RU2580795C2 - Способ и устройство для кодирования передачи harq-ack в системах tdd с агрегацией несущих нисходящей линии связи - Google Patents

Способ и устройство для кодирования передачи harq-ack в системах tdd с агрегацией несущих нисходящей линии связи Download PDF

Info

Publication number
RU2580795C2
RU2580795C2 RU2013125450/08A RU2013125450A RU2580795C2 RU 2580795 C2 RU2580795 C2 RU 2580795C2 RU 2013125450/08 A RU2013125450/08 A RU 2013125450/08A RU 2013125450 A RU2013125450 A RU 2013125450A RU 2580795 C2 RU2580795 C2 RU 2580795C2
Authority
RU
Russia
Prior art keywords
bits
acknowledgment information
harq
ack
codeword
Prior art date
Application number
RU2013125450/08A
Other languages
English (en)
Other versions
RU2013125450A (ru
Inventor
Арис ПАПАСАКЕЛЛАРИОУ
Дзоон-Янг ЧО
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2013125450A publication Critical patent/RU2013125450A/ru
Application granted granted Critical
Publication of RU2580795C2 publication Critical patent/RU2580795C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Abstract

Изобретение относится к системам беспроводной связи, в частности к передаче информации квитирования в восходящей линии связи. Технический результат - повышение скорости передачи данных. Предложены способы и устройство для пользовательского оборудования (UE), сконфигурированного с множественными сотами на нисходящей линии связи (DL) системы дуплексной связи с временным разделением (TDD) для определения способа кодирования битов информации квитирования как функции их количества, для применения объединения к битам информации квитирования, когда их количество превышает первое заранее определенное значение, и для разделения битов информации квитирования, возможно совместно с битами другой информации управления, на два отдельных кодовых слова, когда их общее количество превышает второе заранее определенное значение. 4 н. и 10 з.п. ф-лы, 15 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение в целом относится к системам беспроводной связи и, в частности, к передаче информации квитирования в восходящей линии связи системы связи.
УРОВЕНЬ ТЕХНИКИ
Система связи включает в себя нисходящую линию связи (DL), которая переносит сигналы передачи от базовой станции (BS) или NodeB, на устройства пользовательского оборудования (UE), и включает в себя восходящую линию связи (UL), которая переносит сигналы передачи от UE на NodeB. UE, которое обычно называют терминал или мобильная станция, может быть стационарным или мобильным и может представлять собой, например, беспроводное устройство, сотовый телефон или персональный компьютер. NodeB обычно является стационарной станцией и также может называться точкой доступа или каким-либо другим эквивалентным термином.
UL переносит передачи сигналов данных, несущих информационное наполнение, передачи сигналов управления, обеспечивающих информацию управления, связанную с передачей сигналов данных на DL, и передачи опорных сигналов (RS), которые обычно называются пилот-сигналами. DL также переносит передачи сигналов данных, сигналов управления и RS.
Сигналы данных UL переносятся по физическому совместно используемому каналу восходящей линии связи (PUSCH), и сигналы данных DL переносятся по физическому совместно используемому каналу нисходящей линии связи (PDSCH).
В отсутствие передачи PUSCH, UE переносит информацию управления UL (UCI) по физическому каналу управления восходящей линии связи (PUCCH). Однако когда имеет место передача PUSCH, UE может переносить UCI совместно с данными по PUSCH.
Сигналы управления DL могут передаваться широковещательно или могут передаваться на конкретные UE. Соответственно, можно использовать каналы управления для каждого конкретного UE, помимо других целей, для снабжения UE назначениями планирования (SA) для приема PDSCH (SA DL) или передачи PUSCH (SA UL). SA передаются с NodeB на соответствующие UE с использованием форматов информации управления DL (DCI) по соответствующим физическим каналам управления DL (PDCCH).
NodeB может конфигурировать UE посредством сигнализации более высокого уровня, например, сигнализации управления радиоресурсами (RRC), режима передачи (TM) PDSCH и PUSCH и других параметров, относящихся к приему сигналов DL или передаче сигналов UL. TM PDSCH или TM PUSCH, соответственно, связан с SA DL или SA UL и определяет, переносит ли соответствующий PDSCH или PUSCH один транспортный блок (TB) данных или два TB данных.
