RU2582170C1 - Способ определения скорости расплавления покрытого электрода - Google Patents

Способ определения скорости расплавления покрытого электрода Download PDF

Info

Publication number
RU2582170C1
RU2582170C1 RU2014146514/02A RU2014146514A RU2582170C1 RU 2582170 C1 RU2582170 C1 RU 2582170C1 RU 2014146514/02 A RU2014146514/02 A RU 2014146514/02A RU 2014146514 A RU2014146514 A RU 2014146514A RU 2582170 C1 RU2582170 C1 RU 2582170C1
Authority
RU
Russia
Prior art keywords
electrode
melting
arc
density
coated
Prior art date
Application number
RU2014146514/02A
Other languages
English (en)
Inventor
Владимир Петрович Сидоров
Вадим Анатольевич Федякин
Original Assignee
Общество с ограниченной ответственностью "Средневолжский Сертификационно-Диагностический Центр "Дельта"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Средневолжский Сертификационно-Диагностический Центр "Дельта" filed Critical Общество с ограниченной ответственностью "Средневолжский Сертификационно-Диагностический Центр "Дельта"
Priority to RU2014146514/02A priority Critical patent/RU2582170C1/ru
Application granted granted Critical
Publication of RU2582170C1 publication Critical patent/RU2582170C1/ru

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

Изобретение относится к машиностроению и судостроению, а также строительству. Определяют среднюю скорость расплавления электрода путем деления длины расплавившейся части к времени расплавления. Скорость расплавления определяют по формуле V=(2·Lэ/t)-Vo, где Lэ - длина расплавленной покрытой части электрода; t - время расплавления электрода, Vo - начальная расчетная скорость расплавления электрода. Начальную скорость расплавления покрытого электрода определяют расчетным путем по известной начальной скорости расплавления голой проволоки при автоматической сварке под слоем флюса. При этом используют приведенную плотность покрытого электрода, когда масса покрытия считается входящей в массу стержня. Начальную скорость расплавления покрытого электрода Vo определяют по формуле Voро·J/ρэ, где J - плотность тока дуги, А/см2; ρэ - приведенная плотность стержня, с учетом массы покрытия, г/см3. Коэффициент расплавления голого электрода αpo в этом случае измеряется в г/(А·с). Здесь А - ток дуги в амперах, с - время в секундах. Способ позволяет по данным одного опыта по расплавлению электрода определить его скорость расплавления с высокой точностью. 2 ил., 2 табл.

