RU2585173C1 - Способ получения электроэнергии - Google Patents

Способ получения электроэнергии Download PDF

Info

Publication number
RU2585173C1
RU2585173C1 RU2014146757/07A RU2014146757A RU2585173C1 RU 2585173 C1 RU2585173 C1 RU 2585173C1 RU 2014146757/07 A RU2014146757/07 A RU 2014146757/07A RU 2014146757 A RU2014146757 A RU 2014146757A RU 2585173 C1 RU2585173 C1 RU 2585173C1
Authority
RU
Russia
Prior art keywords
energy
gas
kinetic energy
gas pipeline
flow
Prior art date
Application number
RU2014146757/07A
Other languages
English (en)
Inventor
Всеволод Всеволодович Притула
Original Assignee
Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры "Анодъ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры "Анодъ" filed Critical Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры "Анодъ"
Priority to RU2014146757/07A priority Critical patent/RU2585173C1/ru
Application granted granted Critical
Publication of RU2585173C1 publication Critical patent/RU2585173C1/ru

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к способам передачи энергии на большие расстояния и преобразования ее в электрическую энергию. Технический результат - повышение эффективности способа. Способ получения электроэнергии заключается в отделении части потока текучей среды газопровода, использовании ее для вращении вала электрогенератора, преобразовании механической энергии вращения в электрическую. При этом используют газопровод, соединенный с источником газа, преобразуют потенциальную энергию газа, находящегося в источнике, в кинетическую энергию потока текучей среды путем направления газа от источника в газопровод, в котором установлены компрессорные станции, увеличивают кинетическую энергию потока текучей среды путем преобразования энергии рабочего органа каждой компрессорной станции в потенциальную энергию сжатого газа, и путем дальнейшего преобразования ее в кинетическую энергию потока направляют часть потока текучей среды в расположенные между компрессорными станциями лупинги с установленными в них лопастными машинами. Затем преобразуют кинетическую энергию отделенной части потока в механическую энергию рабочих органов лопастных машин, связанных через редукторы с валами электрогенераторов, преобразуют кинетическую энергию вращения валов электрогенераторов в электрическую и передают ее для питания устройств катодной защиты газопроводов. 1 з.п. ф-лы.