Передачи PDSCH или PUSCH либо планируются для UE на NodeB посредством сигнализации более высокого уровня или посредством сигнализации физического уровня (например, по PDCCH) с использованием соответствующих SA DL или SA UL, либо соответствуют неадаптивным повторным передачам для данного процесса гибридного автоматического запроса повторной передачи (HARQ). Планирование посредством сигнализации более высокого уровня называется полупостоянным планированием (SPS). Планирование посредством PDCCH называется динамическим. PDCCH также можно использовать для высвобождения SPS PDSCH. Если UE пропускает (т.е. не может детектировать) PDCCH, оно также пропускает связанный с ним PDSCH или PUSCH. Это событие называется DTX (прерывистой передачей).
UCI включает в себя информацию квитирования (ACK), связанную с процессом HARQ (HARQ-ACK). Информация HARQ-ACK может состоять из множественных битов, соответствующих положительным квитированиям (ACK) для TB, правильно принятых на UE, или соответствующих отрицательным квитированиям (NACK) для TB, неправильно принятым на UE. Когда UE не принимает TB, оно может передавать DTX (информацию HARQ-ACK, имеющую три состояния) или может передавать NACK, которое представляет как отсутствие, так и неправильный прием TB (в состоянии комбинированного NACK/DTX).
В системах дуплексной связи с временным разделением (TDD), передачи DL и UL происходят в разных интервалах времени передачи (TTI), которые называются подкадрами. Например, в кадре, содержащем 10 подкадров, некоторые подкадры могут использоваться для передач DL, и другие подкадры могут использоваться для передач UL.
На фиг. 1 показана схема, демонстрирующая структуру кадра для системы TDD.
Согласно фиг. 1, 10-миллисекундый (мс) кадр состоит из двух идентичных полукадров. Каждый 5-миллисекундый полукадр 110 делится на восемь слотов 120 и три специальных поля. Три специальных поля включают в себя символ 130 части DL (DwPTS), защитный период (GP) 140 и символ 150 части UL (UpPTS). Длина DwPTS+GP+UpPTS равна одному подкадру (1 мс) 160. DwPTS может использоваться для передачи сигналов синхронизации от NodeB, тогда как UpPTS может использоваться для передачи сигналов произвольного доступа от UE. GP облегчает переход между передачами DL и UL за счет поглощения переходной помехи.
Количество подкадров DL и UL на кадр может быть разным, и множественные подкадры DL могут быть связаны с одним подкадром UL. В связывании множественных подкадров DL с одним подкадром UL, количество O HARQ ACK
Figure 00000001
битов информации HARQ-ACK, генерируемых в ответ на приемы PDSCH (TB данных) во множественных подкадрах DL, нужно передавать в одном подкадре UL. Это количество N bundle
Figure 00000002
подкадров DL называется окном объединения (группирования).
Первый способ, в котором UE переносит информацию HARQ-ACK в одном подкадре UL, в ответ на приемы PDSCH во множественных подкадрах DL, включает объединение HARQ-ACK. При объединении HARQ-ACK UE передает ACK, только если оно правильно принимает все TB данных, и передает NACK во всех остальных случаях. Поэтому, объединение HARQ-ACK приводит к ненужным повторным передачам и снижению пропускной способности DL, поскольку NACK передается даже когда UE неправильно принимает только один TB данных и правильно принимает все остальные TB данных.
Другой способ, в котором UE переносит до 4 битов информации HARQ-ACK в одном подкадре UL, в ответ на приемы TB данных во множественных подкадрах DL, включает мультиплексирование HARQ-ACK, которое основано на выборе ресурсов PUCCH.
Дополнительный способ, в котором UE переносит множественные биты информации HARQ-ACK в одном подкадре UL, в ответ на приемы множественных TB данных во множественных подкадрах DL, включает совместное кодирование битов информации HARQ-ACK с использованием, например, блочного кода, например, кода Рида-Мюллера (RM).
