающиеся в стеклообразующем расплаве с отщеплением кислорода и образованием производных теллура (IV), а также сложные оксиды, содержащие производные теллура (IV), например теллуриты висмута Bi6Te2O15 и лантана La2Te4O11.
К третьей группе относятся сложные оксиды молибдена и вольфрама и трехвалентных элементов (в том числе редкоземельных элементов и висмута) Bi2MoO6, Bi2Mo2O9, Bi2Mo3O12, Ln2MoO6, Ln2Mo2O9, Ln2Mo3O12, Bi2WO6, Bi2W2O9, Bi2W3O12, Ln2WO6, Ln2W2O9, Ln2W3O12, La10W22O81 и другие. Эти кислородсодержащие соединения являются источниками базовых макрокомпонентов стекол.
Все перечисленные сложные оксиды синтезируются, как правило, в окислительных средах, что позволяет достичь в них низкого содержания восстанавливающих примесей. Это обусловливает их пригодность и предпочтительное использование для получения теллуритных стекол с высокой оптической прозрачностью в видимой и ближней ИК-областях спектра.
В качестве шихты вместо двойных оксидов, обладающих высокими температурами плавления, используют более легкоплавкие соединения класса сложных оксидов, в том числе кислородсодержащие производные теллура (VI), которые способны при температуре существования стеклообразующего расплава разлагаться с выделением кислорода.
Сложный оксид Te2MoO7 расплавляется при температуре 551°С. Его состав (33% (мол.) MoO3) отвечает середине области стеклования двойной теллуритно-молибдатной системы. Введение в шихту этого соединения в больших количествах является главным фактором, обеспечивающим снижение температуры стеклообразующего расплава.
В двойной оксидной системе существуют две эвтектики с содержанием около 30% и 45% (мол.) триоксида молибдена, плавящиеся при 543°С и 526°С [J.С.J. Bart. A. Marzi, F. Pignataro, A. Castellan, N. Giordano. Structural and textural effects of TeO2 added to MoO3 // J. of Materials Science. 10 (1975) 1029-1036.]. Это означает, что добавление диоксида теллура или триоксида молибдена к сложному оксиду Te2MoO7 позволяет получать легкоплавкие стеклообразующие расплавы, приводящие к двойным теллуритно-молибдатным стеклам, прозрачным в видимой и ближней ИК-областях спектра.
Способность сложного оксида Te2MoO7 к образованию эвтектик с ТеО2 и MoO3 позволяет ожидать, что добавление к Te2MoO7 других веществ, в том числе перечисленных выше сложных оксидов, также приведет к получению легкоплавких расплавов. Это объясняет возможность получения по заявляемому способу многокомпонентных теллуритно-молибдатных стекол, содержащих тугоплавкие оксиды, при более низкой температуре, чем в случае использования в качестве шихты смеси бинарных оксидов.
Нагревание сложных оксидов, являющихся производными теллура (VI), сопровождается внутримолекулярным окислительно-восстановительным превращением, приводящим к получению соединений теллура (IV) и кислорода. Эти процессы с используемыми в качестве шихты соединениями происходят при температуре 700-1000°С, т.е. в ходе нагревания шихты и в условиях гомогенизации стеклообразующего расплава. Окислительные свойства соединений теллура (VI) или выделяющегося при их термическом распаде кислорода подавляют процесс частичного восстановления соединений молибдена (VI), приводящий к накоплению в стеклообразующем расплаве производных молибдена (V), вызывающих сильное светопоглощение в видимой и ближней ИК-областях спектра. Нагревание смеси перечисленных выше сложных оксидов приводит к образованию стеклообразующего расплава, охлаждением которого получается стекло, обладающее высокой прозрачностью в видимой и ближней ИК-областях спектра.
Для образцов многокомпонентных теллуритных стекол с высоким содержанием триоксида молибдена (до 40% (мол.) МоО3) отсутствует зависимость положения коротковолновой границы пропускания от содержания этого макрокомпонента. Для образцов стекол такого же состава, полученных из бинарных оксидов, характерно постепенное смещение коротковолновой границы пропускания в область более длинных волн по мере увеличения содержания в стекле триоксида молибдена (табл. 1, 2).
Использование предлагаемого изобретения обеспечивает повышение оптической прозрачности теллуритно-молибдатных стекол с высоким содержанием триоксида молибдена. При этом согласно данным дифференциально-термического анализа стекла, полученные из шихты, состоящей из сложных оксидов, обладают практически такими же температурами стеклования, как и стекла того же состава, изготовленные из смеси бинарных оксидов.
Ниже приведены примеры конкретного осуществления предлагаемого изобретения.
Пример 1
Для получения одного из образцов стекла состава (ТеО2)0.58(MoO3)0.29(BiO1.5)0.13 были использованы 6.7484 г диоксида теллура, 3.5972 г триоксида молибдена и 2.2084 г триоксида дивисмута. Другой образец стекла того же состава получен из смеси 9.0465 г Te2MoO7, 2.0223 г Bi2TeO6 и 0.9622 г Bi2MoO6. Указанные смеси растирались в фарфоровой ступке и расплавлялись в фарфоровом тигле при температуре 800°С. Стеклообразующий расплав выливался в разборную форму из легированной стали, разогретую до температуры 320°С. Охлаждение стекла проводилось в режиме выключенной печи. На фиг. 1 приведены спектры поглощения полученных образцов. Образец, полученный из бинарных оксидов, оказывается непрозрачным в видимой области спектра и обладает границей пропускания 1679 нм. Образец, полученный из сложных оксидов, прозрачен в ближней ИК-области и видимой области до длины волны 534 нм.
Пример 2
Для получения стекла состава (ТеО2)0.50(МоО3)0.25(LaO1.5)0.25 смесь, содержащая 3.8454 г La2TeO6, 1.1767 г La2Mo2O9 и 7.1011 г Te2MoO7, обеспечивающая достижение заданного состава стекла, растиралась в фарфоровой ступке и помещалась в фарфоровый тигель. Гомогенизирующее плавление шихты выполняли в муфельной печи, разогретой до 850°С, после чего расплав выливали в металлическую форму для отжига. Полученный образец стекла характеризуется коротковолновой границей пропускания 501 нм.
Пример 3
Для получения стекла состава (ТеО2)0.586(МоО3)0.293(WO1.5)0.081(LaO1.5)0.040 смесь, содержащая 5.0019 г Te2MoO7 и 1.0012 г La2W22O81, растиралась в фарфоровой ступке и помещалась в фарфоровый тигель. Шихта расплавлялась в муфельной печи, разогретой до 720°С, после чего расплав выливали в металлическую форму для отжига, разогретую до 300°С. Полученный образец стекла характеризуется коротковолновой границей пропускания 546 нм.
Пример 4
Для получения образца стекла состава (TeO2)0.579(MoO3)0.290(WO1.5)0.079(LaO1.5)0.052 были использованы 5.0025 г Te2MoO7 и 1.0009 г La2W3O12. Указанные смеси растирались в фарфоровой ступке и расплавлялись в фарфоровом тигле при температуре 720°С. Стеклообразующий расплав выливался в металлическую форму, разогретую до температуры 300°С. Полученный образец стекла характеризуется коротковолновой границей пропускания 543 нм.
Пример 5
Для получения стекла состава (TeO2)0.576(MoO3)0.288(WO1.5)0.068(LaO1.5)0.068 смесь из 5.0014 г Te2MoO7 и 0.9998 г La2W2O9 растиралась в фарфоровой ступке и помещалась в фарфоровый тигель. Гомогенизирующее плавление шихты выполняли в муфельной печи, разогретой до 720°С, после чего расплав выливали в металлическую форму для отжига. Полученный образец прозрачен в ближней ИК области и видимой области до длины волны 541 нм.
Figure 00000001
Figure 00000002