Description

Предлагаемый способ относится преимущественно к машиностроению и строительству и может использоваться при ручной сварке и наплавке деталей металлическим плавящимся штучным покрытым электродом.
Известен способ определения скорости расплавления покрытого электрода для ручной дуговой сварки, по которому измеряют длину расплавленной части электрода и время действия сварочной дуги и скорость определяют как частное от их деления. Полученную скорость расплавления покрытого электрода используют для определения коэффициента расплавления по формуле
αр=Vэρ/j,
где ρ - плотность металлического стержня, г/см3; j - плотность тока в стержне А/см2.
Размерность коэффициента расплавления в этом случае г/(А·с).
(см. Сидоров, В.П. Математическое моделирование энергетических процессов сварки: лаб. практикум / В.П. Сидоров. - Тольятти: Изд-во ТГУ, 2014. - С. 172-174, ISBN 978-5-8259-0771-0)
Недостатком данного способа является то, что таким образом определяется средняя скорость расплавления электрода, в то время как для управления скоростью расплавления электрода необходимо знать максимальную скорость в конце его расплавления. Увеличение скорости расплавления электрода по мере горения дуги обусловлено нагревом электрода в его вылете. Вылет электрода изменяется от максимального в начале горения дуги до минимального в конце расплавления электрода. К концу сварки электрод нагревается в вылете все больше, что приводит к увеличению скорости его плавления. Вследствие этого покрытие может перегреваться и отслаиваться от стержня. Возникает опасность появления дефектов в шве типа натеков и наплывов, т.к. не обеспечивая должного провара основного металла, допускается попадание в шов большого количества наплавленного металла. Чтобы избежать этих недостатков, приходится снижать ток на электрод с самого начала горения дуги. Это приводит к снижению производительности ручной дуговой сварки. Назначение тока в начальный момент горения с дальнейшим его регулированием для повышения производительности расплавления требует определения максимальной скорости расплавления в конце сгорания электрода, чего не позволяет выполнить известный способ.
Известен также способ определения максимальной скорости расплавления покрытого электрода, по которому измеряют длину расплавившегося участка для различных моментов времени, строят зависимость расплавившейся части электрода от времени и максимальную скорость определяют как производную к этой зависимости в конечный момент времени (см. заявку на патент РФ №2014107055/02 на «Способ дуговой сварки штучным покрытым электродом»). Этот способ принят за прототип.
Недостатком этого способа является его сложность и высокая стоимость, так как требуется определение длины расплавившегося участка от времени горения дуги для нескольких моментов времени, получение затем графической или аналитической зависимости и ее анализ.
Техническим результатом предлагаемого способа является упрощение методики определения максимальной скорости расплавления электрода и снижение стоимости определения максимальной скорости расплавления электрода.
Сущность предлагаемого способа определения максимальной скорости расплавления покрытого электрода для дуговой сварки заключается в том, что измеряют длину расплавившейся части электрода и время ее расплавления и рассчитывают среднюю скорость расплавления.
В отличие от способа по прототипу дополнительно измеряют ток дуги и диаметры стержня и покрытия, длину оголенной части электрода, взвешивают электрод, рассчитывают приведенную к диаметру стержня плотность электрода для участка с покрытием и начальную скорость расплавления покрытого электрода по начальной скорости расплавления голого электрода и максимальную скорость определяют по формуле
Vmax=(2·Lэ/t)·Vo,
где Lэ - длина расплавленной части электрода; t - время расплавления электрода, Vo - начальная расчетная скорость расплавления электрода.
На фиг. 1 показана зависимость изменения длины расплавившейся части электрода Lэ от времени t, на фиг. 2 - зависимости скорости расплавления электрода от времени t.
Электрод начинает расплавляться со скоростью Vo, зависящей от начального коэффициента расплавления электрода αр. По мере его расплавления он нагревается в нерасплавленной части за счет сопротивления металлического стержня, что приводит к увеличению скорости расплавления. Поэтому зависимость длины расплавившейся части от времени увеличивается с нарастающей интенсивностью и может быть описана параболической зависимостью (кривая на фиг 1).
На фиг. 2 сплошной линией 1 показана зависимость скорости расплавления электрода от времени. Она имеет линейный характер, т.к. представляет собой график производной от кривой на фиг. 1. Пунктирная линия 2 представляет собой среднюю скорость расплавления электрода. Площади под прямой 1 и пунктирной линией 2 равны между собой.
Исследования показывают, что с высокой точностью можно описать длину расплавившейся части электрода от времени горения дуги зависимостью (параболой) (фиг. 1)
Figure 00000001
где Β1, В2 - коэффициенты, определяемые на основе получаемой экспериментальной зависимости. Производная по времени от этой зависимости дает скорость расплавления электрода во времени
Figure 00000002
Следовательно, скорость расплавления электрода возрастает линейно из-за подогрева электрода в вылете протекающим током. Коэффициент В1 представляет собой начальную скорость электрода Vo в момент времени t=0.
Максимальная (конечная) скорость расплавления электрода
Figure 00000003
где tк - конечное время расплавления электрода.
При линейной зависимости скорости расплавления от времени средняя скорость равна полусумме начальной и конечной скоростей
Vc=(Vк+Vo)/2.
Отсюда
Figure 00000004
Т.о., для определения максимальной (конечной) скорости остается определить только начальную скорость расплавления электрода.
Для этого можно воспользоваться известными зависимостями коэффициентов расплавления голых электродов при дуговой автоматической сварке под флюсом при нулевом вылете электрода. Для дуги постоянного тока обратной полярности согласно литературным данным коэффициент расплавления не зависит от тока
Figure 00000005