Если PDSCH переносит один TB, соответствующая информация HARQ-ACK состоит из одного бита, который закодирован как двоичная '1' (значение ACK), если TB принят правильно, и закодирован как двоичный '0' (значение NACK), если TB принят неправильно. Если PDSCH переносит два TB, в соответствии с однопользовательским способом передачи с несколькими входами и несколькими выходами (SU-MIMO) с рангом выше первого, информация HARQ-ACK состоит из двух битов [ o 0 A C K   o 1 A C K ]
Figure 00000003
, с o 0 A C K  
Figure 00000004
для первого TB и o 1 A C K
Figure 00000005
для второго TB. Однако если UE применяет объединение в пространственной области для 2 битов HARQ-ACK, связанных с приемом 2 TB, когда SU-MIMO PDSCH имеет ранг выше первого, обратная связь UE состоит только из одного бита HARQ-ACK, который имеет двоичное значение 0 (значение NACK), когда неправильно принят, по меньшей мере, один TB, или двоичное значение 1 (значение ACK), когда оба TB приняты правильно. Поскольку TM PDSCH определяет количество перенесенных TB (один или два), он также определяет соответствующее количество битов HARQ-ACK (если пространственное объединение не применяется).
На Фиг. 2 показана схема, демонстрирующая структуру PUCCH в одном слоте подкадра для передачи множественных битов информации HARQ-ACK с использованием способа передачи мультиплексирования с ортогональным частотным разделением, расширенного посредством дискретного преобразования Фурье (DFT-S-OFDM).
Согласно фиг. 2, после кодирования и модуляции, с использованием, например, блочного кода RM и квадратурно-фазовой манипуляции (QPSK), соответственно, набор одних и тех же битов HARQ-ACK 210 перемножается на блоке 220 умножения с элементами ортогонального покрывающего кода (OCC) 230 и затем подвергаются предварительному DFT-кодированию на предварительном кодере 240 на основе DFT. Например, для 5 символов на слот, несущих биты HARQ-ACK, OCC имеет длину 5 {OCC(0), OCC(1), OCC(2), OCC(3), OCC(4)}, и может иметь вид {1, 1, 1, 1, 1}, {1, exp(j2π/5), exp(j4π/5), exp(j6π/5), exp(j8π/5)}, {1, exp(j4π/5), exp(j8π/5), exp(j2π/5), exp(j6π/5)}, {1, exp(j6π/5), exp(j2π/5), exp(j8π/5), exp(j4π/5)} или {1, exp(j8π/5), exp(j6π/5), exp(j4π/5), exp(j2π/5)}. Выходной сигнал предварительного кодера 240 на основе DFT проходит через блок 250 обратного быстрого преобразования Фурье (IFFT) и затем отображается в символ 260 DFT-S-OFDM. Поскольку предыдущие операции являются линейными, их относительный порядок может быть изменен. Поскольку предполагается, что передача PUCCH осуществляется в одном PRB, который состоит из N sc RB = 12
Figure 00000006
RE, существует 24 кодированных бита HARQ-ACK, передаваемых в каждом слоте (12 символов QPSK HARQ-ACK) и код RM ( 32, O HARQ ACK )
Figure 00000007
прореживается в код RM ( 24, O HARQ ACK )
Figure 00000008
. Во втором слоте подкадра могут передаваться те же самые или другие биты HARQ-ACK. Помимо сигналов HARQ-ACK, RS передаются в каждом слоте для обеспечения согласованной демодуляции сигналов HARQ-ACK. Каждый RS построен из последовательности 270 Задова-Чу (ZC) длиной 12, которая проходит через блок 280 IFFT и отображается в другой символ 290 DFT-S-OFDM.
Структура PUCCH, показанная на фиг. 2, может поддерживать надежный прием лишь ограниченного количества битов информации HARQ-ACK, которое также называется полезной нагрузкой HARQ-ACK, без необходимости в большой скорости кодирования, поскольку она может поддерживать только 24 кодированных бита HARQ-ACK. Использование двойного кода RM дает возможность поддерживать увеличенные полезные нагрузки HARQ-ACK. Например, одинарный код RM можно использовать для полезных нагрузок HARQ-ACK вплоть до 10 битов, и двойной код RM можно использовать для полезных нагрузок HARQ-ACK от 11 до 20 битов. Благодаря двойному коду RM, отображение в последовательные элементы DFT может перемежаться между элементами из выходного сигнала первого кода RM и элементами из выходного сигнала второго кода RM последовательным образом. Для полезных нагрузок HARQ-ACK свыше 20 битов, можно использовать сверточное кодирование.