Description

Изобретение относится к способам получения и передачи энергии на большие расстояния, в частности к получению электрической энергии, необходимой для работы устройств, сопутствующих работе трубопровода, например устройств электрохимической защиты трубопроводов на участках, значительно удаленных от традиционных источников электроэнергии.
Известно устройство для получения и преобразования механической энергии потока текучей среды в электроэнергию по патенту РФ на полезную модель №120525, H02K 7/18, 2012. Устройство содержит водоотводящие - сбросные трубы изогнутой формы и водоподводящие части, соединенные с цилиндрической камерой. Камера жестко скреплена с двумя кольцевыми поясами статора турбоэлектрогенератора. Ротор генератора состоит из вала, на валу установлены лопасти с постоянными магнитами на концах. В местах соединения водоподводящей и водоотводящей части с основным трубопроводом расположены сетки для защиты потока текучей среды. Недостатком является невозможность использования устройства при значительной длине трубопровода вследствие высоких гидравлических потерь при движении среды к его удаленным участкам.
Известен способ накопления, хранения и возврата механической энергии и установка для его осуществления по заявке на изобретение РФ №2012104762, F25D 29/00, 2013. По данному способу получают накапливаемую механическую энергию от источника накапливаемой механической энергии и через связь с устройством типа компрессор подводят полученную механическую энергию к устройству типа компрессор, работающему в процессе накопления энергии. Одновременно газообразное рабочее тело, циркулирующее в контуре, подают в устройство типа компрессор, работающее в процессе накопления энергии, сжимают газообразное рабочее тело, при этом повышают его давление и температуру. После чего подают газообразное рабочее тело по трубопроводу в теплообменник, в котором охлаждают рабочее тело и одновременно нагревают текучий условно горячий теплоноситель. Перемещают теплоноситель в контуре, в котором через теплообменник-охладитель охлаждают теплоноситель. После выхода из теплообменника газообразное рабочее тело подают в теплообменник-охладитель контура газообразного рабочего тела и затем подают по трубопроводу в устройства типа расширитель, работающее в процессе накопления энергии, в котором расширяют газообразное рабочее тело и понижают его давление и температуру. При этом отводят механическую энергию, выделяющуюся на расширителе, работающем в процессе накопления энергии. В процессе возврата газообразное рабочее тело, циркулирующее в контуре, подают в устройство типа расширитель, работающее в процессе возврата энергии, и передают механическую энергию, выделяющуюся в расширителе потребителю накопленной механической энергии. В процессе хранения накопленной энергии снижают до минимума или прекращают циркуляцию газообразного рабочего тела в контуре рабочего тела. Снижают до минимума или прекращают перемещение теплоносителя в контуре теплоносителя. Недостатком способа является сложность способа, необходимость нагрева газообразного рабочего тела, использование отдельного теплоносителя, невозможность передачи энергии на большие расстояния.
В качестве ближайшего аналога заявляемому изобретению выбрано техническое решение по патенту на изобретение №2506686, H02K 7/18, 2014. Способ получения энергии для электропитания устройств автоматики трубопроводов заключается в приведении в движение постоянных магнитов относительно обмоток изолированного токопровода под действием энергии текучей среды в трубопроводе и съем напряжения с обмоток. Магниты приходят во вращение под действием части потока текучей среды, направленной в турбину, где производят преобразование энергии потока в механическую энергию, вращают вал электрогенератора и превращают механическую энергию в электрическую. Электрическую энергию преобразуют, накапливают и осуществляют электропитание. Недостатком ближайшего аналога является низкая эффективность или невозможность использования способа при большой длине трубопровода вследствие высоких потерь энергии, возникающих при трении текучей среды о внутреннюю поверхность протяженного трубопровода.
Технической задачей заявляемого изобретения является повышение эффективности способа получения электроэнергии.
Технический результат заключается в повышение эффективности способа получения электроэнергии, в снижении потерь при передаче энергии.
Технический результат достигается за счет того, что в способе получения электроэнергии для питания устройств электрохимической защиты газопроводов, заключающемся в отделении части потока текучей среды газопровода, использовании ее для вращении вала электрогенератора, в преобразовании механической энергии вращения в электрическую, согласно изобретению, используют газопровод, соединенный с источником газа, преобразуют потенциальную энергию газа, находящегося в источнике, в кинетическую энергию потока текучей среды путем направления газа от источника в газопровод, по длине которого установлены компрессорные станции, увеличивают кинетическую энергию потока текучей среды путем преобразования энергии рабочего органа каждой компрессорной станции в потенциальную энергию сжатого газа и путем дальнейшего преобразования ее в кинетическую энергию потока направляют часть потока текучей среды в расположенные между компрессорными станциями лупинги, с установленными в них лопастными машинами, преобразуют кинетическую энергию отделенной части потока в механическую энергию рабочих органов лопастных машин, связанных через редукторы с валами электрогенераторов, преобразуют кинетическую энергию вращения валов электрогенераторов в электрическую и передают ее для питания устройств катодной защиты газопроводов.
Лупинги могут состоять из концевых частей, соединенных со вставками газопровода, и средних частей, в которых установлены лопастные машины.
Технический результат обеспечивается за счет многократного преобразования энергии в процессе доведения ее до устройств катодной защиты протяженного газопровода. Для получения электроэнергии в труднодоступных участках используют уже существующие устройства и сооружения, такие, как скважины, скважинное оборудование, компрессорные станции, газопроводы, лупинги. Но используют существующие устройства и сооружения по определенному, новому назначению, для целей иных, отличающихся от традиционного транспортирования газа на большие расстояния. Устройства катодной защиты расположены вдоль всей длины трубопровода с определенной периодичностью, в местах, где отсутствуют местные источники энергоснабжения. Для работы автономных источников энергии, обеспечивающих коррозионно-промышленную безопасность магистральных газопроводов, используют энергию источника газа, например энергию природного газа, находящегося под давлением в пласте на глубине от 1000 метров до нескольких километров. Под действием давления газ попадает в скважину, откуда его направляют в трубопровод. При этом происходит преобразование потенциальной энергии сжатого газа в кинетическую энергию потока газа. Для исключения потерь на данном этапе газ, поступающий из скважины, готовят к транспортировке. Обезвоживают газ, т.