RU2586067C1 - Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью - Google Patents

Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью Download PDF

Info

Publication number
RU2586067C1
RU2586067C1 RU2015114862/04A RU2015114862A RU2586067C1 RU 2586067 C1 RU2586067 C1 RU 2586067C1 RU 2015114862/04 A RU2015114862/04 A RU 2015114862/04A RU 2015114862 A RU2015114862 A RU 2015114862A RU 2586067 C1 RU2586067 C1 RU 2586067C1
Authority
RU
Russia
Prior art keywords
selenide
tert
butyl
hydroxyphenyl
propyl
Prior art date
Application number
RU2015114862/04A
Other languages
English (en)
Inventor
Роман Иделевич Айзман
Анна Павловна Гайдарова
Наталья Валерьевна Кандалинцева
Галина Анатольевна Корощенко
Александр Евгеньевич Просенко
Сергей Викторович Хольшин
Семен Евгеньевич Ягунов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ" (ФГБОУ ВПО "НГПУ")
Некоммерческое партнерство "Новосибирский институт антиоксидантов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ" (ФГБОУ ВПО "НГПУ"), Некоммерческое партнерство "Новосибирский институт антиоксидантов" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ" (ФГБОУ ВПО "НГПУ")
Priority to RU2015114862/04A priority Critical patent/RU2586067C1/ru
Application granted granted Critical
Publication of RU2586067C1 publication Critical patent/RU2586067C1/ru

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к селенсодержащему фенольному соединению - бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селениду формулы:
Figure 00000009
.
Заявляемое соединение обладает высокой антиоксидантной активностью, низкой токсичностью и гипогликемическим действием на фоне сахарного диабета, и может найти применение в медицине, ветеринарии и экспериментальной биологии. 1 ил., 3 табл., 5 пр.