На Фиг. 3 показана схема, демонстрирующая блок-схему передатчика для передачи информации HARQ-ACK, закодированной с использованием одинарного кода RM.
Согласно фиг. 3, биты 305 информации HARQ-ACK кодируются и модулируются кодером и модулятором 310 и затем перемножаются с элементом OCC 325 для соответствующего символа DFT-S-OFDM на блоке 320 умножения. Затем выходной сигнал блока 320 умножения подвергается предварительному DFT-кодированию предварительным кодером 330 на основе DFT. После предварительного DFT-кодирования отображение поднесущих осуществляется блоком 340 отображения поднесущих, действующим под управлением контроллера 350. После этого IFFT осуществляется блоком 360 IFFT, CP добавляется блоком 370 вставки CP, и сигнал фильтруется для создания временного окна фильтром 380, благодаря чему генерируется передаваемый сигнал 390. Дополнительные схемы передатчика, например, цифро-аналоговый преобразователь, аналоговые фильтры, усилители и антенны передатчика также могут быть включены в блок-схему передатчика на фиг. 3.
На Фиг. 4 показана схема, демонстрирующая блок-схему приемника для приема информации HARQ-ACK, закодированной с использованием одинарного кода RM.
Согласно фиг. 4, после приема радиочастотного (РЧ) аналогового сигнала и его преобразования в цифровой сигнал 410, цифровой сигнал 410 фильтруется для создания временного окна на фильтре 420, и CP удаляется на блоке 430 удаления CP. Затем, приемник NodeB применяет FFT на блоке 440 FFT, осуществляет обратное отображение поднесущих на блоке 450 обратного отображения поднесущих, который действует под управлением контроллера 455, и применяет обратное DFT (IDFT) на блоке 460 IDFT. Затем выходной сигнал блока 460 IDFT перемножается с элементом 475 OCC для соответствующего символа DFT-S-OFDM на блоке 470 умножения. Сумматор 480 суммирует выходные сигналы для символов DFT-S-OFDM, переносящих сигналы HARQ-ACK в каждом слоте, и демодулятор и декодер 490 демодулирует и декодирует суммированные сигналы HARQ-ACK в обоих слотах подкадра для получения битов 495 информации HARQ-ACK. Общеизвестные функциональные возможности приемника, например, оценка канала, демодуляция и декодирование также могут быть включены в блок-схему приемника на фиг. 4.
На Фиг. 5 показана схема, демонстрирующая блок-схему передатчика для передачи информации HARQ-ACK, закодированной с использованием двойного кода RM.
Согласно фиг. 5, полезная нагрузка O H A R Q A C K
Figure 00000009
битов 505 HARQ-ACK сначала сегментируется на две части O H A R Q A C K 1 = O H A R Q A C K / 2
Figure 00000010
битов и O H A R Q A C K 2 = O H A R Q A C K / 2
Figure 00000011
битов на блоке 510 сегментирования. Затем сегментированные части по отдельности кодируются кодом RM ( 32, O H A R Q A C K 1 )
Figure 00000012
и ( 32, O H A R Q A C K 2 )
Figure 00000013
, соответственно, и затем каждый из 32 кодированных битов прореживается в 24 кодированных бита, которые затем модулируются в режиме QPSK для получения 12 QPSK-кодированных символов, на блоках 520 и 525 кодировании и модуляции, соответственно. Первые 6 для каждого из 12 QPSK-кодированных символов объединяются, например, путем чередования, на блоке 530 и затем перемножаются с элементом OCC 545 для соответствующего символа DFT-S-OFDM на блоке умножения 540 для передачи в первом слоте подкадра. Такая же обработка применяется к последним 6 из 12 QPSK-кодированных символов, которые передаются во втором слоте подкадра. После предварительного DFT-кодирования на предварительном кодере 550 на основе DFT, RE назначенного PRB PUCCH выбираются на блоке 565 отображения поднесущих, который действует под управлением контроллера 560. IFFT осуществляется на блоке IFFT 570, и наконец, к передаваемому сигналу 580 применяются CP и фильтрация. Дополнительные схемы передатчика, например, цифро-аналоговый преобразователь, аналоговые фильтры, усилители и антенны передатчика могут быть включены в блок-схему передатчика на фиг. 5.
