RU2586323C2 - Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора - Google Patents
Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора Download PDFInfo
- Publication number
- RU2586323C2 RU2586323C2 RU2013151266/07A RU2013151266A RU2586323C2 RU 2586323 C2 RU2586323 C2 RU 2586323C2 RU 2013151266/07 A RU2013151266/07 A RU 2013151266/07A RU 2013151266 A RU2013151266 A RU 2013151266A RU 2586323 C2 RU2586323 C2 RU 2586323C2
- Authority
- RU
- Russia
- Prior art keywords
- inverter
- network
- circuit elements
- matrix
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/25—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M5/27—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
- H02M5/271—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency from a three phase input voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
- Inverter Devices (AREA)
Abstract
Изобретение относится к матричному инвертору (MU), который соединен с первой и второй многофазной сетью (N1, N2) переменного напряжения. С первой сетью (N1) переменного напряжения соединены соответственно первые индуктивные схемные элементы (Su1, Sv1, Sw1), и со второй сетью (N2) переменного напряжения соответственно соединены вторые индуктивные схемные элементы (Su2, Sv2, Sw2). Переключательная матрица (MA) соединяет противоположные первой сети (N1) переменного напряжения концы (Eu1, Ev1, Ew1) первых индуктивных элементов (Su1, Sv1, Sw1) с противоположными второй сети (N2) переменного напряжения концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), причем переключательная матрица (MA) состоит из управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2). С управляющими входами управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) соединено устройство (R) регулирования, причем устройство (R) регулирования нагружается измеренными величинами тока и напряжения первой и второй сети (N1, N2) переменного напряжения. Чтобы иметь возможность изготавливать такой матричный инвертор (MU) экономичным образом, в матричном инверторе (MU) между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и потенциалом (M) земли размещен первый инверторный блок (Uu1, Uv1, Uw1), выполненный как управляемый источник переменного напряжения, и между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), противоположными второй сети (N2) переменного напряжения, включен второй инверторный блок (Uu2, Uv2, Uw2), выполненный как управляемый источник переменного напряжения; инверторные блоки (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) посредством устройства (R) регулирования управляются таким образом, что электрическая мощность, подаваемая на матричный инвертор (MU), равна электрической мощности, отводимой из матричного инвертора (MU). Изобретение также относится к способу формирования переменного напряжения посредством матричного инвертора (MU).
Технический результат - обеспечение возможности соединения двух сетей с разными параметрами. 2 н. и 10 з.п. ф-лы, 2 ил.
Description
Изобретение относится к матричному инвертору, который с одной стороны соединен с первой многофазной сетью переменного напряжения, а с другой стороны соединен со второй многофазной сетью переменного напряжения, с соответственно связанными с первой сетью переменного напряжения первыми индуктивными схемными элементами и соответственно связанными со второй сетью переменного напряжения вторыми индуктивными схемными элементами, с переключательной матрицей, которая соединяет противоположные первой сети переменного напряжения концы первых индуктивных элементов с противоположными второй сети переменного напряжения концами вторых индуктивных схемных элементов, причем переключательная матрица состоит из управляемых инверторных блоков, и с устройством регулирования, соединенным с управляющими входами управляемых инверторных блоков, причем устройство регулирования нагружается измеренными величинами тока и напряжения первой и второй сети переменного напряжения.
Подобный матричный инвертор описан в патенте США 6900998 В2. В этом известном матричном инверторе концы первых индуктивных схемных элементов, противоположные первой многофазной сети переменного напряжения, через соответствующий инверторный блок в форме многоуровневого переключающего компонента соединены со всеми концами вторых индуктивных схемных элементов, противоположными вторым выводам, для чего в трехфазных сетях переменного напряжения требуется всего девять инверторных блоков. Устройство регулирования известного матричного инвертора нагружается измеренными величинами тока и напряжения первой и второй сети переменного напряжения и выполнено так, что матричный инвертор управляется с применением пространственно-векторной модуляции.
В основе изобретения лежит задача предложить матричный инвертор, который не только сравнительно просто конструируется, но и относительно просто регулируется, чтобы две сети переменного напряжения различного уровня напряжения и/или различной частоты соединить друг с другом.
Для решения этой задачи в матричном инверторе вышеуказанного типа в соответствии с изобретением между концами первых индуктивных схемных элементов, противоположными первой сети переменного напряжения, и потенциалом земли размещен соответственно первый инверторный блок, выполненный как управляемый источник переменного напряжения, между концами первых индуктивных схемных элементов, противоположными первой сети переменного напряжения, и концами вторых индуктивных схемных элементов, противоположными второй сети переменного напряжения, включен соответственно второй инверторный блок, выполненный как управляемый источник переменного напряжения; устройство регулирования соединено с управляющими входами первого и второго инверторных блоков таким образом, что электрическая мощность, подаваемая на матричный инвертор, равна электрической мощности, отводимой из матричного инвертора.