к. транспортирование двухфазного потока может привести к потере напора при транспортировке газа, и удаляют примеси, вызывающие затруднения при транспортировке. Транспортировка газа по газопроводу требует его сжатия, для этого поток газа направляют в компрессорную станцию, где преобразуют энергию рабочего органа компрессорной установки в потенциальную энергию сжатого газа. При этом могут использоваться компрессоры различных конструкций, с различными рабочими органами. Для передачи энергии потока на большие расстояния используются в основном осевые, центробежные или центробежно-осевые компрессоры. На газопроводах после компрессорной станции поток газа поступает в трубопровод под давлением и движется с определенной скоростью. Для предотвращения потерь кинетической энергии потока, затрачиваемой на преодоление сил трения как между газом и стенкой трубы, так и между слоями газа, по всей его длине установлены компрессорные станции, на которых газ дожимается до нужного давления. Во всех компрессорных станциях также происходит преобразование кинетической энергии потока в энергию рабочего органа, в свою очередь также работающего под действием потока газа, энергия рабочего органа преобразуется в потенциальную энергию сжатого газа, далее энергия сжатого газа вновь преобразуется в кинетическую энергию потока газа. Таким образом, многократное преобразование одного вида энергии в другой значительно снижает потери транспортировки газа. Для дальнейшего преобразования кинетической энергии газового потока между компрессорными станциями устанавливают лупинги - участки трубопровода, расположенные параллельно основному трубопроводу. Лупинги состоят из концевых частей, соединенных под углом со вставками трубопровода, и средних частей, расположенных вдоль основного трубопровода. В средних частях лупингов установлены лопастные машины, рабочие органы которых - лопасти винта, лопатки рабочего колеса и т.д. движутся под действием потока среды, проходящего через лупинг. Лопастные машины соединены с валом электрогенератора и передают ему энергию вращательного движения, при этом происходит преобразование кинетической энергии потока в механическую энергию вращения вала электрогенератора. Далее в электрогенераторе под действием вращающегося в магнитном поле проводника происходит преобразование механической энергии в электрическую. Электрогенератор служит источником электроэнергии, электрический ток, пройдя через преобразователи, поступает на питание устройств электрохимической защиты от коррозии.
Таким образом, за счет использования источника газа, протяженного газового трубопровода и компрессорных газовых станций по определенному, новому назначению - для получения электроэнергии для питания устройств катодной защиты газопроводов, за счет многократного преобразования одного вида энергии в другой достигается технический результат данного изобретения. Снижаются потери при передаче энергии на большие расстояния, и повышается эффективность процесса получения электроэнергии для устройств катодной защиты трубопровода.
Пример осуществления способа получения электроэнергии для питания устройств электрохимической защиты газопровода
Используют газопровод диаметром 1,4 м, выходящий от существующей компрессорной станции серии «Урал», соединенной со скважиной на месторождении газа, и автоматическую катодную станцию с автономными источником тока типа АКСАИТ мощностью 5 кВт. Газ, добытый из скважины, направляют в сепараторы, где от него отделяют твердые частицы и жидкие механические примеси. Далее по промысловым газопроводам направляют газ в коллекторы и промысловые газораспределительные станции, где очищают его в масляных пылеуловителях, осушают и одорируют для предотвращения утечек и потерь при последующем движении газа по магистральному трубопроводу. После газораспределительной станции по магистральному трубопроводу направляют газ на компрессорные станции, расположенные через каждые 80-100 км трубопровода. После компрессорной станции «Урал» поток газа выходит в трубопровод под давлением 75-100 атмосфер и движется по трубопроводу со средней скоростью около 10 м/сек. При этом полезное использование кинетической энергии газа, полученной на компрессорной станции, эквивалентно потере давления порядка 1 атм на 4 км трубопровода. Полезное использование кинетической энергии газового потока составляет только 25-30% первоначальных затрат мощности компрессорных установок. Таким образом, поток обладает высоким энергетическим потенциалом в 60-75% его мощности, который по заявляемому способу используют для целей энергосбережения при обеспечении защиты подземных трубопроводов от коррозии. Для этого существующий магистральный трубопровод используют для одновременного получения электроэнергии в размерах мегаватт. На трассе газовой магистрали между компрессорными станциями монтируют лупинги в виде локальных трубных секций. Каждый лупинг состоит из концевых частей и центральной части. Концевые части представляют собой соосные с газопроводом вставки в основной трубопровод с ответвлением, расположенным под углом к оси вставки и к оси основного газопровода. Вставки концевых частей соединяются с одной стороны с концами участков трубопровода, с другой стороны - соединяются между собой, например, фланцевыми соединениями с уплотнениями. Ответвления вставок направлены навстречу друг другу, между их концами установлена центральная часть лупинга, продольная ось которой расположена параллельно осям вставок лупинга и оси основного газопровода. В полости центральной части лупинга установлена лопастная машина, рабочим органом которой является двухлопастной винт. Вал лопастной машины соединен с валом электрогенератора. Отводы лупингов снабжены индивидуальными задвижками для управления режимами работы лопастной машины. С помощью задвижек регулируют расход газового потока, влияющий на давление и скорость потока, воздействующего на двухлопастной винт. Кроме того, управление выходной мощностью электрогенератора возможно за счет смены лопастных машин, устанавливаемых в центральной части лупинга. Именно для этой цели между отводами лупингов выполнены разъемы, между которыми устанавливают центральные части, параллельные вставкам в газопровод. Замену лопастной машины производят вместе с центральной вставкой лупинга, что повышает технологичность работ и обеспечивает возможность получения заданной необходимой мощности на выходе. Экспериментально, на примере установки «Аксаит», определено, что потери давления на работающем винте единичного лупинга составляют не более 200 мм водяного столба, т.е. не более 0,02 атм. Далее под действием вращения вала в электрогенераторе происходит образование электрической энергии. Электрическую энергию через преобразователь передают для питания устройств электрохимической защиты газопровода. Для повышения значения мощности электрогенератора между валом лопастной машины и валом электрогенератора устанавливают редуктор, повышение передаточного числа в системе редуцирования позволяет поднять мощность электрогенератора до 50-100 кВт. Таким образом, при дополнительном суммарном расходе 0,2-0,4 атм на компрессорных станциях, 10-20 промежуточных установок на трассе газопровода между двумя компрессорными станциями постоянно обеспечивают выработку электроэнергии до 2 мВт. Данных значений мощности хватает для надежной, бесперебойной работы оборудования электрохимической защиты газопровода. Такое энергосбережение электричества особенно важно на трассах, проходящих через необжитые территории Сибири и Северных районов, где для обеспечения энергоснабжения требуется строительство самостоятельных дорогостоящих линий электропередачи практически для каждого магистрального трубопровода, в то время, как сам магистральный трубопровод является мощным носителем кинетической и потенциальной энергии.
Таким образом, изобретение позволяет повысить эффективность способа получения электроэнергии и позволяет снизить потери при передаче энергии на большие расстояния.

Claims (2)

1. Способ получения электроэнергии, заключающийся в отделении части потока текучей среды газопровода, использовании ее для вращении вала электрогенератора, в преобразовании механической энергии вращения в электрическую, отличающийся тем, что используют газопровод, соединенный с источником газа, преобразуют потенциальную энергию газа, находящегося в источнике, в кинетическую энергию потока текучей среды путем направления газа от источника в газопровод, по длине которого установлены компрессорные станции, увеличивают кинетическую энергию потока текучей среды путем преобразования энергии рабочего органа каждой компрессорной станции в потенциальную энергию сжатого газа и путем дальнейшего преобразования ее в кинетическую энергию потока направляют часть потока текучей среды в расположенные между компрессорными станциями лупинги с установленными в них лопастными машинами, преобразуют кинетическую энергию отделенной части потока в механическую энергию рабочих органов лопастных машин, связанных через редукторы с валами электрогенераторов, преобразуют кинетическую энергию вращения валов электрогенераторов в электрическую и передают ее для питания устройств катодной защиты газопроводов.
2. Способ получения электроэнергии по п. 1, отличающийся тем, что лупинги состоят из концевых частей, соединенных со вставками газопровода, и средних частей, в которых установлены лопастные машины.
RU2014146757/07A 2014-11-20 2014-11-20 Способ получения электроэнергии RU2585173C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146757/07A RU2585173C1 (ru) 2014-11-20 2014-11-20 Способ получения электроэнергии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146757/07A RU2585173C1 (ru) 2014-11-20 2014-11-20 Способ получения электроэнергии