На Фиг. 6 показана схема, демонстрирующая блок-схему приемника для приема информации HARQ-ACK, закодированной с использованием двойного кода RM.
После того, как антенна принимает РЧ аналоговый сигнал и после дополнительных блоков обработки (например, фильтров, усилителей, преобразователей понижения частоты и аналого-цифровых преобразователей), цифровой сигнал 610 фильтруется, и CP удаляется. Затем приемник NodeB применяет FFT на блоке 620 FFT, выбирает RE, используемый передатчиком UE на блоке 630 обратного отображения поднесущих, который действует под управлением контроллера 635. Приемник NodeB применяет IDFT на блоке 640 IDFT, умножает на элемент 655 OCC для соответствующего символа DFT-S-OFDM на блоке 650, умножения суммирует выходные сигналы для символов DFT-S-OFDM в каждом слоте на блоке 660 суммирования, собирает символы QPSK из обоих слотов подкадра на блоке 670 сбора, разделяет (осуществляют обратное перемежение) 24 символа QPSK на исходные пары 12 символов QPSK в блоке 675 разделения и демодулирует и декодирует каждую из двух пар 12 символов QPSK на блоках 680 и 685 демодуляции и декодирования, соответственно, для получения передаваемых битов 690 HARQ-ACK. Общеизвестные функциональные возможности приемника, например, например, оценка канала, демодуляция и декодирование, также могут быть включены в блок-схему приемника на фиг. 6.
Использование максимальной полезной нагрузки HARQ-ACK на PUCCH не создает дополнительных издержек ресурсов. UE может передавать NACK или DTX (в случае информации HARQ-ACK, имеющей три состояния) для TB, не принятых им. Однако NodeB уже знает соты DL без SA DL или передачи PDSCH на UE, и может использовать знание о том, что UE передает NACK для каждой из этих сот DL (априорную информацию) для повышения надежности приема HARQ-ACK. Это возможно, поскольку предполагается использование линейного блочного кода и QPSK для кодирования и модуляции битов HARQ-ACK, соответственно, и NodeB может рассматривать, в качестве предполагаемых кодовых слов HARQ-ACK, только те, которые имеют NACK (двоичный '0') в заранее определенных положениях, соответствующих сотам без передач SA DL на UE. Вследствие реализации процесса декодирования, использовать априорную информацию было бы непрактично или невозможно, если бы сверточный код или турбокод использовался для кодирования битов информации HARQ-ACK. Поэтому скорость кодирования для передачи информации HARQ-ACK на PUCCH зависит от количества битов информации HARQ-ACK, которое NodeB заранее не знает.
Для передачи HARQ-ACK на PUSCH, UE определяет соответствующее количество Q
Figure 00000014
кодированных символов, как показано ниже в уравнении (1).
Q = min ( O HARQ ACK β offset PUSCH Q m R , 4 M sc PUSCH )
Figure 00000015
…(1)
где β offset PUSCH
Figure 00000016
сообщается UE посредством сигнализации более высокого уровня, Q m
Figure 00000017
- количество битов модуляции данных ( Q m = 2, 4, 6
Figure 00000018
для QPSK, QAM16, QAM64, соответственно), R
Figure 00000019
- скорость кодирования данных начальной передачи PUSCH для одного и того же TB, M sc PUSCH
Figure 00000020
- BW передачи PUSCH в текущем подкадре, и
Figure 00000021
- функция округления до большего целого, которая округляет число до ближайшего большего целого числа. Скорость кодирования R
Figure 00000019
определяется как R = ( r = 0 C CB 1 K r ) / ( Q m M sc PUSCH initial N symb PUSCH initial )
Figure 00000022
, где C CB
Figure 00000023
- общее количество блоков кода, и K r
Figure 00000024
- количество битов для блока кода под номером r. Максимальное количество RE HARQ-ACK ограничено RE из 4 символов DFT-S-OFDM ( 4 M sc PUSCH )
Figure 00000025
. Значение Q m R
Figure 00000026
определяет спектральную эффективность (SE) передачи данных в PUSCH, и, зная M sc PUSCH
Figure 00000020
, ее можно непосредственно вывести из схемы модуляции и кодирования (MCS), используемой для передачи данных.
