RU2581383C1 - Способ определения температуры застывания нефтепродуктов и устройство для его осуществления - Google Patents

Способ определения температуры застывания нефтепродуктов и устройство для его осуществления Download PDF

Info

Publication number
RU2581383C1
RU2581383C1 RU2014151670/28A RU2014151670A RU2581383C1 RU 2581383 C1 RU2581383 C1 RU 2581383C1 RU 2014151670/28 A RU2014151670/28 A RU 2014151670/28A RU 2014151670 A RU2014151670 A RU 2014151670A RU 2581383 C1 RU2581383 C1 RU 2581383C1
Authority
RU
Russia
Prior art keywords
temperature
mixer
pour point
oil
oil product
Prior art date
Application number
RU2014151670/28A
Other languages
English (en)
Inventor
Болеслав Иванович Ковальский
Юрий Николаевич Безбородов
Александр Николаевич Сокольников
Дарья Валентиновна Агровиченко
Дмитрий Вадимович Вирков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority to RU2014151670/28A priority Critical patent/RU2581383C1/ru
Application granted granted Critical
Publication of RU2581383C1 publication Critical patent/RU2581383C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к области измерительной техники и может быть использовано для определения температуры застывания нефти и нефтепродуктов. Согласно заявленному решению изменение температуры испытуемого нефтепродукта, помещенного в цилиндрический стакан, выполненный с возможностью размещения в нем мешалки, осуществляют хладагентом в виде смеси этилового спирта с жидким азотом. При этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента. В качестве температурно-зависимого параметра используют частоту вращения мешалки, а температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания. Также предложено устройство для реализации указанного выше способа, выполненное в виде механического и измерительного блоков. Технический результат - повышение оперативности при проведении экспресс-анализа. 2 н. и 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области измерительных средств, в частности для определения температуры застывания нефти и нефтепродуктов.
Известен способ определения температуры застывания нефтепродуктов, при котором для охлаждения кюветы с нефтепродуктом используют термоэлектрические батареи, температуру кюветы равномерно понижают, создают импульсы ультразвука, который используют в качестве температурно-зависимого параметра, при затухании которого определяют температуру застывания нефтепродукта (Коленко Е.А. Термоэлектрические охлаждающие приборы. Л.: «Наука» Лен. Отд. 1967. С. 254).
Недостатком известного способа является длительность процессов охлаждения и нагревания нефтепродукта, а также использование только в стационарных условиях.
Известен прибор для определения температуры застывания нефтепродуктов, содержащий цилиндр с нефтепродуктом, помещенный в охлаждающую баню с углекислотой и изолированный от нее воздушной прослойкой, внутри цилиндра помещены крыльчатка и термопара, взаимосвязанные между собой потенциометром, сильфоном и контактным замыкателем, при этом температурно-зависимым параметром является угол поворота крыльчатки (Авторское свид. СССР №127518, G01N 25/06, опубл. в 1960 г., автор Прокопюк С.Г.).
Недостатком известного аналога является длительность процесса охлаждения.
В качестве прототипа принят способ исследования низкотемпературных свойств многокомпонентных жидкостей, при котором кювету с жидкостью охлаждают с использованием двух термоэлектрических модулей, первый из которых имеет тепловой контакт с кюветой и имеет возможность регулирования тока термоэлектрического модуля, между термоэлектрическими модулями размещают с обеспечением теплового контакта термоаккумулирующий элемент, осуществляют его охлаждение обоими термоэлектрическими модулями с одновременным нагревом кюветы с жидкостью до заданной температуры, после достижения термоаккумулирующим элементом минимальной температуры при поддерживаемой заданной температуре жидкости начинают равномерное охлаждение кюветы с жидкостью путем регулирования тока через первый термоэлектрический модуль, а после достижения минимальной температуры кюветы с жидкостью обеспечивают ее равномерный нагрев, при этом исследование низкотемпературных свойств выполняют в течение равномерного охлаждения и равномерного нагрева жидкости (Патент РФ №2183323 C2, дата приоритета 02.08.1999, дата публикации 10.06.2002, авторы: Конторович М.Л. и др., RU, прототип).
Известно также устройство для осуществления способа исследования низкотемпературных свойств многокомпонентных жидкостей по патенту РФ №2183323, принятое в качестве прототипа, включающее корпус, в котором установлены соединенные с источниками постоянного тока два термоэлектрических модуля, первый из которых соединен с регулируемым источником тока и имеет тепловой контакт с кюветой для размещения исследуемой многокомпонентной жидкости, снабженной измерительным преобразователем температуры и датчиком температурно-зависимого физического параметра, второй термоэлектрический модуль снабжен средством теплоотвода, также имеются устройство регистрации и устройство управления, а между термоэлектрическими модулями установлен термоаккумулирующий элемент (Патент РФ №2183323 C2, дата приоритета 02.08.1999, дата публикации 10.06.2002, авторы: Конторович М.Л. и др., RU, прототип).