Существенное преимущество соответствующего изобретению матричного инвертора состоит в том, что он сравнительно просто конструируется за счет того, что он при трехфазных сетях переменного напряжения обходится только тремя первыми инверторными блоками и только тремя вторыми инверторными блоками, то есть всего требует только шесть инверторных блоков. Другое существенное преимущество состоит в том, что устройство регулирования может выполняться сравнительно просто, потому что с его помощью матричный инвертор должен управляться только таким образом, что электрическая мощность, подаваемая на матричный инвертор, равна электрической мощности, отводимой из матричного инвертора, исходя из напряжения на первой сети переменного напряжения, напряжение на второй сети переменного напряжения может быть установлено произвольно, соответственно желательно заданным значениям относительно высоты и/или частоты.
В соответствующем изобретению матричном инверторе могут использоваться управляемые инверторные блоки различного выполнения, если они пригодны для того, чтобы при соответствующем управлении образовывать управляемые источники переменного напряжения.
Особенно подходящими в качестве управляемых инверторных блоков в соответствующем изобретению матричном инверторе являются многоуровневые инверторные блоки. Они могут состоять, например, из полумостовых подмодулей. Но в качестве особенно предпочтительного рассматривается, если модульные многоуровневые инверторные блоки состоят из Н-мостовых подмодулей, потому что за счет этого гарантируется возможность отключения тока и высокая степень модуляции.
Особенно предпочтительным является, если конденсаторы Н-мостовых подмодулей являются накопительными конденсаторами с наивысшей емкостью в диапазоне фарад, которые также обозначаются как SuperCaps (суперконденсаторы). В качестве альтернативы параллельно с конденсаторами обычного исполнения в Н-мостовых подмодулях могут включаться накопители энергии, такие как батареи. Иначе накопители на каждый регулятор могут подключаться к конденсаторам промежуточного контура.
Также индуктивные схемные элементы в соответствующем изобретению матричном инверторе могут выполняться различным образом. В качестве особенно предпочтительного рассматривается, если индуктивные схемные элементы являются дросселями, потому что они являются сравнительно простыми в изготовлении и, следовательно, экономичными.
Но при необходимости может также быть предпочтительным, если индуктивные схемные элементы являются трансформаторами, потому что тем самым можно оптимизировать коэффициент трансформации всего матричного инвертора; кроме того, за счет этого могут выполняться особые требования к изоляции.
Кроме того, в основе изобретения лежит задача создать способ для формирования переменного напряжения во второй многофазной сети переменного напряжения (N2) из многофазного переменного напряжения в первой сети переменного напряжения посредством матричного инвертора, который имеет соединение с первой сетью переменного напряжения и со второй сетью переменного напряжения, соответственно соединенные с первой сетью переменного напряжения первые индуктивные схемные элементы и соответственно соединенные со второй сетью переменного напряжения вторые индуктивные схемные элементы, переключательную матрицу, которая соединяет противоположные первой сети переменного напряжения концы первых индуктивных схемных элементов с противоположными второй сети переменного напряжения концами вторых индуктивных схемных элементов, причем переключательная матрица состоит из управляемых инверторных блоков, и устройство регулирования, соединенное с управляющими входами управляемых инверторных блоков, причем устройство регулирования нагружается измеренными величинами тока и напряжения первой и второй сети переменного напряжения.
Такой способ известен из вышеупомянутого патента США 6900998 В2. Исходя из этого в соответствии с изобретением предусмотрено, что в матричном инверторе, содержащем соответственно размещенный между концами первых индуктивных схемных элементов, противоположными первой сети переменного напряжения, и потенциалом земли первый инверторный блок, выполненный как управляемый источник переменного напряжения и соответственно размещенный между концами первых индуктивных схемных элементов, противоположными первой сети переменного напряжения, и концами вторых индуктивных схемных элементов, противоположными второй сети переменного напряжения, второй инверторный блок, выполненный как управляемый источник переменного напряжения, посредством устройства регулирования управляют инверторными блоками таким образом, что электрическая мощность, подаваемая на матричный инвертор, равна электрической мощности, отводимой из матричного инвертора.
С помощью этого способа могут быть достигнуты преимущества, которые уже были описаны выше в связи с соответствующим изобретению инвертором.
Предпочтительные выполнения соответствующего изобретению способа следуют из пп. 7-10 формулы изобретения.
Изобретение поясняется со ссылками на чертежи, на которых представлено следующее:
фиг. 1 - пример выполнения соответствующего изобретению матричного инвертора с дросселями в качестве индуктивных схемных элементов, и
фиг. 2 - принципиальное представление соответствующего изобретению матричного инвертора для одной фазы для более детального пояснения его принципа функционирования.
На фиг. 1 показан матричный инвертор MU, который соединен с первой многофазной сетью N1 переменного напряжения с фазными проводниками u1, v1 и w1. С другой стороны матричный инвертор MU также соединен с фазными проводниками u2, v2 и w2 второй многофазной сети N2 переменного напряжения.
Матричный инвертор MU подключен на первых выводах Ku1, Kv1 и Kw1 к фазным проводникам u1, v1 и w1 первой сети N1 переменного напряжения. С этими первыми выводами Ku1, Kv1 и Kw1 соединены своим соответствующим концом первые индуктивные схемные элементы Su1, Sv1 и Sw1. Противоположные первым выводам Ku1, Kv1 и Kw1 и тем самым первой сети N1 переменного напряжения, концы Eu1, Ev1 и Ew1 индуктивных схемных элементов Su1, Sv1 и Sw1 соединены с соответствующим одним первым инверторным блоком Uu1, Uv1 и Uw1 переключательной матрицы МА. На стороне выхода эти первые инверторные блоки Uu1, Uv1 и Uw1 совместно подключены к потенциалу М земли.
Как показано на фиг. 1, концы Eu1, Ev1 и Ew1 первых индуктивных схемных элементов Su1, Sv1 и Sw1 также соединены со вторыми инверторными блоками Uu2, Uv2 и Uw2, которые со своей стороны на стороне выхода подключены к противоположным второй сети N2 переменного напряжения концам Eu2, Ev2 и Ew2 вторых индуктивных схемных элементов Su1, Sv1 и Sw1. Эти схемные элементы Su2, Sv2 и Sw2 через вторые выводы Ku2, Kv2 и Kw2 подключены ко второй сети N2 переменного напряжения.
На фиг. 1 также можно видеть, что каждый из инверторных блоков Uu1, Uv1 и Uw1 или Uu2, Uv2 и Uw2 выполнен как модульный многоуровневый инвертор с соответственно некоторым числом n подмодулей SM, как это само по себе известно. Подмодули SM выполнены как так называемая Н-мостовая схема, что также является известным и поэтому здесь не требует детального описания. Управляющие выводы этих подмодулей SM здесь также только обозначены.
Количество подмодулей SM в первых и вторых инверторных блоках Uu1, Uv1 и Uw1 или Uu2, Uv2 и Uw2 выбирается с учетом желательной амплитуды напряжения во второй сети N2 переменного напряжения, если первая сеть N1 переменного напряжения является питающей сетью.
Кроме того, из фиг. 1 можно видеть, что с матричным инвертором MU ассоциировано устройство R регулирования, которое со стороны входа нагружается измеренными параметрами первой и второй сети N1 или N2 переменного напряжения. С этой целью в фазном проводнике u1 размещен преобразователь Stu1 тока, за которым размещено устройство Mu1i обработки измеренных значений, от которого ток, пропорциональный соответствующему току в фазном проводнике u1, подается на вход Eu1i. Напряжение в фазном проводнике u1 определяется посредством преобразователя Spu1 напряжения, к которому подключен преобразователь Mu1u измеренного значения. Напряжение, пропорциональное напряжению в фазном проводнике u1, подается через вход Eu1u на устройство R регулирования. Другие, лишь схематично показанные входы устройства R регулирования предусмотрены для того, чтобы соответствующим образом подавать измеренные величины тока и напряжения в фазных проводниках v1 и w1 на устройство R регулирования.
Соответствующим образом определяются также измеренные величины тока и напряжения в фазных проводниках u2, v2 и w2 второй сети N2 переменного напряжения за счет того, что посредством преобразователя Stu2 тока и устройства Mu2i обработки измеренных значений измеренная величина тока через вход Eu2i подается на устройство R регулирования; соответствующее напряжение в фазном проводнике u2 посредством преобразователя Spu2 напряжения с подключенным устройством Mu2u обработки измеренных значений через другой вход Eu2u подается на устройство R регулирования. Другие лишь схематично показанные входы устройства R регулирования предусмотрены для того, чтобы соответствующим образом регистрировать измеренные величины тока и напряжения в фазных проводниках v2 и w2 и направлять на устройство R регулирования для дальнейшей обработки.
Устройство R регулирования также снабжено управляющими выходами SA1-SAn, которые подключены (не показано) к различным управляющим входам подмодулей SM. При соответствующем выполнении устройства R регулирования отдельные подмодули SM могут управляться таким образом, что первыми и вторыми инверторными блоками Uu1, Uv1 и Uw1 или Uu2, Uv2 и Uw2 образуются два источника переменного напряжения, которые приводят к переменному напряжению желательной высоты и/или частоты на сети N2 переменного напряжения; при этом посредством устройства R регулирования обеспечивается то, что мощность, подаваемая на матричные инверторы MU из первой сети N1 переменного напряжения, равна мощности, вводимой во вторую сеть N2 переменного напряжения.
Для дальнейшего пояснения способа действия соответствующего изобретению матричного инвертора MU используется фиг. 2, на которой в качестве примера на основе одной фазы поясняется управление матричным инвертором. Представленный здесь матричный инвертор MU1, который, например, предполагается содержащим оба инверторных блока Uu1, Uu2 согласно фиг. 1, расположен, с одной стороны, в первой сети N1 переменного напряжения (например, фазный проводник u1 по фиг. 1), в которой существует напряжение u1. Этим напряжением U1 нагружается инвертор MU1. Источник W2 переменного напряжения инвертора MU1 соответствует в выбранном примере предположительно первому инверторному блоку Uu1 и вырабатывает дополнительное напряжение Uc2 инвертора; источник W2 переменного напряжения лежит, с одной стороны, на потенциале М земли, а с другой стороны, соединен с другим источником W3 переменного напряжения, который соответствует второму инверторному блоку Uu2 по фиг. 1. На этом другом источнике W2 переменного напряжения возникает дополнительное напряжение Uc3 инвертора. С помощью не показанного здесь устройства регулирования осуществляется управление инверторными блоками или источниками W2 и W3 переменного напряжения таким образом, что вводимая через дроссель Х1 (индуктивный схемный элемент Su1) мощность Р1 от сети N11 переменного напряжения соответствует мощности Р2, которая через дроссель Х2 (второй индуктивный схемный элемент Su2 на фиг. 1) выдается во вторую сеть N2 с напряжением U2. Кроме того, постоянно обеспечивается то, что с учетом различий между напряжением U1 и напряжением U2 обе мощности Р1 и Р2 равны по величине, что может быть представлено следующим образом с помощью формулы:
В этих уравнениях (1) и (2) δ1 и δ2 являются разностями фаз на индуктивных схемных элементах Х1 и Х2. Напряжение Uc1 задается уравнением (3):
Отсюда становится ясно, что посредством управления потоком мощности можно при заданном напряжении U1 или напряжении в фазном проводнике u1 согласно фиг. 1 за счет управления источниками W2 и W3 переменного напряжения или первым и вторым инверторными блоками Uu1 и Uu2 высоту напряжения, фазу и частоту напряжений Uc2 и Uc3 устанавливать таким образом, что во второй сети N21 переменного напряжения или N2 согласно фиг. 1 возникает желательное напряжение U2.
Claims (12)
1. Матричный инвертор (MU), который с одной стороны соединен с первой многофазной сетью (N1) переменного напряжения, а с другой стороны соединен со второй многофазной сетью (N2) переменного напряжения,
- с соответственно связанными с первой сетью (N1) переменного напряжения первыми индуктивными схемными элементами (Su1, Sv1, Sw1) и соответственно связанными со второй сетью (N2) переменного напряжения вторыми индуктивными схемными элементами (Su2, Sv2, Sw2),
- с переключательной матрицей (МА), которая соединяет противоположные первой сети (N1) переменного напряжения концы (Eu1, Ev1, Ew1) первых индуктивных элементов (Su1, Sv1, Sw1) с противоположными второй сети (N2) переменного напряжения концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), причем
переключательная матрица (МА) состоит из управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), и
- с устройством (R) регулирования, соединенным с управляющими входами управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), причем
устройство (R) регулирования нагружается измеренными величинами тока и напряжения первой и второй сети (N1, N2) переменного напряжения,
отличающийся тем, что
- между концами (Eu1, Ev1, Ew1) первых индуктивных схемных
элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и потенциалом (М) земли размещен соответственно первый инверторный блок (Uu1, Uv1, Uw1), выполненный как управляемый источник переменного напряжения,
- между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), противоположными второй сети (N2) переменного напряжения, включен соответственно второй инверторный блок (Uu2, Uv2, Uw2), выполненный как управляемый источник переменного напряжения; и
- устройство (R) регулирования соединено с управляющими входами первых и вторых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) таким образом, что электрическая мощность, подаваемая на матричный инвертор (MU), равна электрической мощности, отводимой из матричного инвертора (MU).
- с соответственно связанными с первой сетью (N1) переменного напряжения первыми индуктивными схемными элементами (Su1, Sv1, Sw1) и соответственно связанными со второй сетью (N2) переменного напряжения вторыми индуктивными схемными элементами (Su2, Sv2, Sw2),
- с переключательной матрицей (МА), которая соединяет противоположные первой сети (N1) переменного напряжения концы (Eu1, Ev1, Ew1) первых индуктивных элементов (Su1, Sv1, Sw1) с противоположными второй сети (N2) переменного напряжения концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), причем
переключательная матрица (МА) состоит из управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), и
- с устройством (R) регулирования, соединенным с управляющими входами управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), причем
устройство (R) регулирования нагружается измеренными величинами тока и напряжения первой и второй сети (N1, N2) переменного напряжения,
отличающийся тем, что
- между концами (Eu1, Ev1, Ew1) первых индуктивных схемных
элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и потенциалом (М) земли размещен соответственно первый инверторный блок (Uu1, Uv1, Uw1), выполненный как управляемый источник переменного напряжения,
- между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), противоположными второй сети (N2) переменного напряжения, включен соответственно второй инверторный блок (Uu2, Uv2, Uw2), выполненный как управляемый источник переменного напряжения; и
- устройство (R) регулирования соединено с управляющими входами первых и вторых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) таким образом, что электрическая мощность, подаваемая на матричный инвертор (MU), равна электрической мощности, отводимой из матричного инвертора (MU).
2. Матричный инвертор по п. 1, отличающийся тем, что
- первые и вторые инверторные блоки (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) являются многоуровневыми инверторными блоками.
- первые и вторые инверторные блоки (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) являются многоуровневыми инверторными блоками.
3. Матричный инвертор по п. 2, отличающийся тем, что
- многоуровневые инверторные блоки (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) состоят из Н-мостовых подмодулей.
- многоуровневые инверторные блоки (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) состоят из Н-мостовых подмодулей.
4. Матричный инвертор по п. 3, отличающийся тем, что
- конденсаторы Н-мостовых подмодулей являются накопительными конденсаторами с наивысшей емкостью (SuperCaps).
- конденсаторы Н-мостовых подмодулей являются накопительными конденсаторами с наивысшей емкостью (SuperCaps).
5. Матричный инвертор по п. 3, отличающийся тем, что
- параллельно с конденсаторами Н-мостовых подмодулей
включены накопители энергии.
- параллельно с конденсаторами Н-мостовых подмодулей
включены накопители энергии.
6. Матричный инвертор по любому из пп. 1-5, отличающийся тем, что
- индуктивные схемные элементы (Su1, Sv1, Sw1; Su2, Sv2, Sw2) являются дросселями.
- индуктивные схемные элементы (Su1, Sv1, Sw1; Su2, Sv2, Sw2) являются дросселями.
7. Матричный инвертор по любому из пп. 1-5, отличающийся тем, что
- индуктивные схемные элементы (Su1, Sv1, Sw1; Su2, Sv2, Sw2) являются трансформаторами.
- индуктивные схемные элементы (Su1, Sv1, Sw1; Su2, Sv2, Sw2) являются трансформаторами.
8. Способ для формирования переменного напряжения во второй многофазной сети (N2) переменного напряжения из многофазного переменного напряжения (N1) в первой сети переменного напряжения посредством матричного инвертора (MU), который имеет:
- соединение с первой сетью (N1) переменного напряжения и второй сетью (N2) переменного напряжения,
- соответственно соединенные с первой сетью (N1) переменного напряжения первые индуктивные схемные элементы (Su1, Sv1, Sw1) и соответственно соединенные со второй сетью (N2) переменного напряжения вторые индуктивные схемные элементы (Su2, Sv2, Sw2),
- переключательную матрицу (MA), которая соединяет противоположные первой сети (N1) переменного напряжения концы (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1) с противоположными второй сети переменного напряжения концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), причем
- переключательная матрица (МА) состоит из управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), и
- устройство (R) регулирования, соединенное с управляющими входами управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2),
- причем устройство (R) регулирования нагружается измеренными величинами тока и напряжения первой и второй сети (N1, N2) переменного напряжения,
отличающийся тем, что
- в матричном инверторе (MU), содержащем соответственно размещенный между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети переменного напряжения, и потенциалом (М) земли первый инверторный блок (Uu1, Uv1, Uw1), выполненный как управляемый источник переменного напряжения и соответственно размещенный между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), противоположными второй сети (N2) переменного напряжения, второй инверторный блок (Uu2, Uv2, Uw2), выполненный как управляемый источник переменного напряжения, посредством устройства (R) регулирования управляют инверторными блоками (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) таким образом, что электрическая мощность, подаваемая на матричный инвертор (MU), равна электрической мощности, отводимой из матричного инвертора (MU).
- соединение с первой сетью (N1) переменного напряжения и второй сетью (N2) переменного напряжения,
- соответственно соединенные с первой сетью (N1) переменного напряжения первые индуктивные схемные элементы (Su1, Sv1, Sw1) и соответственно соединенные со второй сетью (N2) переменного напряжения вторые индуктивные схемные элементы (Su2, Sv2, Sw2),
- переключательную матрицу (MA), которая соединяет противоположные первой сети (N1) переменного напряжения концы (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1) с противоположными второй сети переменного напряжения концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), причем
- переключательная матрица (МА) состоит из управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2), и
- устройство (R) регулирования, соединенное с управляющими входами управляемых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2),
- причем устройство (R) регулирования нагружается измеренными величинами тока и напряжения первой и второй сети (N1, N2) переменного напряжения,
отличающийся тем, что
- в матричном инверторе (MU), содержащем соответственно размещенный между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети переменного напряжения, и потенциалом (М) земли первый инверторный блок (Uu1, Uv1, Uw1), выполненный как управляемый источник переменного напряжения и соответственно размещенный между концами (Eu1, Ev1, Ew1) первых индуктивных схемных элементов (Su1, Sv1, Sw1), противоположными первой сети (N1) переменного напряжения, и концами (Eu2, Ev2, Ew2) вторых индуктивных схемных элементов (Su2, Sv2, Sw2), противоположными второй сети (N2) переменного напряжения, второй инверторный блок (Uu2, Uv2, Uw2), выполненный как управляемый источник переменного напряжения, посредством устройства (R) регулирования управляют инверторными блоками (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) таким образом, что электрическая мощность, подаваемая на матричный инвертор (MU), равна электрической мощности, отводимой из матричного инвертора (MU).
9. Способ по п. 8, отличающийся тем, что
- в качестве первых и вторых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) применяют многоуровневые инверторные блоки.
- в качестве первых и вторых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) применяют многоуровневые инверторные блоки.
10. Способ по п. 9, отличающийся тем, что
- в качестве многоуровневых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) применяют Н-мостовые подмодули.
- в качестве многоуровневых инверторных блоков (Uu1, Uv1, Uw1; Uu2, Uv2, Uw2) применяют Н-мостовые подмодули.
11. Способ по любому из пп. 8-10, отличающийся тем, что
- в качестве индуктивных схемных элементов (Su1, Sv1, Sw1; Su2, Sv2, Sw2) применяют дроссели.
- в качестве индуктивных схемных элементов (Su1, Sv1, Sw1; Su2, Sv2, Sw2) применяют дроссели.
12. Способ по любому из пп. 8-10, отличающийся тем, что
- в качестве индуктивных схемных элементов (Su1, Sv1, Sw1; Su2, Sv2, Sw2) применяют трансформаторы.
- в качестве индуктивных схемных элементов (Su1, Sv1, Sw1; Su2, Sv2, Sw2) применяют трансформаторы.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110007696 DE102011007696A1 (de) | 2011-04-19 | 2011-04-19 | Matrix-Umrichter und Verfahren zum Erzeugen einer Wechselspannung in einem zweiten Wechselspannungsnetz aus einer Wechselspannung in einem ersten Wechselspannungsnetz mittels eines Matrix-Umrichters |
DE102011007696.4 | 2011-04-19 | ||
PCT/EP2012/057171 WO2012143449A2 (de) | 2011-04-19 | 2012-04-19 | Matrix-umrichter und verfahren zum erzeugen einer wechselspannung in einem zweiten wechselspannungsnetz aus einer wechselspannung in einem ersten wechselspannungsnetz mittels eines matrix-umrichters |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013151266A RU2013151266A (ru) | 2015-05-27 |
RU2586323C2 true RU2586323C2 (ru) | 2016-06-10 |
Family
ID=45976944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013151266/07A RU2586323C2 (ru) | 2011-04-19 | 2012-04-19 | Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора |
Country Status (10)
Country | Link |
---|---|
US (1) | US9673724B2 (ru) |
EP (1) | EP2700154B1 (ru) |
CN (1) | CN103620936B (ru) |
DE (1) | DE102011007696A1 (ru) |
DK (1) | DK2700154T3 (ru) |
ES (1) | ES2558830T3 (ru) |
HU (1) | HUE028590T2 (ru) |
PL (1) | PL2700154T3 (ru) |
RU (1) | RU2586323C2 (ru) |
WO (1) | WO2012143449A2 (ru) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011007696A1 (de) * | 2011-04-19 | 2012-10-25 | Siemens Aktiengesellschaft | Matrix-Umrichter und Verfahren zum Erzeugen einer Wechselspannung in einem zweiten Wechselspannungsnetz aus einer Wechselspannung in einem ersten Wechselspannungsnetz mittels eines Matrix-Umrichters |
WO2014046555A1 (en) * | 2012-09-21 | 2014-03-27 | Auckland Uniservices Limited | Improvements in or relating to modular multi-level converters |
DE102013219466A1 (de) * | 2013-09-26 | 2015-03-26 | Siemens Aktiengesellschaft | Multilevelumrichter |
CN104201906B (zh) * | 2014-03-27 | 2017-10-20 | 华南理工大学 | 2n+2开关组mmc ac‑ac变换器及其控制方法 |
EP3180851A1 (en) * | 2014-08-11 | 2017-06-21 | ABB Schweiz AG | Method of controlling the switching of a multilevel converter, a controller for a multilevel converter, and a computer program for controlling a converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900998B2 (en) * | 2002-05-31 | 2005-05-31 | Midwest Research Institute | Variable-speed wind power system with improved energy capture via multilevel conversion |
RU2293431C1 (ru) * | 2005-05-13 | 2007-02-10 | Новосибирский государственный технический университет | Преобразователь переменного напряжения в переменное |
EP2051361A1 (en) * | 2006-05-24 | 2009-04-22 | Meidensha Corporation | High-voltage ac direct power converter |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US706559A (en) * | 1901-11-23 | 1902-08-12 | Gen Electric | Electric transmission of power. |
US1916927A (en) * | 1930-12-19 | 1933-07-04 | Frazer W Gay | Switching a spare line |
DE19536468A1 (de) * | 1995-09-29 | 1997-04-03 | Siemens Ag | Netzfreundlicher stromrichtergesteuerter, spannungseinprägender Schrägtransformator großer Leistung |
US5909367A (en) * | 1997-06-02 | 1999-06-01 | Reliance Electric Industrial Company | Modular AC-AC variable voltage and variable frequency power conveter system and control |
DE10051222A1 (de) * | 2000-10-16 | 2002-04-25 | Alstom Switzerland Ltd | Verfahren zum Betrieb eines Matrixkonverters sowie Matrixkonverter zur Durchführung des Verfahrens |
DE10217889A1 (de) | 2002-04-22 | 2003-11-13 | Siemens Ag | Stromversorgung mit einem Direktumrichter |
WO2006035752A1 (ja) * | 2004-09-29 | 2006-04-06 | Kabushiki Kaisha Yaskawa Denki | 並列多重マトリクスコンバータ装置 |
JP4803177B2 (ja) * | 2005-04-15 | 2011-10-26 | 株式会社安川電機 | マトリクスコンバータ装置 |
US7830687B2 (en) * | 2006-07-13 | 2010-11-09 | Florida State University Research Foundation, Inc. | Adaptive power electronics interface for hybrid energy systems |
CN100468947C (zh) | 2007-03-16 | 2009-03-11 | 南京航空航天大学 | 具有直流励磁功能的交流电机矩阵式控制器 |
EP2088444A1 (en) * | 2008-02-11 | 2009-08-12 | ABB Research Ltd. | System level testing for substation automation systems |
US20110006720A1 (en) * | 2009-07-08 | 2011-01-13 | Innosave Ltd. | Method and apparatus for ac motor control |
JP5505417B2 (ja) * | 2009-08-19 | 2014-05-28 | 株式会社安川電機 | 出力フィルタとそれを備えた電動機駆動システム |
DE102009042690A1 (de) * | 2009-09-23 | 2011-03-31 | Converteam Technology Ltd., Rugby | Elektrische Schaltung insbesondere zur Erzeugung von elektrischer Energie |
DE102010013862A1 (de) * | 2010-04-01 | 2011-10-06 | Gottfried Wilhelm Leibniz Universität Hannover | Transformatorloser Direktumrichter |
US9362839B2 (en) * | 2011-02-09 | 2016-06-07 | Rockwell Automation Technologies, Inc. | Power converter with common mode voltage reduction |
WO2012111115A1 (ja) * | 2011-02-16 | 2012-08-23 | 株式会社安川電機 | 風力発電用電力変換装置、風力発電装置、ウィンドファームおよび風車の製造方法 |