В системах TDD, поскольку UE необходимо передавать информацию HARQ-ACK, соответствующую потенциальным приемам TB, во множественных подкадрах DL в окне объединения, информационный элемент (IE) индекса назначения DL (DAI), V DAI DL
Figure 00000027
, включается в SA DL для сообщения UE количества SA DL, передаваемых ему от NodeB. Поскольку NodeB не может прогнозировать, будут ли присутствовать SA DL для UE в будущих подкадрах DL, V DAI DL
Figure 00000028
является относительным счетчиком, который увеличивается с каждым SA DL, передаваемым на UE, и начинается с начала после последнего подкадра DL в окне объединения. Если UE не удается обнаружить последнее SA DL, оно не может узнать об этом событии, тогда как если UE не удается обнаружить SA DL, отличное от последнего, оно сможет узнать об этом событии, если примет другое SA DL в следующем подкадре DL того же самого окна объединения.
На Фиг. 7 показана схема, демонстрирующая настройку для IE DAI DL в 4 подкадрах DL окна объединения.
Согласно фиг. 7, в подкадре 710 DL 0, NodeB передает SA DL на UE и устанавливает значение IE DAI DL V DAI DL = 0
Figure 00000029
. В подкадре 720 DL 1, NodeB передает SA DL на UE и устанавливает значение IE DAI DL V DAI DL = 1
Figure 00000030
. В подкадре 730 DL 2, NodeB не передает SA DL на UE и не увеличивает значение IE DAI DL. В подкадре 740 DL 3, NodeB передает SA DL на UE и устанавливает значение IE DAI DL V DAI DL = 2
Figure 00000031
.
Если UE имеет передачу данных в подкадре UL, где также предполагается передавать информацию HARQ-ACK, то данные совместно с HARQ-ACK могут передаваться по PUSCH. Во избежание ошибочных случаев, когда UE пропускает последнее SA DL, и для обеспечения взаимопонимания между NodeB и UE в отношении количества битов HARQ-ACK на PUSCH, IE DAI также включается в SA UL (IE DAI UL), планирующее PUSCH, для указания количества битов HARQ-ACK, которые должно включить UE. Для установки на фиг. 7 где N bundle = 4
Figure 00000032
, IE DAI UL может быть представлен 2 битами с соответствующими значениями V DAI UL =
Figure 00000033
0 или 4, 1, 2, 3. Если UE принимает SA DL в окне объединения, то биты “00” IE DAI UL отображаются в значение IE DAI UL V DAI UL = 4
Figure 00000034
вместо V DAI UL = 0
Figure 00000035
.
Для поддержки высоких скоростей передачи данных в системе связи, предусмотрена агрегация несущих (CA) множественных сот для обеспечения более широких рабочих полос (BW). Например, для поддержки связи в полосе 60 МГц можно использовать CA трех сот с полосой 20 МГц.
На Фиг. 8 показана схема, демонстрирующая принцип CA.
Согласно фиг. 8, рабочая BW 810 DL шириной 60 МГц обеспечивается за счет агрегации 3 сот, CC 821 DL 1, CC 822 DL 2 и CC 823 DL 3, каждая из которых имеет BW DL шириной 20 МГц. Аналогично, рабочая BW UL шириной 60 МГц 830 обеспечивается за счет агрегации 3 сот, CC 841 UL 1, CC 842 UL 2 и CC 843 UL 3, каждая из которых имеет BW UL шириной 20 МГц.
Для простоты, на фиг. 8, предполагается, что каждая сота имеет уникальную пару DL и UL (симметричную CA), но также возможно, что более одной DL отображается в одну UL и наоборот (асимметричная CA). