RU2583560C1 - СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6 - Google Patents

СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6 Download PDF

Info

Publication number
RU2583560C1
RU2583560C1 RU2015106304/02A RU2015106304A RU2583560C1 RU 2583560 C1 RU2583560 C1 RU 2583560C1 RU 2015106304/02 A RU2015106304/02 A RU 2015106304/02A RU 2015106304 A RU2015106304 A RU 2015106304A RU 2583560 C1 RU2583560 C1 RU 2583560C1
Authority
RU
Russia
Prior art keywords
shape memory
memory effect
carried out
monocrystals
aging
Prior art date
Application number
RU2015106304/02A
Other languages
English (en)
Inventor
Юрий Иванович Чумляков
Елена Юрьевна Панченко
Екатерина Евгеньевна Тимофеева
Наталья Геннадьевна Ветошкина
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2015106304/02A priority Critical patent/RU2583560C1/ru
Application granted granted Critical
Publication of RU2583560C1 publication Critical patent/RU2583560C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6 включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме. Отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ 3 ¯ 12 ], в течение 4 часов. После старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001]. Повышаются механические и функциональные свойства материала. 1 табл., 1 пр.

Description

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co, с целью значительного повышения их механических и функциональных свойств, создания на их основе материалов с многократным эффектом памяти формы. Способ может быть использован в машиностроении, авиационной, космической промышленности, медицине, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.
Известен способ термической обработки ферромагнитных сплавов Ni49Fe18Ga27Со6 (ат.%) (Е.Ю. Панченко, Ю.И. Чумляков, Е.Е. Тимофеева, Н.Г. Ветошкина, H.Maier. Циклическая стабильность сверхэластичности в состаренных [ 1 ¯ 23
Figure 00000001
]-монокристаллах Ni49Fe18Ga27Со6 //Известия вузов. Физика. - 2012.- Т.55- №9.- С. 61-65), который заключается в проведении двухступенчатого отжига: 1 - отжиг при 1373 К, 25 мин с последующей закалкой, 2 - старение при 673 К, 4 ч в свободном состоянии с последующим медленным охлаждением. Это приводит к формированию в аустенитной фазе бимодальной гетерофазной структуры: после высокотемпературного отжига выделяются частицы γ-фазы длиной 5÷10 мкм, которые позволяют пластифицировать материал, после низкотемпературного отжига - наноразмерные частицы размером γ'-фазы 5÷30 нм. Частицы γ'-фазы не испытывают мартенситных превращений, наследуются мартенситом и деформируются упруго при развитии мартенситных превращений в матрице, накапливая значительную упругую энергию. Накопленная при прямом мартенситном превращении обратимая энергия способствует развитию обратного превращения при снятии нагрузки и [ 1 ¯ 23
Figure 00000001
]-монокристаллы Ni49Fe18Ga27Со6 в данном структурном состоянии проявляют высокую циклическую стабильность сверхэластичности, что является существенным моментом для практического использования. При увеличении времени старения происходит изменение характера развития мартенситных превращений под нагрузкой, частицы γ'-фазы увеличиваются до 150-300 нм и приводят к образованию «неориентированного» мартенсита вблизи поверхности раздела «частица-матрица», отличного от основного. В результате происходит релаксация упругой энергии при развитии мартенситных превращений: вблизи частиц образуются дефекты упаковки и дислокации и наблюдается низкая циклическая стабильность.
Однако старение при 673 К, 4 ч в не приводит к проявлению многократного эффекта памяти формы, поскольку в сплаве NiFeGaCo, подвергнутом отжигу в свободном состоянии, формируются несколько вариантов частиц γ'-фазы, и локальные поля напряжений от частиц в данном случае не приводят к возникновению дальнодействующих полей, способствующих самопроизвольной деформации сплавов при охлаждении.