Недостатком известного способа исследования низкотемпературных свойств многокомпонентных жидкостей и устройства для его осуществления, принятых в качестве прототипа, является значительная трудоемкость анализа, обусловленная длительностью и условиями испытаний.
Задачей изобретения является повышение оперативности при проведении экспресс-анализа.
Для решения поставленной задачи в способе определения температуры застывания нефтепродуктов, при котором изменяют температуру нефтепродукта, размещенного в емкости, измеряют температуру нефтепродукта и регистрируют температурно-зависимые физические параметры, новым является то, что испытуемый нефтепродукт помещают в цилиндрический стакан, выполненный с возможностью соосного размещения в нем мешалки, изменение температуры испытуемого нефтепродукта осуществляют хладагентом в виде смеси этилового спирта с жидким азотом, при этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента, а в качестве температурно-зависимого параметра используют частоту вращения мешалки, причем температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания, при этом температуру начала застывания испытуемого нефтепродукта вычисляют как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при прекращении охлаждения.
Для решения поставленной задачи и осуществления указанного способа предложено устройство для определения температуры застывания нефтепродуктов, включающее корпус, в котором установлена емкость для исследуемого нефтепродукта с датчиками регистрации температурно-зависимого параметра и средства изменения температуры нефтепродукта. Новым является то, что оно выполнено в виде механического и измерительного блоков. Механический блок содержит полый корпус, выполненный с продольным пазом и закрепленный на передней панели измерительного блока. В корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана, причем наружный и средний стаканы разделены теплоизоляцией, средний стакан снизу снабжен центрирующим выступом, а наружный стакан выполнен с ответным отверстием. Между средним и внутренним стаканами образована полость для заполнения хладагентом через трубопровод с воронкой, закрепленный в верхней части среднего стакана с возможностью перемещения в продольном пазу в полом корпусе. При этом наружный и средний стаканы закрыты крышкой, снабженной отверстиями для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан, внутри которого расположена соосно установленная на валу мешалка, соединенная через муфту с валом микроэлектродвигателя, соосно установленного относительно внутреннего стакана на платформе, закрепленной на передней панели измерительного блока. Внутренний стакан выполнен с выступающим над упомянутой крышкой верхним торцом и герметично установлен при фиксации стаканов в верхнем положении с помощью уплотнения, закрепленного на платформе, расположенной под муфтой микроэлектродвигателя и закрепленной на передней панели измерительного блока. На упомянутой платформе также закреплены датчики температуры с возможностью погружения их во внутренний стакан. На муфте микроэлектродвигателя жестко закреплен диск, снабженный отверстиями, соосно которым на платах, расположенных по обе стороны от диска и закрепленных на основании, установленном на передней панели измерительного блока, установлены фотодиод и фотоприемник, взаимодействующие между собой через отверстия в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока. При этом измерительный блок включает стабилизированный источник напряжения, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки, с которым связаны микроэлектродвигатель, фотодиод и фотоприемник, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта, с которым соединены датчики температуры. Выходы блока задания и регистрации частоты вращения мешалки и блока регистрации температуры связаны с преобразователем напряжения, выход которого связан с компьютером, отражающим на мониторе запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта.
Согласно изобретению, мешалка выполнена из материала с высокой теплопроводностью и с параметрами, обеспечивающими минимальное гидравлическое сопротивление, при этом мешалка выполнена в виде алюминиевой пластины с отверстиями, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана.
На фиг. 1 представлена функциональная схема заявляемого изобретения; на фиг. 2 - диаграммы температурно-зависимого параметра.
Устройство для определения температуры застывания нефтепродуктов выполнено в виде механического и измерительного блоков (фиг. 1). Механический блок содержит полый корпус 1, выполненный с продольным пазом 2 и закрепленный на передней панели 3 измерительного блока. В полом корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана. Наружный 4 и средний 5 стаканы разделены теплоизоляцией 6, причем средний стакан 5 снизу снабжен центрирующим выступом 7, а наружный стакан 4 выполнен с ответным отверстием 8. Между средним 5 и внутренним 9 стаканами образована полость 10 для заполнения хладагентом через трубопровод с воронкой 11, который закреплен в верхней части среднего стакана 5 с возможностью перемещения в продольном пазу 2 в полом корпусе. Наружный 4 и средний 5 стаканы закрыты крышкой 12, снабженной отверстиями 13 для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан 9 для его ориентации. Во внутреннем стакане 9 расположена мешалка 14, соосно установленная на валу 15, который соединен через муфту 16 с валом микроэлектродвигателя 17, соосно установленного