RU2586081C1 - Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления - Google Patents

Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления Download PDF

Info

Publication number
RU2586081C1
RU2586081C1 RU2015119477/28A RU2015119477A RU2586081C1 RU 2586081 C1 RU2586081 C1 RU 2586081C1 RU 2015119477/28 A RU2015119477/28 A RU 2015119477/28A RU 2015119477 A RU2015119477 A RU 2015119477A RU 2586081 C1 RU2586081 C1 RU 2586081C1
Authority
RU
Russia
Prior art keywords
contacts
metal
semi
gaas
semiconductor
Prior art date
Application number
RU2015119477/28A
Other languages
English (en)
Inventor
Олег Петрович Толбанов
Андрей Николаевич Зарубин
Антон Владимирович Тяжев
Анастасия Дмитриевна Лозинская
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2015119477/28A priority Critical patent/RU2586081C1/ru
Application granted granted Critical
Publication of RU2586081C1 publication Critical patent/RU2586081C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия. Предложенные конструкция и способ ее изготовления позволяют реализовать принцип внутреннего усиления в многоканальных полупроводниковых детекторах. Полупроводниковый детектор включает формирование полуизолирующей i-области, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, при этом между металлическими контактами и i-областью формируют слой полупроводника, например арсенида индия, толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область, и понижающий высоту потенциального барьера контакта металл-GaAs до энергии теплового равновесия кристалла, kT. Формирование осуществляют путем нанесения слоя индия поверх металлических контактов к i-области и последующего отжига контактов в условиях, достаточных для проплавления первичного металлического контакта. 2 н.п. ф-лы, 1 табл., 2 ил.

Description

Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия, и предназначено для использования в производстве рентгеновских систем нового поколения для медицины, промышленности и научных исследований.
Известны аналоги заявленного изобретения [1-5], в которых для реализации внутреннего усиления используется монолитная пластина полупроводника, на противоположных концах которой созданы омические контакты.
Если полупроводник имеет большое время жизни и малое расстояние между контактами, то в структуре организуется фоторезистивное усиление с коэффициентом усиления, значительно большим единицы [1].
В [2] сообщается о формировании полупроводниковой структуры с инжектирующими контактами. Инжекция носителей способствует формированию положительной внутренней обратной связи по току; чувствительность такой структуры может значительно превысить значения, достигаемые на сопряженных фоторезисторах, не имеющих инжектирующих контактов.
В [3] показано, что возможно использовать структуры типа транзистора для регистрации рентгеновского, гамма-излучения и излучения ионизирующих частиц высоких энергий. Неосновные носители, образованные в базе при торможении частицы, диффундируют к эмиттерному и коллекторному переходам, где вовлекаются в дрейф существующими полями. Неравновесные дырки оказываются в потенциальной яме и заряжают ее положительно относительно эмиттера. Изменение разности потенциалов эмиттер-база увеличивает инжектируемый эмиттером ток электронов, чем и обуславливается внутреннее усиление.
Изменение внутреннего поля (поляризация) может происходить за счет захвата носителей, и, как следствие, уменьшение высоты потенциального барьера на границе металл-полупроводник. Уменьшение высоты потенциального барьера приводит к дополнительной инжекции с контактов, что, в свою очередь, ведет к инжекционному росту фототока и чувствительности [4]. Показано, что в p-i-n структуре, i-область которой изготовлена из a-Se [5], имеет место деформация внутреннего поля. Установлено, что это происходит за счет захвата носителей и, как следствие, дополнительной инжекции с контактов, что в свою очередь ведет к росту избыточного фототока, и чувствительность структур превышает единицу.
Недостатком известных устройств является низкий коэффициент усиления, единицы, который достигается в условиях высокого уровня инжекции носителей заряда в структурах.
Наиболее близким техническим решением является детектор, выполненный на основе Ме-i-Ме структуры. Конструкция детектора включает полуизолирующую i-область, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, например, на основе тонкого напыленного слоя никеля либо хрома [6]. Относительно невысокие значения деформации распределения внутреннего электрического поля в прототипе не позволяют управлять инжекцией в широких пределах и создавать условия для достижения высоких коэффициентов усиления, что является недостатком данных устройств.
Технической задачей является увеличение внутреннего коэффициента усиления детекторной Ме-i-Ме структуры при взаимодействии с квантами рентгеновского и гамма-излучения широкого спектрального диапазона.
Цель достигается тем, что между металлическими контактами и i-областью формируется слой полупроводника толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область, понижающий высоту потенциального барьера контакта металл-GaAs до энергии, близкой к энергии теплового равновесия кристалла, kT.
В предлагаемом устройстве устранены недостатки прототипа, связанные с высоким потенциальным барьером на границе металл-полупроводник, который препятствует инжекции электронов с катодного металлического контакта в полуизолирующий i-слой. За счет управляемого изменения химического состава приповерхностного слоя под металлическим контактом путем формирования тонкого слоя полупроводника с меньшей шириной запрещенной зоны, способного понизить высоту потенциального барьера до величины, близкой к kT, инжекционные способности катодного электрода значительно возрастают. Это позволяет запустить механизм внутреннего инжекционного усиления детекторной Ме-i-Ме структуры при взаимодействии с квантами рентгеновского и гамма-излучения широкого спектрального диапазона.