Description

Изобретение относится к области органической химии и медицины, в частности к синтезу новых химических соединений с фармакологической активностью, конкретнее к новому производному 2,6-ди-трет-бутилфенола, обладающему высокой антиоксидантной активностью, низкой токсичностью и выраженным гипогликемическим действием на фоне сахарного диабета. Заявляемое соединение может найти применение в медицине и ветеринарии.
Современная наука насчитывает более 200 заболеваний и патологических состояний, возникновение и развитие которых сопряжено с интенсификацией процессов неферментативного окисления - окислительным стрессом. В число таких патологий входят широко распространенные сердечнососудистые, воспалительные, онкологические и эндокринные заболевания, в частности, сахарный диабет [1. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс: Патологические состояния и заболевания. - Новосибирск: АРТА, 2008. - 284 с.].
Природные и синтетические алкилированные фенолы эффективно нормализуют интенсивность окислительных процессов в живых системах и повышают результативность профилактики и терапии заболеваний, связанных с развитием окислительного стресса [2. Меньщикова Е.Б., Ланкин В.З., Кандалинцева Н.В. Фенольные антиоксиданты в биологии и медицине. - Saarbrücken: LAP LAMBERT, 2012 - 496 с.]. Вместе с тем, в ряду лекарственных препаратов такие антиоксиданты представлены лишь тремя соединениями: 2,6-Ди-трет-бутил-4-метилфенол (ионол, дибунол, (II)) применяется для лечения рака и папилломатоза мочевого пузыря, циститов, ожогов, обморожений, трофических и лучевых язв [3. Машковский М.Д. Лекарственные средства. - 16-е изд., перераб., испр. и доп. - М.: Новая волна, 2012. - 1216 с. 721-722].
Figure 00000001
4,4′-(Изопропилидендитио)-бис-(2,6-ди-трет-бутил)фенол (пробукол, (III)) назначается как гиполипидемическое средство при гиперхолестеринемии с риском развития ишемической болезни сердца [3. с. 466].
Figure 00000002
6-Гидрокси-2-метил-2-(4,8,12-триметил-тридецил)хроман(α-токоферол, витамин Е, (IV)):
Figure 00000003
применяют в виде ацетата при мышечных дистрофиях, дерматомиозитах, амиотрофическом боковом склерозе, нарушениях менструального цикла, климаксе, угрозе прерывания беременности, нарушении функции половых желез у мужчин, астеническом и неврастеническом синдромах, склеродермии, системной красной волчанке, ревматоидном артрите, атеросклерозе, а так же при некоторых дерматозах, псориазе, спазмах периферических сосудов. В связи с антиоксидантными свойствами α-токоферола ацетат используется в комплексной терапии глазных болезней, для уменьшения побочных реакций при лечении химиотерапевтическими препаратами и в гериатрической практике. [3. с. 627-628].
Установлено, что указанные антиоксидантные препараты положительно влияют на состояние здоровья экспериментальных животных и пациентов с различными формами сахарного диабета. Так, при моделировании аллоксанового диабета у животных витамин Е стабилизировал мембраны эритроцитов, оказывал гипогликемическое действие, ингибировал процессы перекисного окисления липидов клеточных мембран и гликозирование белков [4. Бобырева Л.Е. Антиоксиданты в комплексной терапии диабетических ангиопатий // Экспер. клин. фармакол. - 1998. - Т. 61, №1. - С. 74-80]. Назначение витамина Е пациентам, страдающим сахарным диабетом I и II типов, приводило к снижению проявлений окислительного стресса [5. Бондарь И.А., Пупышев А.Б., Климонтов В.В. Перекисное окисление липидов и активность лизосомальных ферментов в сыворотке крови при сахарном диабете I типа и их коррекция // Консилиум. - 1999. - №6. - С. 23-26; 6. Wu J.Н., Ward N.С., Indrawan А.P. et al. Effects of α-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes // Clin. Chem. - 2007. - Vol. 53. - P. 511-519]. В условиях экспериментального аллоксанового диабета у крыс ионол проявлял тенденцию, а пробукол эффективно тормозил развитие гликемии, гиперлипидемии и усиление автоокисления в сосудистой стенке [7. Бобырева Л.Е. Влияние фенольных антиоксидантов на развитие аллоксанового диабета у крыс // Экспер. клин. фармакол. - 1997. - Т. 60, №3. - С. 51-53]. Включение пробукола в комплексную терапию больных сахарным диабетом типа II способствовало существенному снижению проявлений окислительного стресса и позволило стабилизировать состояние компенсации углеводного обмена без увеличения доз сахароснижающих препаратов [8. Недосугова Л.В., Ланкин В.З., Балаболкин М.И., Коновалова Г.Г., Лисина М.О., Антонова К.В., Тихазе А.К., Беленков Ю.Н. Взаимосвязь между компенсацией углеводного обмена и выраженностью проявлений окислительного стресса при сахарном диабете II типа // Бюл. экспер. биол. - 2003. - Т. 138, №8. - С. 152-155].
Широкое распространение сахарного диабета в современном мире (по оценкам ВОЗ 347 миллионов человек в мире больны диабетом [9. Диабет: Информационный бюллетень №312, октябрь 2013 г.// http://www.who.int/mediacentre/factsheets/fs312/ru/], диабет занимает 6 место в ряду ведущих причин смерти [10. 10 ведущих причин смерти в мире: Информационный бюллетень №310, май 2014 г.// http://www.who.int/mediacentre/factsheets/fs310/ru/]) и необходимость использования антиоксидантов в профилактике и терапии данного заболевания при весьма ограниченном их ассортименте обуславливают актуальность создания новых фармацевтических агентов с выраженным антиоксидантным действием.
Изобретение решает задачу разработки нового нетоксичного антиоксиданта, обладающего гипогликемической активностью и расширяющего арсенал антиоксидантных препаратов для использования в комплексной терапии сахарного диабета.
Технический результат достигается предлагаемым новым соединением, а именно, бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенидом формулы I:
Figure 00000004
Сущность способа получения заявляемого нового соединения заключается в последовательном превращении 3-(3,5-ди-трет-бутил-4-гидроксифенил)пропилбромида (V) в бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)диселенид (VI) и далее в целевой бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид (I) по следующей схеме:
Figure 00000005
Исходный бромид V получали по ранее описанной методике [11. Пат. РФ 1376511, C07C 39/24, 20.10.1993], способы получения и свойства диселенида VI и селенида I ранее не были описаны. Состав и строение соединений I и VI подтверждены элементным анализом и спектральными данными.
Антиоксидантную активность селенида I тестировали в модельной реакции автоокисления метилолеата (60 С) в сравнении с α-токоферолом. Скорость окисления отслеживали по динамике накопления гидропероксидов, концентрацию которых определяли железороданидным методом по классической методике [12. Лясковская Ю.Н., Пиульская В.И. Методы исследования окислительной порчи жиров. - М.: ГОСИНТИ, 1960. - 50 с.]. Об антиоксидантной активности исследуемых соединений судили по длительности периода индукции автоокисления, за величину которого принимали время достижения пероксидного числа (ПЧ) 0.05% I2 (исходное ПЧ метилолеата составляло 0.003% I2).
Установлено, что селенид I в диапазоне концентраций 0.25-1.00 мкмоль/г ингибировал автоокисление метилолеата в 1.4-5.4 раза длительнее, чем α-токоферол в концентрации 1.00 мкмоль/г (см. Фиг.). На Фиг. представлены периоды индукции автоокисления метилолеата при 60°C: без ингибитора (1), с добавкой α-токоферола 1 мкмоль/г (2) и селенида I: 0.25 мкмоль/г (3), 0.5 мкмоль/г (4), 1 мкмоль/г (5).
Таким образом, в рассматриваемых условиях селенид I значительно превосходил по противоокислительному действию α-токоферол, который принято считать одним из самых эффективных природных антиоксидантов [2].
Острую токсичность селенида I определяли на белых беспородных мышах массой 20-25 г. при пероральном способе введения [13. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ // Под ред. Р.У. Хабриева - М: ОАО «Издательство «Медицина», 2005. - 832 с.]. Трем группам экспериментальных животных (по 6 особей в каждой) натощак однократно внутрижелудочно вводили масляный раствор селенида I в дозах 150, 500 и 5000 мг/кг (из расчета по 0.2 мл/10 г массы тела). Наблюдение за животными осуществляли в течение 10 дней, за этот период ни одно животное ни в одной группе не погибло (табл. 1). Среднесмертельная доза (ЛД50) селенида I рассчитанная на основе пробит-анализа составила более 5000 мг/кг, по ГОСТ 12.1.007-76 он относится к малоопасным соединениям (IV класс токсичности). Следует отметить, что используемый в медицинской практике ионол (II) относится к умеренно токсичным соединениям: ЛД50 для мышей составляет 2000 мг/кг (III класс токсичности) [14. Пат. РФ 2447888, A61K 31/095, 20.04.2012]. Таким образом, заявляемый селенид I является менее токсичным агентом, чем ионол.
Гипогликемическая активность селенида I была установлена в экспериментах на взрослых самцах крыс линии Wistar. Животные были поделены на четыре группы: первая (9 особей) и вторая (7 особей) группы являлась контрольными, крысам третьей (12 особей) и четвертой (11 особей) групп вводили в межлопаточную область 10% раствор аллоксана из расчета 0.1 мл/100 г массы тела для моделирования сахарного диабета, в то же время животным первой и второй групп вводили физиологический раствор в том же объеме. За неделю до введения аллоксана и на протяжении 1 недели после его инъекции животным 2-й и 4-й групп один раз в сутки перорально вводили селенид I в дозе 100 мг/кг в виде масляного раствора (0.1 мл/100 г массы тела). В течение послеинъекционного периода у всех крыс на 1, 3 и 6 сутки путем надсечки хвоста брали пробы крови (по 0.2 мл), в которых определяли уровень глюкозы пикриновым методом. В конце эксперимента (на 6 сутки) у всех животных под эфирным наркозом забирали образцы тканей печени для определения содержания гликогена методом ШИК-реакции по Мак-Манусу.
Установлено, что у здоровых животных селенид I не оказывает существенного влияния на содержание глюкозы в крови, вместе с тем, на фоне развития аллоксанового диабета достоверно (практически до контрольных значений) снижает ее уровень (таблица 2). У животных 3 группы уровень гликогена в печени был достоверно ниже показателей контрольной группы 1, что, вероятно, обусловлено нарушением синтеза гликогена в результате снижения активности гликогенсинтетазы и ослабления процессов окисления глюкозы вследствие дефекта в пируватдегидрогеназном комплексе [15. Согуйко Ю.Р., Кривко Ю.Я., Крикун Е.Н., Новиков О.О. Морфофункциональная характеристика печени крыс в норме и при сахарном диабете в эксперименте // Современные проблемы науки и образования. - 2013. - №1. - С. 52-59]. В печени обеих групп (2-я и 4-я) животных, получавших селенид I, наблюдалось достоверное увеличение содержания гликогена (таблица 3). Этот результат дает основание полагать, что селенид I активирует синтез гликогена в печени, что может способствовать сохранению углеводного баланса при сахарном диабете. Таким образом, в условиях сахарного диабета селенид I оказывал выраженное гипогликемическое действие, что подтверждает целесообразность его использования в комплексной терапии данной патологии.
Таким образом, новое производное 2,6-ди-трет-бутилфенола - заявляемый бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид I обладает высокой антиоксидантной активностью, низкой токсичностью, выраженным гипогликемическим действием на фоне сахарного диабета, а также способностью активизировать накопление гликогена в печени. Данные свойства заявляемого соединения могут найти применение в медицине, ветеринарии и экспериментальной биологии.
Способ синтеза и свойства соединения I ранее были не известны, в патентной и научной литературе не описаны. Таким образом, предполагаемое техническое решение соответствует критериям патентоспособности изобретения, а именно «новизне», «изобретательскому уровню» и «промышленной применимости».
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Получение бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-диселенида (VI) из 3-(3,5-ди-трет-бутил-4-гидроксифенил)пропилбромида (V).
Суспензию селена (0.47 г, 5.95 ммоль) в растворе Na2SO3 (3.02 г, 23.95 ммоль) в 20 мл воды кипятили до полного растворения селена (10 ч). К полученному раствору при 70°C по каплям добавляли раствор (1.75 г, 5.36 ммоль) бромида V в 20 мл этанола, смесь нагревали и кипятили 1 ч. Затем из реакционной массы отгоняли этанол, остаток кипятили еще 3 часа. Далее реакционную массу охлаждали, обрабатывали толуолом (3×10 мл), объединенный экстракт промывали насыщенным раствором NaCl (2×20 мл), сушили Na2SO4, растворитель отгоняли, остаток (1.64 г) кристаллизовали из этанола, получали 1.26 г (72%) диселенида VI в виде светло-желтых игольчатых кристаллов, т.пл. 79.5-81°C.
Найдено (%): С, 62.64; Н, 8.26. C34H54O2Se2. Вычислено (%): С, 62.56; Н, 8.34. УФ-спектр, λmax/нм (lg ε): 277 (3.93). ИК-спектр, ν/см-1: 3646, 2960, 2915, 1435, 1392, 1362, 1316, 1233, 1160, 1121, 1025, 887. Спектр ЯМР 1Н, δ, м.д., J/Гц: 1.42 (с, 36 Н, t-Bu); 2.02 (м, 4 Н, ArCH2CH2); 2.60 (т, 4 Н, ArCH2, J=7.8); 2.91 (т, 4 Н, CH2Se, J=7.8); 4.90 (с, 2 Н, ОН); 6.87 (с, 4 Н, Ar).
Пример 2. Получение бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-селенида (I).
К раствору бромида V (2.10 г, 6.43 ммоль) и диселенида VI (2.00 г, 3.06 ммоль) в смеси 25 мл этанола (абс.) и 25 мл тетрагидрофурана при комнатной температуре в токе аргона порциями прибавляли NaBH4 (0.46 г, 12.24 ммоль), затем перемешивали 0.5 ч, нагревали и кипятили 3 ч. Далее реакционную массу охлаждали, подкисляли HCl, обрабатывали толуолом (3×20 мл). Объединенный экстракт промывали насыщенным раствором NaCl (3×30 мл), сушили Na2SO4, растворитель отгоняли, остаток (3.53 г) кристаллизовали из гексана, получали 2.91 г (83%) селенида I в виде бесцветных кристаллов, т.пл. 79-80°C.
Найдено (%): С, 71.31; Н, 9.32. C34H54O2Se. Вычислено (%): С, 71.17; Н, 9.49. Спектр УФ, λmax/нм (lg ε): 275 (3.71). ИК-спектр, ν/см-1: 3647, 2959, 1435, 1392, 1362, 1316, 1232, 1160, 1121, 887. Спектр ЯМР 1Н, δ, м.д., J/Гц: 1.43 (с, 36 Н, t-Bu); 1.93 (м, 4 Н, ArCH2CH2); 2.56 (т, 4 Н, ArCH2, J=7.2); 2.60 (т, 4 Н, CH2Se, J=7.2); 4.91 (уш с, 2 Н, ОН); 6.89 (с, 4 Н, Ar). Масс-спектр (ЭУ, 70 эВ), m/z (Iотн (%)): 574 [М]+ (22), 272 (12), 246 (59), 231 (48), 219 (37), 215 (20), 189 (67), 161 (10), 147 (15), 133 (10), 57 (100).
Чистоту полученных образцов контролировали методом ВЭЖХ на приборе «Agilent 1220 Infinity LC» в изократическом режиме, 100% ACN, колонка ZORBAX SB-C18, 5 мкм, 150×4.6 мм, УФ детектор 275 нм. Температуры плавления определяли в капилляре на приборе «МР50 Mettler Toledo», скорость нагрева 0.5°C/мин. УФ спектры записаны в EtOH на спектрометре «Agilent Cary 60 UV-Vis», ИК спектры - в CCl4 на спектрометре «Agilent Cary 600 Series FTIR», спектры ЯМР 1Н - на спектрометре «Bruker DRX600» с рабочей частотой 600 МГц в CDCl3. Масс-спектр получен на хроматографе «Agilent 7890 В» (HP-5MS UI, 30 м × 0.25 мм, газ-носитель -гелий) с масс-детектором «Agilent 5977А» (ЭУ, 70 эВ); в описании масс-спектра приведены пики ионов с интенсивностью ≥10%, включающих наиболее распространенные изотопы.
Пример 3. Изучение антиоксидантной активности селенида I в сравнении с α-токоферолом в модельной реакции автоокисления метилолеата.
Автокисление метилолеата (Acros Organics) проводили на воздухе в условиях термостатирования при 60±0.5°C. В качестве реперного антиоксиданта использовали α-токоферол (Fluka). Масса окисляемой пробы составляла 5 г, концентрация исследуемых соединений: α-токоферола - 1 мкмоль/г, селенида I - 0.25, 0.5 и 1 мкмоль/г. В течение эксперимента из окисляющихся проб отбирали по 0.1 г и определяли содержание пероксидных соединений железороданидным методом [12] с использованием спектрофотометра «Shimadzu UV-1800 UV-Vis». За период индукции принимали время достижения пероксидного числа 0.05% I2. Исходное пероксидное число метилолеата составляло 0.003% I2. Построение и математическую обработку кинетических кривых проводили с использованием программы Origin 6.0. Период индукции неингибированного автоокисления метилолеата составил 19 ч, автоокисления в присутствии 1 мкмоль/г α-токоферола, 0.25, 0.5 и 1 мкмоль/г селенида I - 5, 7, 12 и 27 суток, соответственно.
Пример 4. Изучение острой токсичности селенида I.
Острую токсичность селенида I изучали на беспородных мышах самках массой 20-25 г, содержавшихся в условиях обычного вивария на стандартном корме со свободным доступом к воде. Селенид I вводили экспериментальным животным в виде раствора в подсолнечном масле однократно в дозах 150, 500 и 5000 мг/кг (из расчета по 0.2 мл/10 г массы тела). В каждой группе было по 6 особей. Наблюдения за животными продолжались 10 дней после введения, в течение которых фиксировали количество погибших мышей.
Результаты представлены в таблице 1.
Figure 00000006
Поскольку в дозе 5000 мг/кг селенид I не вызывает гибели экспериментальных животных по ГОСТ 12.1.007-76 он относится к малоопасным соединениям (IV класс токсичности).
Пример 5. Изучение гипогликемического действия селенида I.
Гипогликемическую активность селенида I изучали в экспериментах на взрослых самцах крыс линии Wistar. Животные были поделены на четыре группы: первая (9 особей) и вторая (7 особей) группы являлась контрольными, крысам третьей (12 особей) и четвертой (11 особей) групп вводили в межлопаточную область 10% раствор аллоксана из расчета 0.1 мл/100 г массы тела для моделирования сахарного диабета, в то же время животным первой и второй групп вводили физиологический раствор в том же объеме. За неделю до введения аллоксана и на протяжении 1 недели после его инъекции животным 2-й и 4-й групп один раз в сутки перорально вводили селенид I в виде раствора в подсолнечном масле по 0.1 мл на 100 г массы тела в дозе 100 мг/кг. Все группы животных находились в стандартных условиях вивария без ограничения потребления воды и пищи.
В течение послеинъекционного периода у всех крыс на 1, 3 и 6 сутки путем надсечки хвоста брали пробы крови (по 0.2 мл), в которых определяли уровень глюкозы пикриновым методом. К 0.1 мл плазмы крови добавляли 0.9 мл дистиллированной воды и 0.5 мл пикриновой кислоты (1.2% р-р), тщательно перемешивали и центрифугировали в течение 15 мин при 3000 об/мин. Затем к 1 мл полученной жидкости приливали 0.2 мл NaOH (20% р-р) и помещали в кипящую водяную баню на 5 мин. После охлаждения растворы фотометрировали при 560 нм на спектрофотоколориметре «Spekol».
В конце эксперимента (на 6 сутки) у всех животных под эфирным наркозом забирали образцы тканей печени для определения содержания гликогена методом ШИК-реакции по Мак-Манусу. Кусочки ткани (50-100 мг) помещали в пробирки с предварительно налитым депротеинизирующим раствором (2 мл) и мелко измельчали. Пробирки закрывали пробками и помещали в кипящую водяную баню на 15 мин. После охлаждения пробы центрифугировали (5 мин при 3000 об/мин), отбирали по 1 мл надосадочной жидкости и добавляли по 3 мл концентрированной серной кислоты. Содержимое пробирок смешивали интенсивным взбалтыванием и нагревали в кипящей водяной бане ровно 6.5 мин. После охлаждения пробы фотометрировали при 520 нм на спектрофотоколориметре «Spekol». Концентрацию гликогена определяли по калибровочной кривой, построенной по стандартным отведениям глюкозы, и пересчитывали в мг/100 г сырой ткани.
Статистический анализ полученных результатов исследования проводили по средним арифметическим (М) и их ошибкам (±m). Различия показателей оценивали методами вариационной статистики по t-критерию Стьюдента для параметрических выборок и считали достоверными при p≤0.05. Расчеты производили по общепринятым формулам с использованием стандартных программ пакета Microsoft Office.
Все эксперименты выполняли в соответствии с Международными рекомендациями по проведению биомедицинских исследований с использованием животных, принятыми Международным советом научных обществ (CIOMS) в 1985 г., со ст. XI Хельсинской декларации Всемирной медицинской ассоциации (1964 г.) и правилами лабораторной практики в РФ (Приказ МЗ РФ от 19.06.2003, №267).