относительно внутреннего стакана 9 на платформе 18, закрепленной на передней панели 3 измерительного блока. Мешалка 14 выполнена в виде тонкостенной алюминиевой пластины с отверстиями 19, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана. При этом суммарная площадь отверстий 19 мешалки с данными параметрами снижает гидравлическое сопротивление при ее вращении до минимума при частоте вращения 250 об/мин и не образует воронки в нефтепродукте, а при понижении температуры гидравлическое сопротивление увеличивается и частота вращения мешалки уменьшается. Внутренний стакан 9 выполнен с выступающим над упомянутой крышкой 12 верхним торцом и герметично установлен при фиксации стаканов 4, 5 и 9 в верхнем положении с помощью уплотнения 20, закрепленного на платформе 21, расположенной под муфтой 16 микроэлектродвигателя и закрепленной на передней панели 3 измерительного блока. На платформе 21 также закреплены датчики температуры 22 с возможностью погружения их во внутренний стакан 9. На муфте 16 микроэлектродвигателя жестко закреплен диск 23, снабженный отверстиями 24. По обе стороны от диска расположены платы 25, закрепленные на основании 26, установленном на передней панели 3 измерительного блока. На платах 25 соосно отверстиям 24 в диске установлены фотодиод 27 и фотоприемник 28, взаимодействующие между собой через отверстия 24 в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока.
Измерительный блок заключен в корпус, на передней панели 3 которого установлены и закреплены элементы механического блока. При этом измерительный блок включает стабилизированный источник напряжения 29, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки 30, с которым связаны микроэлектродвигатель 17, фотодиод 27 и фотоприемник 28, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта 31, с которым соединены датчики температуры 22. Выходы блока задания и регистрации частоты вращения мешалки 30 и блока регистрации температуры 31 связаны с преобразователем напряжения 32, выход которого связан с компьютером 33, отражающим на мониторе 34 запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта (фиг. 2).
Работа устройства для определения температуры застывания нефтепродуктов и реализация способа осуществляются следующим образом.
При подготовке устройства к работе полость 10, образованная средним 5 и внутренним 9 стаканами, заполняется этиловым спиртом до уровня трубы с воронкой 11. Наружный стакан 4 после расфиксации опускается в нижнее положение совместно с установленными в нем средним 5 и внутренним 9 стаканами и вынимается из полого цилиндрического корпуса 1 для заполнения внутреннего стакана 9 испытуемым нефтепродуктом в объеме 35 мл. После этого стаканы устанавливаются в полый корпус 1, при этом наружный стакан 4 фиксируется на передней панели 3 измерительного блока, герметизируя внутренний стакан 9 с нефтепродуктом путем его прижима к уплотнению 20. После этих подготовительных операций устройство готово к осуществлению способа определения температуры застывания исследуемого нефтепродукта.
Для реализации способа к работе подключают измерительный блок устройства. С помощью блока задания и регистрации частоты вращения мешалки 30 устанавливается частота вращения мешалки 250 об/мин. Напряжения от блоков задания и регистрации частоты вращения мешалки 30 и регистрации температуры 31 через преобразователь 32 поступают на компьютер 33 и записываются на мониторе 34 в виде диаграмм с соответствующими амплитудами. Через трубу с воронкой 11 в полость 10 заливается порция жидкого азота, при этом температура испытуемого нефтепродукта понижается, а вязкость увеличивается, что вызывает уменьшение частоты вращения мешалки 14. На диаграммах записи частоты вращения мешалки и температуры нефтепродукта амплитуда соответственно уменьшается. После прекращения паровыделений через отверстия 13 в крышке 12 доливается очередная порция жидкого азота. Эти действия продолжаются до тех пор, пока вращение мешалки не прекратится. По диаграмме записи определяется температура испытуемого нефтепродукта, при которой произошла остановка мешалки 14. Затем производится выдержка стакана с нефтепродуктом до начала вращения мешалки, при котором по диаграмме изменения температуры нефтепродукта и частоты вращения мешалки определяется температура, при которой началось вращение мешалки. Температура начала застывания исследуемого нефтепродукта вычисляется как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при нагревании в результате прекращения охлаждения.
Исследованию подвергалось минеральное моторное масло Лукойл Стандарт 10W-40 SF/CC. Из представленных данных на фиг. 2 видно, что мешалка остановилась через 13 мин 45 сек (диаграмма П=f(t), точка А), что согласно диаграмме T=f(t) соответствует температуре минус 24°C (точка A′). Вращение мешалки началось через 19 мин 15 сек (точка В), что соответствует температуре минус 23°C (точка B′). Средняя температура застывания масла Лукойл Стандарт 10W-40 SF/CC составила минус 23,5°C.
Преимущество предлагаемых способа и устройства заключается в повышении оперативности и степени экспрессивности определения температуры застывания нефтепродукта за счет применения эффективного жидкого хладагента, обеспечивающего быстрое охлаждение нефтепродукта, и автоматической записи в виде диаграмм температурно-зависимого параметра - частоты вращения мешалки.

Claims (3)

1. Способ определения температуры застывания нефтепродуктов, при котором изменяют температуру нефтепродукта, размещенного в емкости, измеряют температуру нефтепродукта и регистрируют температурно-зависимые физические параметры, отличающийся тем, что испытуемый нефтепродукт помещают в цилиндрический стакан, выполненный с возможностью соосного размещения в нем мешалки, изменение температуры испытуемого нефтепродукта осуществляют хладагентом в виде смеси этилового спирта с жидким азотом, при этом цилиндрический стакан помещают в теплоизолированную емкость, заполняемую хладагентом и имеющую возможность возвратно-поступательного перемещения, герметичной фиксации цилиндрического стакана с испытуемым нефтепродуктом и подачи хладагента, а в качестве температурно-зависимого параметра используют частоту вращения мешалки, причем температуру застывания определяют по диаграмме, отражающей зависимость частоты вращения мешалки от температуры нефтепродукта как при понижении температуры нефтепродукта ниже температуры застывания, так и при повышении температуры до достижения температуры застывания, при этом температуру начала застывания испытуемого нефтепродукта вычисляют как среднее значение между температурой остановки мешалки при охлаждении нефтепродукта и температурой начала вращения при прекращении охлаждения.
2. Устройство для определения температуры застывания нефтепродуктов, включающее корпус, в котором установлена емкость для исследуемого нефтепродукта с датчиками регистрации температурно-зависимого параметра и средства изменения температуры нефтепродукта, отличающееся тем, что оно выполнено в виде механического и измерительного блоков, механический блок содержит полый корпус, выполненный с продольным пазом и закрепленный на передней панели измерительного блока, в корпусе с возможностью возвратно-поступательного перемещения и фиксации установлены три коаксиально расположенных стакана, причем наружный и средний стаканы разделены теплоизоляцией, средний стакан снизу снабжен центрирующим выступом, а наружный стакан выполнен с ответным отверстием, между средним и внутренним стаканами образована полость для заполнения хладагентом через трубопровод с воронкой, закрепленный в верхней части среднего стакана с возможностью перемещения в продольном пазу в полом корпусе, при этом наружный и средний стаканы закрыты крышкой, снабженной отверстиями для выхода паров хладагента и центральным отверстием, охватывающим внутренний стакан, внутри которого расположена соосно установленная на валу мешалка, соединенная через муфту с валом микроэлектродвигателя, соосно установленного относительно внутреннего стакана на платформе, закрепленной на передней панели измерительного блока, внутренний стакан выполнен с выступающим над упомянутой крышкой верхним торцом и герметично установлен при фиксации стаканов в верхнем положении с помощью уплотнения, закрепленного на платформе, расположенной под муфтой микроэлектродвигателя и закрепленной на передней панели измерительного блока, на упомянутой платформе также закреплены датчики температуры с возможностью погружения их во внутренний стакан, на муфте микроэлектродвигателя жестко закреплен диск, снабженный отверстиями, соосно которым на платах, расположенных по обе стороны от диска и закрепленных на основании, установленном на передней панели измерительного блока, установлены фотодиод и фотоприемник, взаимодействующие между собой через отверстия в диске при его повороте и регистрирующие частоту вращения мешалки с помощью измерительного блока, при этом измерительный блок включает стабилизированный источник напряжения, первый выход которого связан с блоком задания и регистрации частоты вращения мешалки, с которым связаны микроэлектродвигатель, фотодиод и фотоприемник, а второй выход связан с блоком регистрации температуры исследуемого нефтепродукта, с которым соединены датчики температуры, выходы блока задания и регистрации частоты вращения мешалки и блока регистрации температуры связаны с преобразователем напряжения, выход которого связан с компьютером, отражающим на мониторе запись диаграмм изменения частоты вращения мешалки и температуры испытуемого нефтепродукта.
3. Устройство для определения температуры застывания нефтепродуктов по п. 2, отличающееся тем, что мешалка выполнена из материала с высокой теплопроводностью и с параметрами, обеспечивающими минимальное гидравлическое сопротивление, при этом мешалка выполнена в виде алюминиевой пластины с отверстиями, симметрично расположенными относительно оси вращения и в шахматном порядке относительно друг друга, причем ширина мешалки составляет 2/3 диаметра внутреннего стакана.
RU2014151670/28A 2014-12-19 2014-12-19 Способ определения температуры застывания нефтепродуктов и устройство для его осуществления RU2581383C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151670/28A RU2581383C1 (ru) 2014-12-19 2014-12-19 Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151670/28A RU2581383C1 (ru) 2014-12-19 2014-12-19 Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2581383C1 true RU2581383C1 (ru) 2016-04-20