Известен способ обработки сплавов Cu68.73Zn14.55Al16.72 (ат. %) для получения многократного эффекта памяти формы, который включает в себя ступенчатую термообработку (выдержка при 1120 К, 15 мин, охлаждение до 770 К и последующая закалка в воду при Т=273 К) и последующее термомеханическое циклирование через интервал мартенситных превращений под нагрузкой (постоянные напряжения 34 МПа, количество циклов 30). В ходе отжига при 770 К в материале формируются мелкие частицы γ-фазы порядка 10 нм. Поскольку и в данном случае отжиг проводился в свободном состоянии, то сразу после термообработки многократный эффект памяти формы не наблюдается. Последующие 30 циклов термомеханического циклирования приводят к появлению многократного эффекта памяти формы величиной до 5%. Однако данный метод обладает недостатками. В ходе многочисленных тренировок в материале генерируется и копится большое количество дефектов, которые, с одной стороны, могут способствовать проявлению многократного эффекта памяти формы, но с другой стороны, существенно понижают циклическую стабильность свойств материала и способствуют быстрой деградации (Amengual A., Cesari E., Pons J. Characteristics of the two-way memory effect induced by thermomechanical cycling in Cu-Zn-Al single crystals //Journal de Physique IV. V. 5. C8-871-876).
В качестве наиболее близкого аналога-прототипа выбран способ получения нанокомпозитов с двойным эффектом памяти формы на основе монокристаллов CoNiAl, что достигается посредством термомеханической обработки: отжиг 1613 К в течение 8,5 ч, закалка и последующее старение в вакууме при 673 К, 0,5 ч под действием сжимающей нагрузки 100-120 МПа вдоль [011] направления. Последнее приводит к ориентированному росту неравноосных дисперсных частиц ε-Co размером 10-20 нм и созданию дальнодействующих внутренних полей напряжений, способствующих появлению многократного эффекта памяти формы (патент РФ 2495947, опубл. 20.10.2013, МПК C22F1/10).
Способ-прототип, включающий старение под нагрузкой, имеет недостатки в отношении ферромагнитных сплавов на основе NiFeGaCo. Во-первых, кристаллические структуры фаз в сплавах NiFeGaCo и CoNiAl различны. После обработки при 673 К 0,5 ч в сплавах CoNiAl выделяются частицы размером до 20 нм трех типов: ε-Co с ГПУ решеткой, α-Co с ГЦК решеткой и со сверхструктурой типа Ni2Al (общая объемная доля частиц f ~ 20 %). В сплавах на основе NiFeGaCo при старении 673 К выделяется только γ′-фаза, объемная доля их меньше и частицы имеют другую форму. Для выделения достаточной объемной доли γ′-фазы и созданию дальнодействующих полей напряжений необходим другой режим старения/большее количество времени. Во-вторых, поскольку частицы в NiFeGaCo вытянуты вдоль<111>направлений, то термообработка под нагрузкой вдоль [011] направления не приведет к образованию одного варианта частиц, поскольку существуют 2 направления<111>, эквивалентные по отношению к [011]. Поэтому необходима другая ориентация приложения нагрузки в процессе старения для ориентированного роста частиц. В-третьих, для получения максимальной обратимой деформации при многократном эффекте памяти формы необходим выбор определенной кристаллографической ориентации после проведения двухступенчатой термообработки.
Задачей настоящего изобретения является разработка способа получения многократного эффекта памяти формы в монокристаллах сплавов на основе Ni49Fe18Ga27Co6, с целью проявления многократного эффекта памяти формы при охлаждении в свободном состоянии с величиной, обратимой деформации до 4,5%.
Поставленная задача достигается посредством термомеханической обработки монокристаллов сплавов Ni49Fe18Ga27Co6, включающей первичный нагрев до 1373 К, выдержку в течение 25 мин, закалку и вторичную термомеханическую обработку - старение при 673 К под действием сжимающей нагрузки 100 МПа, которую в отличие от прототипа проводят в течение 4 ч вдоль [ 3 ¯ 12
Figure 00000002
] направления для ориентированного роста неравноосных дисперсных частиц.
Необходимо подчеркнуть, что в способе-прототипе, после термомеханической обработки образцы вырезались вдоль той же ориентации, вдоль которой проводилось старение - [011]. Первая основная отличительная особенность предложенного способа - это выбор другой ориентации после проведения термомеханической обработки - [001]. При сжатии вдоль этого направления в монокристаллах NiFeGaCo реализуется максимальный ресурс деформации решетки при L21-14М мартенситном превращении - 6,2%.
Второй особенностью является проведение термомеханического циклирования, которое заключается в циклическом изменении температуры в интервале развития мартенситных превращений (от 220 К до 420 К) под действием постоянной сжимающей нагрузки, приложенной вдоль направления [001]. Рекомендуется проводить термомеханическое циклирование при напряжениях от 30 до 80 МПа в течение одного-двух циклов во избежание появления большого количества дефектов.
Пример конкретного выполнения.
Исходным материалом является монокристалл Ni49Fe18Ga27Co6 (ат. %), из которого методом электроискровой резки вырезаны образцы в форме параллелепипеда с ориентацией одного из ребер вдоль [ 3 ¯ 12
Figure 00000002
] направления. Образцы отжигали в среде He при 1373 К в течение 25 мин и закаливали в воде комнатной температуры. На следующем этапе проводили термомеханическую обработку по описанному выше способу - старение в вакууме при 673 К, 4 ч под нагрузкой 100 МПа, приложенной вдоль [ 3 ¯ 12
Figure 00000002
] направления, медленное охлаждение и старение в свободном состоянии при 673 К, 4 ч.
После термообработки образцы вырезали вдоль двух направлений - [ 3 ¯ 12
Figure 00000002
] и [001].
После старения в свободном состоянии многократный эффект памяти формы не возникает независимо от ориентации образцов. Однако проведение термомеханического циклирования в интервале мартенситных превращений (охлаждение до 220 К и нагрев до 420 К) под нагрузкой 40-80 МПа, приложенной вдоль [001] направления, приводит к возникновению многократного эффекта памяти формы величиной до 1,4% (при максимальной обратимой деформации 4,3%). Это значит, что образец при последующем охлаждении под действием минимальных сжимающих напряжений 0,7 МПа, которые позволяют фиксировать изменение размеров образца, испытывает деформацию за счет внутренних дальнодействующих полей напряжений. Деформация является обратимой при нагреве.
После старения под нагрузкой образцы без предварительных тренировок обладают многократным эффектом памяти формы с величиной деформации 1±(0,3)% вдоль [ 3 ¯ 12
Figure 00000002
] направления и ~0,5±(0,3)% вдоль [001] направления.
Для увеличения обратимой деформации проведено термомеханическое циклирование в интервале мартенситных превращений (от 220 К до 420 К) под нагрузкой. Величина обратимой деформации изменяется в зависимости от величины приложенных напряжений во время проведения термомеханического циклирования и увеличивается от 3% при циклировании при 30 МПа до 4,5 % при циклировании при 80 МПа. Максимальная величина обратимой деформации при реализации обычного эффекта памяти формы в данном состоянии при 30-80 МПа составляет 5%. Следовательно, предложенный способ позволяет достичь эффективности многократного эффекта памяти формы 90% за счет проведения двухступенчатой термической обработки, включающей старение под нагрузкой вдоль [ 3 ¯ 12
Figure 00000002
] направления, и термомеханического циклирования под нагрузкой вдоль [001] направления.
В таблице приведены значения обратимой деформации при обычном эффекте памяти формы (εЭПФ) и многократном эффекте памяти формы (εМЭПФ) для [001]- и [ 3 ¯ 12
Figure 00000002
]-монокристаллов, прошедших термомеханическую обработку и тренировку.
Таким образом, предложенный способ обработки монокристаллов сплавов на основе NiFeGaCo позволяет получить многократный эффект памяти формы и использовать монокристаллы в качестве инновационных технических решений, например, датчиков, актюаторов, исполнительных механизмов в различных современных технических конструкциях и устройствах.

Claims (1)

  1. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6, ат.%, включающий отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме, отличающийся тем, что отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ 3 ¯ 12
    Figure 00000002
    ], в течение 4 часов, а после старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале развития мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001].
RU2015106304/02A 2015-02-25 2015-02-25 СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6 RU2583560C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015106304/02A RU2583560C1 (ru) 2015-02-25 2015-02-25 СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015106304/02A RU2583560C1 (ru) 2015-02-25 2015-02-25 СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6

Publications (1)

Publication Number Publication Date
RU2583560C1 true RU2583560C1 (ru) 2016-05-10

Family

ID=55960025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106304/02A RU2583560C1 (ru) 2015-02-25 2015-02-25 СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6

Country Status (1)

Country Link
RU (1) RU2583560C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2221076C2 (ru) * 2001-11-16 2004-01-10 Институт радиотехники и электроники РАН Способ управления формой исполнительного элемента
CN101705391A (zh) * 2009-11-26 2010-05-12 哈尔滨工业大学 Ni-Fe-Ga-Co高温磁驱动记忆合金
RU2524888C1 (ru) * 2013-03-12 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТЬЮ, ОРИЕНТИРОВАННЫХ ВДОЛЬ [001] НАПРАВЛЕНИЯ ПРИ ДЕФОРМАЦИИ РАСТЯЖЕНИЕМ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2221076C2 (ru) * 2001-11-16 2004-01-10 Институт радиотехники и электроники РАН Способ управления формой исполнительного элемента
CN101705391A (zh) * 2009-11-26 2010-05-12 哈尔滨工业大学 Ni-Fe-Ga-Co高温磁驱动记忆合金
RU2524888C1 (ru) * 2013-03-12 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТЬЮ, ОРИЕНТИРОВАННЫХ ВДОЛЬ [001] НАПРАВЛЕНИЯ ПРИ ДЕФОРМАЦИИ РАСТЯЖЕНИЕМ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORITO H. et al, Stress-assisted magnetic-field-induced strain in Ni-Fe-Ga-Co ferromagnetic shape memory alloys, Applied physics letters 90, 2007, p.062505-1 - 06505-3. *
ПАНЧЕНКО Е.Ю. и др., Циклическая стабильность сверхэластичности в состаренных [123]-монокристаллах Ni 49 Fe 18 Ga 27 Co 6 . Известия Высших Учебных Заведений. Физика. 2012, т.55, с.61-66. *

Similar Documents

Publication Publication Date Title
US11486016B2 (en) Systems and methods for tailoring coefficients of thermal expansion between extreme positive and extreme negative values
Söderberg et al. chapter 1 Giant Magnetostrictive Materials
Leinenbach et al. Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures
Atli et al. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy
Morgan et al. A review of shape memory stability in NiTi alloys
Eftifeeva et al. Two-way shape memory effect in [001] B2-oriented Co-Ni-Al single crystals
Bragov et al. Functional properties of TiNi shape memory alloy after high strain rate loading
Barat et al. High-temperature low-cycle fatigue behavior in HAYNES 282: influence of initial microstructure
Poklonov et al. Superelastic response in< 1 2 2>-oriented single crystals of FeMnAlNi shape memory alloy in tension and compression
Babacan et al. The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy
Koho et al. Behaviour of Ni-Mn-Ga alloys under mechanical stress
RU2583560C1 (ru) СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Ni49Fe18Ga27Co6
Titenko et al. Superelastic deformation in polycrystalline Fe-Ni-Co-Ti-Cu alloys
RU2495946C1 (ru) СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Nb С ТЕРМОУПРУГИМИ γ-α&#39; МАРТЕНСИТНЫМИ ПРЕВРАЩЕНИЯМИ
RU2524888C1 (ru) СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Fe-Ni-Co-Al-Ti С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТЬЮ, ОРИЕНТИРОВАННЫХ ВДОЛЬ [001] НАПРАВЛЕНИЯ ПРИ ДЕФОРМАЦИИ РАСТЯЖЕНИЕМ
Bubani et al. A short review on the interaction of precipitates and martensitic transitions in CuZnAl shape memory alloys
Aldırmaz et al. Effects of heat treatment and deformation on 2H and 18R martensites in Cu–9.97% Al–4.62% Mn alloy
Eftifeeva et al. Investigation of the two-way shape memory effect in [001]-oriented Co35Ni35Al30 single crystals
Crăciun et al. Metallic materials for mechanical damping capacity applications
Liu et al. Transformation behaviors of Ti 48.5 Ni 48 Fe 2 Nb 1.5 dependence of annealing and thermomechanical cycling
RU2495947C1 (ru) СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА Co35Ni35Al30
Osipovich et al. Effect of one variant of Ti3Ni4 particles on stress-induced martensitic transformations in< 111>-oriented Ti49. 2Ni50. 8 single crystals
Panchenko et al. The effect of ageing of the [011]-oriented Co 35 Ni 35 Al 30 single crystals in free state and under loading on their functional properties
Muluykov et al. Damping of nanocrystalline materials: a review
RU2699470C1 (ru) СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МОНОКРИСТАЛЛОВ СПЛАВА Fe-Ni-Co-Al-Ti-Nb, ОРИЕНТИРОВАННЫХ ВДОЛЬ НАПРАВЛЕНИЯ [001], С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