В результате было установлено, что уже на 1-е сутки после инъекции аллоксана содержание глюкозы в крови животных 3-ей группы было достоверно выше, чем в контроле, что свидетельствовало о развитии сахарного диабета у экспериментальных крыс, полученный эффект сохранялся на протяжении всего периода наблюдения (таблица 2).
Figure 00000007
На фоне перорального введения селенида I у крыс 4-ой группы содержание глюкозы в крови было достоверно ниже по сравнению с аналогичными показателями крыс 3-ей группы на протяжении всего исследования. Вместе с тем, во 2-ой группе введение селенида I не вызвало существенных различий показателя от контрольных значений. Как следствие развития аллоксанового диабета уровень гликогена в печени крыс 3-ей группы был достоверно ниже показателей контрольной группы 1 (таблица 3).
Figure 00000008
Анализируя образцы печени крыс 2-ой и 4-ой групп, получавших селенид I per os, обнаружили достоверное повышение уровня гликогена по сравнению с группами 1 и 3. Таким образом, показано, что селенид I существенно активирует синтез гликогена в печени, что может способствовать сохранению углеводного баланса при сахарном диабете. В целом, полученные результаты свидетельствуют о наличии у селенида I выраженного гипогликемического действия, что может быть использовано в комплексной терапии сахарного диабета.
Таким образом, новое производное 2,6-ди-трет-бутилфенола - заявляемый бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид I обладает высокой антиоксидантной активностью, низкой токсичностью, выраженным гипогликемическим действием на фоне сахарного диабета, а также способностью активизировать накопление гликогена в печени.
Заявляемое новое биологически активное соединение может найти применение в медицине и ветеринарии, в частности, для использования в комплексной терапии сахарного диабета, а также в экспериментальной биологии в качестве антиоксиданта и активатора накопления гликогена.
Источники информации
1. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс: Патологические состояния и заболевания. - Новосибирск: АРТА, 2008. - 284 с.
2. Меньщикова Е.Б., Ланкин В.З., Кандалинцева Н.В. Фенольные антиоксиданты в биологии и медицине. - Saarbrücken: LAP LAMBERT, 2012. - 496 с.
3. Машковский М.Д. Лекарственные средства. - 16-е изд., перераб., испр. и доп.- М.: Новая волна, 2012. - 1216 с.
4. Бобырева Л.Е. Антиоксиданты в комплексной терапии диабетических ангиопатий // Экспер. клин. фармакол. - 1998. - Т. 61, №1. - С. 74-80.
5. Бондарь И.А., Пупышев А.Б., Климонтов В.В. Перекисное оксиление липидов и активность лизосомальных ферментов в сыворотке крови при сахарном диабете I типа и их коррекция // Консилиум. - 1999. - №6. - С. 23-26.
6. Wu J.Н., Ward N.С., Indrawan А.P. et al. Effects of α-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes // Clin. Chem. - 2007. - Vol. 53. - P. 511-519.
7. Бобырева Л.E. Влияние фенольных антиоксидантов на развитие аллоксанового диабета у крыс // Экспер. клин. фармакол. - 1997. - Т. 60, №3. - С. 51-53.
8. Недосугова Л.В., Ланкин В.З., Балаболкин М.И., Коновалова Г.Г., Лисина М.О., Антонова К.В., Тихазе А.К., Беленков Ю.Н. Взаимосвязь между компенсацией углеводного обмена и выраженностью проявлений окислительного стресса при сахарном диабете II типа // Бюл. экспер. биол. - 2003. - Т. 138, №8. - С. 152-155.
9. Диабет: Информационный бюллетень №312, октябрь 2013 г.// http://www.who.int/mediacentre/factsheets/fs312/ru/.
10. 10 ведущих причин смерти в мире: Информационный бюллетень №310, май 2014 г.// http://www.who.int/mediacentre/factsheets/fs310/ru/.
11. Пат. РФ 1376511, С07С 39/24, 20.10.1993.
12. Лясковская Ю.Н., Пиульская В.И. Методы исследования окислительной порчи жиров. - М.: ГОСИНТИ, 1960. - 50 с.
13. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ // Под ред. Р.У. Хабриева - М.: ОАО «Издательство «Медицина», 2005. - 832 с.
14. Пат. РФ 2447888, A61K 31/095, 20.04.2012.
15. Согуйко Ю.Р., Кривко Ю.Я., Крикун Е.Н., Новиков О.О. Морфофункциональная характеристика печени крыс в норме и при сахарном диабете в эксперименте // Современные проблемы науки и образования. - 2013. - №1. - С. 52-59.