при сварке дугой постоянного тока прямой полярности
Figure 00000006
при сварке переменным током
Figure 00000007
Размерность αр0, г/(А·час)
Скорость расплавления электрода Vэ и коэффициент расплавления αр связаны известным соотношением
Figure 00000008
где J - плотность тока дуги, А/см2; ρ - плотность металла стержня, г/см3.
Коэффициент расплавления αр в этом случае измеряется в г/(А·с). Здесь А - ток дуги в амперах, с - время в секундах.
Использовать данные по коэффициентам расплавления электродной проволоки можно следующим образом. Плавление покрытого электрода отличается от плавления голой проволоки тем, что скорость расплавления электрода замедляется поглощением части мощности дуги массой покрытия. Теплосодержание единицы массы электродного стержня и покрытия близки между собой, поэтому можно определить приведенную плотность покрытого электрода на участке с покрытием. Приведенная плотность покрытого электрода это такая плотность, при которой вся масса покрытия считается входящей в состав стержня.
Приведенную плотность электрода ρэ можно определить по формуле
Figure 00000009
где ρст - плотность стержня, г/см, ρш - плотность материала покрытия, г/см3; D - диаметр электрода с покрытием, см; d - диаметр металлического стержня.
Для определения начальной скорости плавления покрытого электрода по формуле (8) необходимо в ней использовать приведенную плотность электрода ρэ.
Пример 1. Проводилось определение максимальной скорости расплавления электродов марки по известному и предлагаемому способам. Наплавка велась на постоянном токе обратной полярности. Диаметр электрода с покрытием составлял 6,4 мм, диаметр стержня 4,0 мм. Масса электрода 60,73 г. Длина оголенной части составляла 50 мм. Расчетное определение плотности покрытия дало значение ρш=2,12 г/см3, а приведенная плотность электрода ρп=11,2 г/см3. Ток дуги составлял 167 А, плотность тока J=1330 А/см2. Для известного способа измерялась длина расплавившейся части от времени. Результаты представлены в табл. 1.
Figure 00000010
Полученные данные аппроксимировали по методу наименьших квадратов с помощью компьютерной программы и получили зависимость длины расплавленного участка от времени Lc(t) вида
Figure 00000011
где Lo - длина расплавленного участка в начальный момент времени; В1 и В2 - коэффициенты аппроксимации.
Длина расплавленного участка в начальный момент времени Lo на практике равна нулю, но при аппроксимации получается некоторое небольшое значение, которое характеризует точность описания данной функцией экспериментальных данных.
Скорость расплавления из формулы (10) можно найти, взяв производную dLc/dt
Figure 00000012
При определении коэффициентов аппроксимирующей формулы к экспериментальным данным использовали еще одну дополнительную точку, так как понятно, что длина расплавившегося участка при t=0 Lo(0)=0. В результате получили значения коэффициентов в формулах (10) и (11): Lo=1,69·10-2; В1=0,396 см/с; В2=9,22·10-4 см/с2.
В среднем расчетные данные по длине расплавившейся части электрода совпадают по абсолютной величине с опытными значениями с точностью 1,3%.
Приращение скорости к концу расплавления электрода составило ΔV=0,155 см/с, а конечная скорость Vк=0,551 см/с. Опытное значение начальной скорости расплавления составило 0,396 см/с. Прирост скорости расплавления составил (0,155/0,396)100%=39,1%.
Определение начальной скорости по предлагаемому способу производилось по формуле
Voро·Т/ρ=11,6·1330/(3600·11,2)=0,383 см/с,
где αpο=11,6 г/(А·ч) - значение коэффициента расплавления для голой проволоки на нулевом вылете при сварке под слоем флюса в дуге обратной полярности. Коэффициент 3600 перводит размерность г/(А·ч) в г/(А·с).
Различие опытного значения начальной скорости расплавления от расчетной находится в пределах точности выполнения экспериментов. Электрод полностью расплавился за 84 секунды на длине 40 см. Среднюю скорость расплавления электрода получили 0,476 см/с. Максимальная скорость по предлагаемому способу
Vmax=2-40/84-0,383=0,569 см/с.
Определенное по предлагаемому способу значение максимальной скорости отличается от определенного по известному на +5%.
Пример 2.
Проводилось определение максимальной скорости расплавления импортных электродов марки LB - 52U 7016 по известному и предлагаемому способам. Наплавка велась на постоянном токе обратной полярности на токе дуги 95 А. Плотность тока J=1789 А/см2. Диаметр электрода с покрытием составлял 3,05 мм, диаметр стержня 2,6 мм. Масса 20,3 г. Длина оголенной части составляла 25 мм. Расчетное определение плотности покрытия дало значение ρш=2,36 г/см3, а приведенная плотность электрода ρп=11,25 г/см3. Измерялась длина сгоревшей части от времени. Результаты представлены в табл. 2.
Figure 00000013
После аппроксимации опытных данных функцией (10) получили значения коэффициентов
Lo=-9·10-2; Β1=0,543 см/с; В2=2,22·10-3 см/с2.
Среднее алгебраическое отклонение расчетных данных от опытных значений составляет менее 1%.
Опытное значение начальной скорости расплавления составило 0,543 см/с. Приращение скорости к концу расплавления электрода на длине 31 см составило ΔV=0,114 см/с, а конечная скорость Vк=0,657 см/с. Прирост скорости расплавления составил (0,114/0,657)100%=17,3%.
Определение начальной скорости по предлагаемому способу производилось по формуле
Vopο·J/ρ=11,6·1789/(11,25·3600)=0,512 см/с,
где αpο=11,6 г/(А·ч) - значение коэффициента расплавления для голой проволоки на нулевом вылете при сварке под слоем флюса в дуге обратной полярности.
Различие опытного значения начальной скорости 0,543 см/с расплавления от расчетной 0,512 см/с находится в пределах точности выполнения экспериментов (-5,7%).
Электрод на длине 31 см расплавился за 51,5 секунды. Среднюю скорость расплавления электрода получили 0,602 см/с. Максимальная скорость по предлагаемому способу
Vmax=2·31/51,5-0,512=0,68 см/с.
Определенное по предлагаемому способу значение максимальной скорости отличается от определенного по известному на +3,5% Δ=[(0,680-0,657)/0,657]100%.
Способ может быть осуществлен с помощью известных средств измерения токов дуги, взвешивания электродов и измерения их размеров, что показывает его практическую применимость.

Claims (1)

  1. Способ определения скорости расплавления покрытого электрода для дуговой сварки, включающий измерение длины расплавившейся части покрытого электрода Lэ и времени ее расплавления t, отличающийся тем, что дополнительно измеряют ток дуги Iд, диаметр оголенного электрода dэ, диаметр покрытого электрода D, длину оголенной части электрода, взвешивают электрод, рассчитывают приведенную к диаметру электрода плотность покрытого электрода ρэ и скорость расплавления покрытого электрода V определяют по формуле:
    V=(2·Lэ/t)-Vo,
    где Lэ - длина расплавленной части покрытого электрода, см,
    t - время расплавления электрода, с,
    при этом Voро·J/ρэ, см/с,
    где αро - коэффициент расплавления оголенного электрода при дуговой автоматической сварке под флюсом при нулевом вылете электрода, г/(А·с), который определяют по формулам:
    для сварки дугой постоянного тока обратной полярности:
    αро=const=11,6±0,4;
    для сварки дугой постоянного тока прямой полярности:
    αро =6,3+(70,2·10-3·Iд/dэ1,035);
    для сварки дугой переменного тока:
    αро =7,0+(70,2·10-3·Iд/dэ1,35);
    где Iд - ток дуги, А,
    J - плотность тока дуги, А/см2,
    dэ - диаметр оголенного электрода, см,
    ρэ - приведенная плотность покрытого электрода, ρэш(D2/d2-1)+ ρст, г/см3;
    где ρш - плотность материала покрытия, г/см3,
    ρст - плотность оголенного электрода, г/см3,
    D - диаметр покрытого электрода, см.
RU2014146514/02A 2014-11-19 2014-11-19 Способ определения скорости расплавления покрытого электрода RU2582170C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146514/02A RU2582170C1 (ru) 2014-11-19 2014-11-19 Способ определения скорости расплавления покрытого электрода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146514/02A RU2582170C1 (ru) 2014-11-19 2014-11-19 Способ определения скорости расплавления покрытого электрода

Publications (1)