Claims (6)

1. Шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена, сложного оксида теллура и висмута и сложного оксида висмута и молибдена, бинарные оксиды которых являются компонентами стекла.
2. Шихта по п. 1, отличающаяся тем, что используются Bi2TeO6, и Bi2Mo3O12, и Te2MoO7, или Bi6Te2O15, и Bi2Mo3O12, и Te2MoO7, или Bi2TeO6, и Bi2MoO6, и Te2MoO7, или Bi6Te2O15, и Bi2MoO6, и Te2MoO7, или Bi2TeO6, и Bi2Mo3O12, и Te2MoO7, или Bi6Te2O15, и Bi2Mo3O12, и Te2MoO7.
3. Шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена, сложного оксида теллура и лантана и сложного оксида лантана и молибдена, бинарные оксиды которых являются компонентами стекла.
4. Шихта по п. 3, отличающаяся тем, что используются La2Te4O11, и La2Mo3O12, и Te2MoO7, или La2Te4O11, и La2Mo2O9, и Te2MoO7, или La2TeO6, и La2Mo2O9, и Te2MoO7, или La2TeO6, и La2Mo3O12, и Te2MoO7.
5. Шихта для получения теллуритно-молибдатных стекол содержит смесь сложного оксида теллура и молибдена и сложного оксида лантана и вольфрама, бинарные оксиды которых являются компонентами стекла.
6. Шихта по п. 5, отличающаяся тем, что используются Te2MoO7 и La2W22O81, или Te2MoO7 и La2W3O12, или Te2MoO7 и La2W2O9.
RU2015114735/03A 2015-04-20 2015-04-20 Шихта для получения теллуритно-молибдатных стекол (варианты) RU2587199C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015114735/03A RU2587199C1 (ru) 2015-04-20 2015-04-20 Шихта для получения теллуритно-молибдатных стекол (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015114735/03A RU2587199C1 (ru) 2015-04-20 2015-04-20 Шихта для получения теллуритно-молибдатных стекол (варианты)