DE102011007696A1 (de) * | 2011-04-19 | 2012-10-25 | Siemens Aktiengesellschaft | Matrix-Umrichter und Verfahren zum Erzeugen einer Wechselspannung in einem zweiten Wechselspannungsnetz aus einer Wechselspannung in einem ersten Wechselspannungsnetz mittels eines Matrix-Umrichters |
DE102014209332A1 (de) * | 2014-05-16 | 2015-11-19 | Senvion Gmbh | Windenergieanlage mit verbessertem Überspannungsschutz |
-
2011
- 2011-04-19 DE DE201110007696 patent/DE102011007696A1/de not_active Withdrawn
-
2012
- 2012-04-19 WO PCT/EP2012/057171 patent/WO2012143449A2/de active Application Filing
- 2012-04-19 HU HUE12715391A patent/HUE028590T2/en unknown
- 2012-04-19 EP EP12715391.4A patent/EP2700154B1/de active Active
- 2012-04-19 CN CN201280028707.2A patent/CN103620936B/zh active Active
- 2012-04-19 ES ES12715391.4T patent/ES2558830T3/es active Active
- 2012-04-19 PL PL12715391T patent/PL2700154T3/pl unknown
- 2012-04-19 DK DK12715391.4T patent/DK2700154T3/en active
- 2012-04-19 US US14/112,997 patent/US9673724B2/en active Active
- 2012-04-19 RU RU2013151266/07A patent/RU2586323C2/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900998B2 (en) * | 2002-05-31 | 2005-05-31 | Midwest Research Institute | Variable-speed wind power system with improved energy capture via multilevel conversion |
RU2293431C1 (ru) * | 2005-05-13 | 2007-02-10 | Новосибирский государственный технический университет | Преобразователь переменного напряжения в переменное |
EP2051361A1 (en) * | 2006-05-24 | 2009-04-22 | Meidensha Corporation | High-voltage ac direct power converter |
Also Published As
Publication number | Publication date |
---|---|
HUE028590T2 (en) | 2016-12-28 |
WO2012143449A2 (de) | 2012-10-26 |
ES2558830T3 (es) | 2016-02-09 |
RU2013151266A (ru) | 2015-05-27 |
EP2700154B1 (de) | 2015-12-16 |
US9673724B2 (en) | 2017-06-06 |
PL2700154T3 (pl) | 2016-06-30 |
EP2700154A2 (de) | 2014-02-26 |
CN103620936B (zh) | 2016-04-06 |
DE102011007696A1 (de) | 2012-10-25 |
DK2700154T3 (en) | 2016-03-14 |
US20140049110A1 (en) | 2014-02-20 |
WO2012143449A3 (de) | 2013-07-25 |
CN103620936A (zh) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2586323C2 (ru) | Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора | |
CA2620498C (en) | System and method of reducing harmonic effects on a power delivery system | |
JP6232944B2 (ja) | マルチレベル電力変換装置 | |
EP2665173A1 (en) | Semiconductor power conversion device | |
JP6415539B2 (ja) | 電力変換器 | |
EP2916447A1 (en) | Voltage source converter | |
KR20150045462A (ko) | 전력 변환 장치 | |
CN106104722B (zh) | 多电平变换器 | |
US9209704B2 (en) | Harmonics suppression in a power delivery device | |
WO2015049072A1 (en) | Voltage source converter | |
RU2016124170A (ru) | Способ эксплуатации трехфазной первичной обмоточной структуры и первичный блок | |
Singh et al. | Multi-level voltage source parallel inverters using coupled inductors | |
CN113544964A (zh) | 级联脉冲宽度调制转换器控制 | |
Devi et al. | Comparative study on different five level inverter topologies | |
Maswood et al. | High power multilevel inverter with unity PF front-end rectifier | |
CN117730476A (zh) | 具有多种运行模式的基于单元的多电平转换器和相关联的控制方法 | |
JP6146284B2 (ja) | 電力変換装置 | |
WO2015090627A1 (en) | Power unit and multi-phase electric drive using the same | |
Li et al. | Simple control strategies for dv/dt reduction in sic mosfet based modular multilevel converters | |
Ramani et al. | High performance of sinusoidal pulse width modulation based flying capacitor multilevel inverter fed induction motor drive | |
JP5602777B2 (ja) | 電力変換装置 | |
Majumder et al. | A 5-Level Inverter Topology Using a Single DC-Link with Reduced Switch Count for Open-End Induction Motor Drives | |
Korhonen et al. | Power direction control of medium frequency isolation DC/DC converter for modular double cascade converter | |
Baimel et al. | Novel multilevel hybrid cascaded inverter for high power motion control systems | |
Baimel et al. | Neutral point voltage balancing of five-level inverter fed by twelve-pulse rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20220114 |