Publication Number Publication Date
RU2582170C1 true RU2582170C1 (ru) 2016-04-20

Family

ID=56195220

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146514/02A RU2582170C1 (ru) 2014-11-19 2014-11-19 Способ определения скорости расплавления покрытого электрода

Country Status (1)

Country Link
RU (1) RU2582170C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665863C1 (ru) * 2017-08-30 2018-09-04 Частное образовательное учреждение дополнительного профессионального образования Технический учебный центр "Спектр" Способ определения коэффициента расплавления покрытых электродов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU707716A1 (ru) * 1977-05-03 1980-01-05 Всесоюзный научно-исследовательский институт по строительству магистральных трубопроводов Способ дуговой сварки плав щимс электродом
SU1136002A1 (ru) * 1983-07-12 1985-01-23 Всесоюзный научно-исследовательский проектно-конструкторский и технологический институт электротермического оборудования Способ управлени печью дл переплава расходуемых электродов в начальный период плавки
WO2009010867A2 (en) * 2007-07-18 2009-01-22 Lincoln Global, Inc. Method of rating the arc maintainability of an electric arc welding stick electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU707716A1 (ru) * 1977-05-03 1980-01-05 Всесоюзный научно-исследовательский институт по строительству магистральных трубопроводов Способ дуговой сварки плав щимс электродом
SU1136002A1 (ru) * 1983-07-12 1985-01-23 Всесоюзный научно-исследовательский проектно-конструкторский и технологический институт электротермического оборудования Способ управлени печью дл переплава расходуемых электродов в начальный период плавки
WO2009010867A2 (en) * 2007-07-18 2009-01-22 Lincoln Global, Inc. Method of rating the arc maintainability of an electric arc welding stick electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СИДОРОВ В.П. Математическое моделирование энергетических процессов сварки: лаб. практикум. - Тольятти: Изд. ТГУ, 2014,с.172-174. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665863C1 (ru) * 2017-08-30 2018-09-04 Частное образовательное учреждение дополнительного профессионального образования Технический учебный центр "Спектр" Способ определения коэффициента расплавления покрытых электродов

Similar Documents

Publication Publication Date Title
Karadeniz et al. The effect of process parameters on penetration in gas metal arc welding processes
Gu et al. The influence of wire properties on the quality and performance of wire+ arc additive manufactured aluminium parts
Sharma et al. Mathematical model of bead profile in high deposition welds
Kiran et al. Three-dimensional finite element modeling of pulsed AC gas metal arc welding process
Rückert et al. Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel
RU2582170C1 (ru) Способ определения скорости расплавления покрытого электрода
Palani et al. Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317L flux cored wire
AU712833B2 (en) Alloying system and heating control device for high grade galvanized steel sheet
Yarovitsyn Energy approach in analysis of microplasma powder surfacing modes
RU2571668C2 (ru) Способ дуговой сварки штучным покрытым электродом
KR102012132B1 (ko) 저항 스폿 용접방법
Pavlov et al. Distribution of temperature fields in welding in a gas mixture with pulsed electrode wire feed
Matvienko et al. Evaluation of shape and sizes of weld pool in surfacing using combined strip electrode
RU2710145C1 (ru) Способ получения проб наплавляемого металла
RU2623533C1 (ru) Способ дуговой сварки штучными покрытыми электродами
Melnikov et al. Specifics of mode parameters choice under twin arc welding of fillet welds
RU2665863C1 (ru) Способ определения коэффициента расплавления покрытых электродов
Sejc et al. Influence of heat input on the content of delta ferrite in the structure of 304L stainless steel GTA welded joints
RU2634560C2 (ru) Способ определения сопротивления вылета сварочного электрода
Vlasov et al. Heating and melting of electrodes with exothermic mixture in coating
RU2789640C1 (ru) Способ механизированной сварки в среде инертных и защитных газов
GB2357259A (en) A method of flash-butt welding
ES2654191T3 (es) Método de soldadura por arco estirado con regulación de la energía del arco
RU2650461C1 (ru) Способ регулирования максимальной ширины сварочной ванны при автоматической сварке
RU2661526C1 (ru) Способ ручной дуговой сварки штучными покрытыми электродами

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161120