Publications (1)

Publication Number Publication Date
RU2585173C1 true RU2585173C1 (ru) 2016-05-27

Family

ID=56095968

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146757/07A RU2585173C1 (ru) 2014-11-20 2014-11-20 Способ получения электроэнергии

Country Status (1)

Country Link
RU (1) RU2585173C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2100588C1 (ru) * 1995-10-31 1997-12-27 Васючков Юрий Федорович Способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании
RU45780U1 (ru) * 2005-01-24 2005-05-27 Академия Технологических Наук Российской Федерации Установка для получения электроэнергии
CN201982973U (zh) * 2011-01-29 2011-09-21 牛俊凯 自供电式管道泄漏报警器
WO2013119145A2 (ru) * 2012-02-10 2013-08-15 Общество С Ограниченной Ответственностью "Центр Морских Технологий "Шельф" Способ накопления, хранения и возврата механической энергии и установка для его осуществления (варианты)
RU2506686C2 (ru) * 2012-03-23 2014-02-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения электроэнергии для электропитания устройств автоматики трубопроводов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2100588C1 (ru) * 1995-10-31 1997-12-27 Васючков Юрий Федорович Способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании
RU45780U1 (ru) * 2005-01-24 2005-05-27 Академия Технологических Наук Российской Федерации Установка для получения электроэнергии
CN201982973U (zh) * 2011-01-29 2011-09-21 牛俊凯 自供电式管道泄漏报警器
WO2013119145A2 (ru) * 2012-02-10 2013-08-15 Общество С Ограниченной Ответственностью "Центр Морских Технологий "Шельф" Способ накопления, хранения и возврата механической энергии и установка для его осуществления (варианты)
RU2506686C2 (ru) * 2012-03-23 2014-02-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ получения электроэнергии для электропитания устройств автоматики трубопроводов

Similar Documents

Publication Publication Date Title
CN203406767U (zh) 可调节耦合磁通的永磁调速、制动或负载装置
US20100276935A1 (en) Renewable energy fluid pump to fluid-based energy generation
US20110109094A1 (en) Wind To Electric Energy Conversion With Hydraulic Storage
CN104242598A (zh) 可调节耦合磁通的永磁调速、制动或负载装置
CN102953761B (zh) 转子
CN102392795A (zh) 垂直轴风力发电机储能发电系统及方法
CN103016236B (zh) 叶轮缩放式流体动力发电装置
CN104595094B (zh) 水力涡轮发电机
CN102400858A (zh) 一种垂直轴风力发电机储能发电系统及方法
CN105927491B (zh) 天然气压差发电及能量梯级利用耦合系统及使用方法
KR20060120873A (ko) 수력발전기 시스템
EP3002423A1 (en) Combined cycle power plant with a thermal storage unit and method for generating electricity by using the combined cycle power plant
RU2585173C1 (ru) Способ получения электроэнергии
RU2564173C2 (ru) Турбодетандерная генераторная установка и система отбора энергии потока природного газа из газопровода
CN104481613A (zh) 一种低品位热能再热循环利用双驱发电机发电系统
CN104653398A (zh) 一种带有旋转叶片的风力发电机
CN108131262B (zh) 一种地热能温压发电器
RU168607U1 (ru) Генератор электрической энергии с пневмоприводом
CN206801759U (zh) 一种水能发电装置
CN103925164A (zh) 一种风力发电装置及方法
RU2811626C1 (ru) Ветросиловая энергоустановка
RU148835U1 (ru) Трубный электрогенератор
CN110873017A (zh) 一种水电站用便于维修的水轮机
CN204419443U (zh) 一种用于建筑给排水上的发电装置
CN204253257U (zh) 一种流体管道内置动能发电系统