Family

ID=56194788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151670/28A RU2581383C1 (ru) 2014-12-19 2014-12-19 Способ определения температуры застывания нефтепродуктов и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2581383C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201970A (en) * 1961-12-26 1965-08-24 Exxon Research Engineering Co Pour point determination
US3986385A (en) * 1974-08-05 1976-10-19 Rosemount Engineering Company Limited Apparatus for determining the freezing point of a liquid
US5651614A (en) * 1995-01-20 1997-07-29 Betzdearborn Inc. Cloud point and pour point analyzer
RU2183323C2 (ru) * 1999-08-02 2002-06-10 Ульяновское отделение Института радиотехники и электроники РАН Способ исследования низкотемпературных свойств многокомпонентных жидкостей и устройство для его осуществления
RU2327147C1 (ru) * 2006-10-24 2008-06-20 Государственное образовательное учреждение высшего профессионального образования "Челябинский государственный университет" Способ определения температур помутнения, застывания нефтепродуктов и устройство для его осуществления
RU2364858C2 (ru) * 2007-09-24 2009-08-20 Анатолий Николаевич Литвиненко Способ определения температуры застывания летних видов дизельных топлив и/или их смесей
RU2495408C1 (ru) * 2012-03-19 2013-10-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ определения температуры кристаллизации парафинов в нефти

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201970A (en) * 1961-12-26 1965-08-24 Exxon Research Engineering Co Pour point determination
US3986385A (en) * 1974-08-05 1976-10-19 Rosemount Engineering Company Limited Apparatus for determining the freezing point of a liquid
US5651614A (en) * 1995-01-20 1997-07-29 Betzdearborn Inc. Cloud point and pour point analyzer
RU2183323C2 (ru) * 1999-08-02 2002-06-10 Ульяновское отделение Института радиотехники и электроники РАН Способ исследования низкотемпературных свойств многокомпонентных жидкостей и устройство для его осуществления
RU2327147C1 (ru) * 2006-10-24 2008-06-20 Государственное образовательное учреждение высшего профессионального образования "Челябинский государственный университет" Способ определения температур помутнения, застывания нефтепродуктов и устройство для его осуществления
RU2364858C2 (ru) * 2007-09-24 2009-08-20 Анатолий Николаевич Литвиненко Способ определения температуры застывания летних видов дизельных топлив и/или их смесей
RU2495408C1 (ru) * 2012-03-19 2013-10-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ определения температуры кристаллизации парафинов в нефти

Similar Documents

Publication Publication Date Title
CN106840850B (zh) 一台带有数字图像测量技术的多功能冻土三轴仪
RU2473080C1 (ru) Прибор для определения деформаций и сил морозного пучения грунта
CN111855497A (zh) 一种热熔态沥青表面能参数测试方法
CN104990954B (zh) 一种液体比热容实验测量系统
CN110873670B (zh) 一种全自动多通道相变材料循环寿命测试装置及方法
RU2581383C1 (ru) Способ определения температуры застывания нефтепродуктов и устройство для его осуществления
CN105628560A (zh) 一种测量co2/盐水/岩石体系接触角的实验装置
WO2014144186A1 (en) Rheometer with radiant heating of sample fluid
US4587837A (en) Capillary rheometer having disposable capillary tube
CN204286910U (zh) 一种适用于高锰酸盐指数自动监测仪的消解比色搅拌装置
RU2263305C1 (ru) Динамический способ исследования теплофизических свойств жидкостей и устройство для исследования теплофизических свойств жидкостей
US1443537A (en) Apparatus for determining the freezing point of milk
CN207488121U (zh) 一种石油产品运动粘度试验器
RU2362152C2 (ru) Способ исследования процессов структуропреобразования в жидкостях
CN202928922U (zh) 润滑油粘度比较测量仪
RU2313777C1 (ru) Капиллярный вискозиметр
GB2267577A (en) Capillary viscosimeter.
RU2183323C2 (ru) Способ исследования низкотемпературных свойств многокомпонентных жидкостей и устройство для его осуществления
CN103344487A (zh) 一种用于金属材料低温拉伸试验的装置
CN108051353B (zh) 一种模拟液体流速对于岩体裂隙渗透特性影响的反应装置
Sokolnikov et al. Apparatus for Determining of the Pour Point of Crude Oil and Petroleum Products
CN109374481A (zh) 一种测定器
RU2504757C2 (ru) Способ исследования теплофизических свойств жидкостей и устройство для его осуществления
RU2602423C2 (ru) Способ и устройство для определения плотности, динамической и кинематической вязкости
Сокольников et al. Apparatus for Determining of the Pour Point of Crude Oil and Petroleum Products

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181220