Claims (1)

  1. Селенсодержащее фенольное соединение - бис-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид формулы:
    Figure 00000009
    , обладающее высокой антиоксидантной активностью, низкой токсичностью и гипогликемическим действием на фоне сахарного диабета для применения в медицине, ветеринарии и экспериментальной биологии.
RU2015114862/04A 2015-04-20 2015-04-20 Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью RU2586067C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015114862/04A RU2586067C1 (ru) 2015-04-20 2015-04-20 Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015114862/04A RU2586067C1 (ru) 2015-04-20 2015-04-20 Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью

Publications (1)

Publication Number Publication Date
RU2586067C1 true RU2586067C1 (ru) 2016-06-10

Family

ID=56115242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015114862/04A RU2586067C1 (ru) 2015-04-20 2015-04-20 Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью

Country Status (1)

Country Link
RU (1) RU2586067C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713183C1 (ru) * 2019-08-05 2020-02-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный педагогический университет" Одностадийный способ синтеза бис(3,5-диалкил-4-гидроксибензил)селенидов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2297215C2 (ru) * 2005-02-21 2007-04-20 Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет им. акад. И.П. Павлова" МЗ РФ Антиоксидантное средство для лечения катаракты
WO2012164118A1 (es) * 2011-06-03 2012-12-06 Universidad De Sevilla Compuestos bioactivos polifenólicos conteniendo azufre o selenio y sus usos
RU2497415C2 (ru) * 2011-04-01 2013-11-10 Общество с ограниченной ответственностью "Эпоха инноваций" (ООО "Эпоха инноваций") Способ получения функционального напитка антиоксидантного действия

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2297215C2 (ru) * 2005-02-21 2007-04-20 Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет им. акад. И.П. Павлова" МЗ РФ Антиоксидантное средство для лечения катаракты
RU2497415C2 (ru) * 2011-04-01 2013-11-10 Общество с ограниченной ответственностью "Эпоха инноваций" (ООО "Эпоха инноваций") Способ получения функционального напитка антиоксидантного действия
WO2012164118A1 (es) * 2011-06-03 2012-12-06 Universidad De Sevilla Compuestos bioactivos polifenólicos conteniendo azufre o selenio y sus usos

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713183C1 (ru) * 2019-08-05 2020-02-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный педагогический университет" Одностадийный способ синтеза бис(3,5-диалкил-4-гидроксибензил)селенидов

Similar Documents

Publication Publication Date Title
Naia et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models
Yang et al. Alternate-day fasting protects the livers of mice against high-fat diet–induced inflammation associated with the suppression of Toll-like receptor 4/nuclear factor κB signaling
Matsunami et al. Oxidative stress and gene expression of antioxidant enzymes in the streptozotocin-induced diabetic rats under hyperbaric oxygen exposure
Kang et al. Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase
US8461212B2 (en) Composition based on substituted 1,3-diphenylprop-2-en-1-one derivatives, preparation and uses thereof
Kienhöfer et al. Reactive oxygen homeostasis–the balance for preventing autoimmunity
Gatsing et al. Toxicological evaluation of the aqueous extract of Allium sativum bulbs on laboratory mice and rats
Kesharwani et al. A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β)
Zhang et al. Sesamin ameliorates hepatic steatosis and inflammation in rats on a high-fat diet via LXRα and PPARα
Yan et al. Dietary Selenium Deficiency Partially Rescues Type 2 Diabetes–Like Phenotypes of Glutathione Peroxidase-1–Overexpressing Male Mice, 3
Xu et al. A combination of flaxseed oil and astaxanthin alleviates atherosclerosis risk factors in high fat diet fed rats
Madlala et al. Changes in renal function and oxidative status associated with the hypotensive effects of oleanolic acid and related synthetic derivatives in experimental animals
Hao et al. Attenuation of streptozotocin-induced lipid profile anomalies in the heart, brain, and mRNA expression of HMG-CoA reductase by diosgenin in rats
CA1316932C (en) Methods and compositions for inhibiting lipoxygenase
Şekeroğlu et al. Hepatoprotective effects of capsaicin and alpha-tocopherol on mitochondrial function in mice fed a high-fat diet
Li et al. Capsaicin alleviates lipid metabolism disorder in high beef fat-fed mice
Gharaei et al. Antioxidant supplementations ameliorate PCOS complications: a review of RCTs and insights into the underlying mechanisms
US10799530B1 (en) Composition and method for the prevention and treatment of obesity
Kolling et al. Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats
RU2586067C1 (ru) Бис-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селенид, обладающий антиоксидантной и гипогликемической активностью
Ji et al. Hypolipidemic action of hydroxycinnamic acids from cabbage (Brassica oleracea L. var. capitata) on hypercholesterolaemic rat in relation to its antioxidant activity
Mathew et al. Betulinic acid and fluvastatin exhibits synergistic effect on toll-like receptor-4 mediated anti-atherogenic mechanism in type II collagen induced arthritis
Kim et al. Gryllus bimaculatus extract ameliorates high-fat diet-induced hyperglycemia and hyperlipidemia by inhibiting hepatic lipogenesis through AMPK activation
Belenichev et al. Pharmacological properties of selenium and its preparations: from antioxidant to neuroprotector
Shilova et al. Antioxidant properties of Bergenia crassifolia extract

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200421

NF4A Reinstatement of patent

Effective date: 20210511