Поскольку на поверхности GaAs уровень Ферми жестко закреплен вблизи уровня электрической нейтральности за счет высокой плотности поверхностных состояний Ds=1014 см −2 эВ−1, то высота потенциального барьера на границе Cr, Ni контактов и i-GaAs составит ~0,83 эВ. Тогда эквивалентную схему Me-i-Me детекторной структуры можно представить в виде последовательно соединенных сопротивления высокоомной i-области и 2-х встречно включенных барьеров Шоттки Me-i контактов, один из которых при любой полярности сигнала всегда включен в обратном направлении, ограничивая инжекцию электронов в i-слой.
Экспериментально установлено, что для создания омического контакта к GaAs необходимо использовать металл, с работой выхода, меньшей, чем у GaAs (работа выхода GaAs составляет 4,5 эВ). Такой контакт должен вести себя как квазиомический контакт. Примеры таких металлов: In, Mg, Gd, имеющие работу выхода 4,12 эВ, 3,68 эВ и 3,10 эВ соответственно. Например, создание на поверхности i-GaAs узкозонного слоя твердого раствора Ga1−xInxAs позволяет сформировать квазиомический контакт катода. В InAs поверхностный уровень Ферми закреплен в зоне проводимости, что значительно снижает высоту потенциального барьера металл-полупроводник в твердых растворах системы GaAs-InAs по сравнению с высотой барьера металл-GaAs, как показано на рисунке 1. Примером такого контакта может быть In-контакт к GaAs как n-, так и p-типа. Он образуется при относительно низких температурах до 300°C.
На рисунке 1 представлена зонная диаграмма омического контакта In-n-GaAs.
При термическом осаждении In на поверхность i-GaAs не происходит существенного подлегирования приповерхностной области полупроводника, что делает несущественным процесс тунелирования через контактный слой. В результате, основной вклад в сопротивление образованного омического контакта вносит прохождение электронов над потенциальным барьером. Высота потенциального барьера, преодолеваемого электронами в омическом контакте, определенная из наклона зависимости приведенного сопротивления омического контакта от обратной температуры, оказалась равной 0,03 эВ, что по порядку величины сравнимо с энергией колебания кристаллической решетки kT=0,26 эВ при 300К. Таким образом, основным механизмом протекания тока в контакте In-i-GaAs является термоэлектронная эмиссия через потенциальный барьер высотой 0,03 эВ. Именно в такой структуре возможна реализация сложного механизма внутреннего инжекционного усиления при поглощении квантов ионизирующих (УФ, рентгеновского и гамма) излучений.
Механизм внутреннего усиления в предложенном устройстве работает следующим образом. В интересующей области энергий ионизирующего излучения современных синхротронных центров (10÷60) кэВ поглощение квантов происходит по закону Бугера [7] в результате классического фотоэффекта. Квант излучения передает всю свою энергию Eo одному из атомных электронов, который растрачивает эту энергию на образование неравновесных электронно-дырочных пар в ионизационном треке в количестве No=Eo/Ei, где Ei - энергия образования электронно-дырочной пары. Дырки будут захватываться на глубокие отрицательно заряженные центры, а электроны под действием электрического поля дрейфуют к аноду. Время захвата дырок τp- на отрицательно заряженные центры хрома N t
Figure 00000001
может быть оценено: τ p = 1 / σ p υ p N t ,
Figure 00000002
где сечение захвата дырки σρ-=7·10-15 см2, тепловая скорость дырок υр ~107 см-3, N t
Figure 00000003
≅ 1017 см-3. По порядку величины τ p
Figure 00000004
≅10-10 с. Время жизни неравновесных электронов ограничивается временем захвата на нейтральные центры N t o
Figure 00000005
, концентрация которых N t o = N t N t
Figure 00000006
≅2·1017 см-3. Сечение захвата электронов на нейтральные центры по порядку величины составляет
Figure 00000007
~10-17 см2. Тогда время жизни неравновесных электронов, τn, оцененное по формуле:
Figure 00000008
составляет ≥5·10-8 с. Под действием электрического поля в i-области электроны дрейфуют до анода, обусловливая индуцированный ток во внешней цепи. Как только электрон выбрасывается электрическим полем в n-подложку, в i-области нарушается электрическая нейтральность, часть положительно заряженных доноров остается не скомпенсированной. Для восстановления электрической нейтральности из металлического контакта через сформированный слой с пониженным потенциальным барьером в i-область втягивается электрон, который также за время жизни успевает дойти до противоположного контакта. Таким образом, наблюдается инжекционное усиление индуцированного тока по типу фоторезистора. Как и в случае фоторезистивного усиления, коэффициент усиления будет определяться соотношением времени жизни τn и времени дрейфа t д р
Figure 00000009
неравновесных электронов. На рисунке 2 представлены экспериментальные результаты силы тока, наведенного в i-слое детектора, поглощенного квантами, от мощности экспозиционной дозы (МЭД) ионизирующего излучения.
На рисунке 2 представлена зависимость силы тока от дозы для детектора на основе GaAs:Cr, d=295 мкм, при облучении анода (сверху) и катода (снизу), прототипа (колонка а) и предложенного устройства (колонка б).
Как следует из рисунка 2, в предложенном устройстве за счет внутреннего инжекционного усиления сила наведенного тока в сотни раз превышает аналогичную характеристику прототипа. Следовательно, во столько же раз будет различаться и экспериментально наблюдаемое значение квантовой эффективности, η: η=ηo·τn/ t д р
Figure 00000009
, где ηo≤1. Фоторезистивный эффект усиливается тем, что за счет захвата дырок идет перераспределение поля в структуре и напряженность электрического поля в области нескомпенсированного заряда возрастает. Инжекционный фоторезистивный механизм усиления в предложенном устройстве подтверждается также экспериментальной зависимостью квантовой эффективности от толщины высокоомного i-слоя di. Поскольку t д р
Figure 00000009
=dim, где υm - максимальная дрейфовая скорость электронов в i-слое, то квантовая эффективность обратно пропорциональна толщине чувствительного слоя, что представлено в таблице 1.
Предложен способ изготовления, позволяющий реализовать заявленное устройство. Способ обеспечивает относительно простую реализацию конструкции предложенного полупроводникового детектора рентгеновского излучения с внутренним усилением путем нанесения тонкого слоя индия поверх металлических контактов к i-области и последующего вжигания контактов в условиях, достаточных для проплавления первичного металлического контакта. Поскольку индий имеет низкую температуру плавления 156°С и высокий коэффициент диффузии в арсениде галлия, то уже при температуре 300°С в течение 10 минут наблюдается проплавление контактного Cr/Ni слоя толщиной до 1 мкм. При взаимодействии под Ni/Cr контактом с поверхностью i-GaAs образуется твердый раствор InGaAs с переменным составом индия, деформирующий энергетическую диаграмму, рисунок 1, так что высота потенциального барьера на границе Ni/Cr- InGaAs-i-GaAs снижается до величины, близкой kT, что обуславливает омические свойства контактов. В таблице 1 представлены экспериментальные результаты чувствительности предложенных рентгеновских детекторов в сравнении с прототипом при изменении ускоряющего напряжения на рентгеновской трубке (1), облучения детектора со стороны анода (2,4) либо катода (3,5) при различной мощности экспозиционной дозы (МЭД) в плоскости детектора, толщины детектора и характеристик контактов к ним (6). Величина чувствительности S определялась из зависимости превышения индуцированной поглощенными квантами силы тока над темновым Iλ-It от плотности мощности экспозиционной дозы W по формуле:
S = ( exp ( Δ ϕ k T ) - 1 ) I t -I λ W
Figure 00000010
, (1)
где Δφ - изменение высоты потенциального барьера контакта Me-i-GaAs, которое понижается в предложенном способе до величины, близкой kT - энергии колебания кристаллической решетки полупроводника. Результаты аппроксимации Iλ(W) на участках с МЭД ≤ 200 мР/с (SI) и с МЭД ≥ 200 мР/с (SII), таблица 1, показывают, что независимо от условий эксперимента в детекторах, выполненных предложенным способом, наблюдается значительное внутренне усиление индуцированного поглощенным фотоном тока по сравнению с прототипом.
Таблица 1
Utube, кВ Чувствительность
SI, нКл/мР*см2
МЭД меньше 200 мР/с
Чувствительность
SII, нКл/мР*см2
МЭД больше 200 мР/с
Характеристика контактов
анод катод анод катод
1 2 3 4 5 6
60 2,2 5,0 2,2 5,0 GaAs:Cr детектор, Cr/Ni контакты d=295 мкм, Udet=30 В
80 2,1 4,4 1,8 3,4
120 1,5 3,6 1,4 2,9
60 906,0 906,0 1155,0 1155,0 GaAs:Cr детектор, In контакты
d=295 мкм
U=30 В
80 1224,4 1513,2 1405,4 1701,8
120 1488,7 1609,3 1602,1 1772,0
60 2,2 6,4 2,2 6,4 GaAs:Cr детектор, Cr/Ni контакты, d=480 мкм, U=48 В
80 2,4 5,2 1,2 3,6
60 99,7 270,4 99,7 270,4 GaAs:Cr детектор, In контакты
d=480 мкм U=48 В
80 184,6 406,1 215,5 488,4
120 242,7 459,2 339,5 590,7
60 2,1 6,6 2,1 6,6 GaAs:Cr детектор, Cr/Ni контакты, d=510 мкм, U=51 В
80 3,1 5,6 1,8 3,4
60 151,2 229,9 120,9 230,3 GaAs:Cr детектор, In контакты
d=510 мкм, U=51 В
80 231,6 373,1 230,3 453,1
120 300,6 425,3 345,0 565,3
60 2,1 7,2 2,1 7,2 GaAs:Cr детектор, Cr/Ni контакты, d=682 мкм, U=69 В
80 2,6 6,1 1,6 3,8
60 139,9 196,9 139,9 196,9 GaAs:Cr детектор, In контакты
d=682 мкм, U=69 В
80 248,8 329,0 286,3 400,1
120 339,6 401,2 421,0 545,7
60 1,3 4,9 1,3 4,9 GaAs:Cr детектор, Cr/Ni контакты, d=715 мкм, U=72 В
80 1,8 4,2 1,3 2,7
120 2,1 3,8 1,7 2,3
60 12,8 44,2 12,8 44,2 GaAs:Cr детектор, In контакты
d=715 мкм, U=72 В
80 25,9 70,5 31,5 80,4
120 38,9 87,4 62,7 121,4
Анализ экспериментальных результатов, представленных в таблице 1, подтверждает расчетные данные квантовой эффективности; пропорциональность и тенденции изменения характеристик близки расчетным данным. Высокая квантовая эффективность объясняется эффектами усиления. В основе усиления лежит захват неравновесных дырок на отрицательно заряженные глубокие акцепторные центры в треке. Это приводит к резкой асимметрии времен жизни неравновесных носителей заряда. Асимметрия времени жизни электронов и дырок должна приводить к пространственному разделению электронно-дырочных пар и снижению темпа рекомбинации неравновесных носителей заряда. В том числе это проявляется и в наблюдаемых экспериментальных результатах по исследованию характеристик детекторов при облучении рентгеновскими квантами. Особенно это сказывается в области высокой энергии квантов, при которых достижима квантовая эффективность ηо>1.
Таким образом, доказано, что положительный эффект достигается в предложенном способе, формирующем предложенное устройство. Устройство и способ его реализации обладают новизной и позволяют достигнуть внутреннего квантового усиления, в сотни раз превышающего значения, достигнутые в прототипе.
Источники информации
1. Строкан Н.Б., Иванов А.М., Бойко М.Е. Карбид-кремниевые транзисторные структуры как детекторы слабоионизирующего излучения //Журнал технической физики. - 2003 г. - Том 37, №1. - С.65-69.
2. Резников Б. И., Царенков Г.В. Светоуправляемые электрические поля в высокоомной МПМ структуре при наличии глубоких примесных уровней //Физика и техника полупроводников. - 1994 г. Том 28, №5. - С.867-879.
3. Optimization of Electric Field Distribution by Free Carrier Injection in Silicon Detectors Operated at Low Temperatures /E. Verbitskaya, M. Abreu, V. Bartsch, et. All //IEEE Trans. Nucl. Sci.- 2002. - V.49, NO.1. - P.258-262.
4. Characterization of charge collection in CdTe and CZT using the transient current technique /J. Fink, H. Kruger, P. Lodomez, et. All //Nucl. Instr. and Meth. A. - 2006. - V.560. - P.435-443.
5. Haugen C., Kasap S.O., Rowlands J. /X-ray irradiation induced bulk space charge in stabilized a-Se x-ray photoconductors //JOURNAL OF APPLIED PHYSICS -1998, V.84, NO.10. - P.5495-5501.
6. Budnitsky, D.,Tyazhev, A.,Novikov, V.,Zarubin, A.,Tolbanov, O., Skakunov, M., Hamann, E., Fauler, A., Fiederle, M., Procz, S., Graafsma, H., Ryabkov, S. Chromium-compensated GaAs detector material and sensors. Journal of Instrumentation, Volume 9, Issue 7, 1 July 2014. Article number C07011.
7. Зи С.М. /Физика полупроводниковых приборов, в 2х книгах. - М.: Мир, 1984. - 912 с.
8. Gain mechanism in GaN Shottky ultraviolet detectors/O. Katz, V. Garber, B. Meyler et. all//APPLIED PHYSICS LETTERS. - 2001. - V.79. NO.10. - P.1417-1419.
8. Kasap S.O., Rowlands J.A. /Direct-conversion flat-panel X-ray image detectors //IEEE Proc.-Cirarits Devices Syst. - 2002. - V.149. - NO.2. - P.85-96.
9. Sun G. C., Bourgoin J. C. et all. /A Comparison Between GaAs and CdTe for X-Ray Imaging //IEEE Trans. Nucl. Sci. - 2004. - V.51. - NO.5. - P.2400-2404.
10. Ламперт М, Марк П. Инжекционные токи в твердых телах. - М.: Мир, -1973. - 416 с.

Claims (2)

1. Полупроводниковый детектор рентгеновского излучения для получения цифрового изображения, включающий полуизолирующую i-область, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, отличающийся тем, что между металлическими контактами и i-областью формируется слой полупроводника, например арсенид индия, понижающий высоту потенциального барьера контакта металл-GaAs до энергии теплового равновесия кристалла, kT, толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область.
2. Способ изготовления полупроводникового детектора рентгеновского излучения по п.1, включающий нанесение слоя индия поверх металлических контактов к полуизолирующей i-области и последующий отжиг контактов в атмосфере молекулярного водорода при температуре 250-400°С в течение 10 минут.
RU2015119477/28A 2015-05-25 2015-05-25 Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления RU2586081C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119477/28A RU2586081C1 (ru) 2015-05-25 2015-05-25 Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119477/28A RU2586081C1 (ru) 2015-05-25 2015-05-25 Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2586081C1 true RU2586081C1 (ru) 2016-06-10

Family

ID=56115252

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119477/28A RU2586081C1 (ru) 2015-05-25 2015-05-25 Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2586081C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214806U1 (ru) * 2022-04-26 2022-11-15 Иван Дмитриевич Щербаков Детектор сверхкоротких импульсов рентгеновского излучения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178602C2 (ru) * 2000-03-20 2002-01-20 Федеральное государственное унитарное предприятие "НИИПП" Детектор ионизирующего излучения
JP2002181945A (ja) * 2000-12-12 2002-06-26 Canon Inc 放射線検出装置及びその製造方法並びに放射線撮像システム
RU2229730C2 (ru) * 2002-02-04 2004-05-27 Федеральное Государственное Унитарное Предприятие Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий Детектор ионизирующего излучения
RU2307426C1 (ru) * 2006-04-24 2007-09-27 Общество с ограниченной ответственностью "Гамма" Арсенидгаллиевый детектор ионизирующих излучений
RU2307425C1 (ru) * 2006-04-24 2007-09-27 Общество с ограниченной ответственностью "Гамма" Твердотельный детектор ионизирующих излучений
RU86794U1 (ru) * 2009-05-04 2009-09-10 Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") Микростриповый детектор ионизирующего излучения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178602C2 (ru) * 2000-03-20 2002-01-20 Федеральное государственное унитарное предприятие "НИИПП" Детектор ионизирующего излучения
JP2002181945A (ja) * 2000-12-12 2002-06-26 Canon Inc 放射線検出装置及びその製造方法並びに放射線撮像システム
RU2229730C2 (ru) * 2002-02-04 2004-05-27 Федеральное Государственное Унитарное Предприятие Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий Детектор ионизирующего излучения
RU2307426C1 (ru) * 2006-04-24 2007-09-27 Общество с ограниченной ответственностью "Гамма" Арсенидгаллиевый детектор ионизирующих излучений
RU2307425C1 (ru) * 2006-04-24 2007-09-27 Общество с ограниченной ответственностью "Гамма" Твердотельный детектор ионизирующих излучений
RU86794U1 (ru) * 2009-05-04 2009-09-10 Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") Микростриповый детектор ионизирующего излучения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Budnitsky, D. et al, Chromium-compensated GaAs detector material and sensors. Journal of Instrumentation, Volume 9, Issue 7, 1 July 2014, Article number C07011. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214806U1 (ru) * 2022-04-26 2022-11-15 Иван Дмитриевич Щербаков Детектор сверхкоротких импульсов рентгеновского излучения
RU220064U1 (ru) * 2023-03-13 2023-08-23 Анастасия Дмитриевна Лозинская Полупроводниковый детектор рентгеновского излучения с высоким энергетическим разрешением

Similar Documents

Publication Publication Date Title
Szeles CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications
Owens Semiconductor materials and radiation detection
Shannon A majority‐carrier camel diode
Pomorski et al. Charge transport properties of single crystal CVD-diamond particle detectors
Goldan et al. Unipolar time-differential charge sensing in non-dispersive amorphous solids
Rizzi et al. Semiconductor detectors and principles of radiation-matter interaction
Raja et al. Spectroscopic performance studies of 4H-SiC detectors for fusion alpha-particle diagnostics
Bobby et al. Enhancement in electrical properties of Au/n-GaAs Schottky diodes exposed to 60Co gamma rays
Chaudhuri et al. Correlation of space charge limited current and γ-ray response of Cd x Zn 1-x Te 1-y Se y room-temperature radiation detectors
RU2586081C1 (ru) Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления
DE102009018877A1 (de) Röntgenstrahlungsdetektor zur Verwendung in einem CT-System
Akkurt et al. Neutron irradiation effects on I–V characteristics of Au/n-GaAs Schottky diodes
Hao et al. Investigation of LiF Interlayer on Charge Collection Efficiency and Leakage Current in CsPbBr 3 Radiation Detector
Nakagawa et al. Carrier Transport Properties of CdTe Detector under Polarization Condition
Pan et al. Inorganic Perovskite CsPbBr 3 Gamma-Ray Detector
Zaťko et al. On the spectrometric performance limit of radiation detectors based on semi-insulating GaAs
Hamilton et al. HgCdTe/CdZnTe PIN high-energy photon detectors
Wang et al. Comparison of the effects of continuous and intermittent electron irradiation on commercial 4H-SiC Schottky barrier diodes
Kim et al. Novel indium phosphide charged particle detector characterization with a 120 GeV proton beam
Ganbold et al. Fast, multi-wavelength, efficiency-enhanced pixelated devices based on InGaAs/InAlAs quantum-well
Zat'Ko et al. Particle detectors based on 4H-SiC epitaxial layer and their properties
Kasap et al. X-ray detectors
Šagátová et al. GaAs detectors irradiated by low doses of electrons
Brudanin et al. The Characteristics of Detectors Based on Cadmium− Zinc− Tellurium Crystals
Maslyanchuk et al. Charge Transport Properties of CdTe X/γ-Rays Detectors with TiO x Schottky Contacts