Publications (1)

Publication Number Publication Date
RU2587199C1 true RU2587199C1 (ru) 2016-06-20

Family

ID=56132014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015114735/03A RU2587199C1 (ru) 2015-04-20 2015-04-20 Шихта для получения теллуритно-молибдатных стекол (варианты)

Country Status (1)

Country Link
RU (1) RU2587199C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713841C1 (ru) * 2018-08-21 2020-02-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2MoTe4O14

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1440881A1 (ru) * 1986-12-30 1988-11-30 Московский институт тонкой химической технологии Оптическое стекло дл изготовлени светофильтров
US5188990A (en) * 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
RU2455243C1 (ru) * 2010-12-28 2012-07-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения высокочистых теллуритных стекол
RU2484026C1 (ru) * 2011-12-27 2013-06-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых теллуритно-молибдатных стекол
EP2617689A1 (en) * 2012-01-23 2013-07-24 Heraeus Precious Metals North America Conshohocken LLC Conductive thick film paste for solar cell contacts and solar cell
WO2013169311A1 (en) * 2012-05-10 2013-11-14 E. I. Du Pont De Nemours And Company Glass composition and its use in conductive silver paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1440881A1 (ru) * 1986-12-30 1988-11-30 Московский институт тонкой химической технологии Оптическое стекло дл изготовлени светофильтров
US5188990A (en) * 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
RU2455243C1 (ru) * 2010-12-28 2012-07-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения высокочистых теллуритных стекол
RU2484026C1 (ru) * 2011-12-27 2013-06-10 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых теллуритно-молибдатных стекол
EP2617689A1 (en) * 2012-01-23 2013-07-24 Heraeus Precious Metals North America Conshohocken LLC Conductive thick film paste for solar cell contacts and solar cell
WO2013169311A1 (en) * 2012-05-10 2013-11-14 E. I. Du Pont De Nemours And Company Glass composition and its use in conductive silver paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713841C1 (ru) * 2018-08-21 2020-02-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА Pr2MoTe4O14

Similar Documents

Publication Publication Date Title
Lin et al. Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses
Zhou et al. Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system
Monteiro et al. Optical and spectroscopic properties of germanotellurite glasses
Poirier et al. New tungstate fluorophosphate glasses
Savelii et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation
Stepien et al. Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers
Winterstein et al. Luminescence from bismuth-germanate glasses and its manipulation through oxidants
Moiseev et al. Production and properties of high purity TeO2–ZnO–Na2O–Bi2O3 and TeO2–WO3–La2O3–MoO3 glasses
Sołtys et al. Electrical and optical properties of glasses and glass-ceramics
Manzani et al. Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles
Dorofeev et al. Production and properties of high purity TeO2− WO3−(La2O3, Bi2O3) and TeO2− ZnO− Na2O− Bi2O3 glasses
Manzani et al. Phosphotellurite glass and glass-ceramics with high TeO 2 contents: thermal, structural and optical properties
Richards et al. Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide
Liao et al. Preparation and characterization of new fluorotellurite glasses for photonics application
CN109320093B (zh) 一种透明微晶玻璃材料及其制备方法
Murata et al. Matrix effect on absorption and infrared fluorescence properties of Bi ions in oxide glasses
Margha et al. Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives
RU2484026C1 (ru) Способ получения особо чистых теллуритно-молибдатных стекол
Zhan et al. Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses
Pelosi et al. Effects of modifier oxides in the nonlinear refractive index of niobium-borotellurite glasses
Strutynski et al. Heavy-oxide glasses with superior mechanical assets for nonlinear fiber applications in the mid-infrared
He et al. Structural property of bismuth-doped tellurite glasses for nonlinear and Raman fiber applications
RU2584482C1 (ru) Шихта для получения теллуритных стекол (варианты)
Almeida et al. Waveguides and nonlinear index of refraction of borate glass doped with transition metals
Vani et al. Effect of dopants on the nonlinear optical properties of fluorotellurite glasses for optical limiting application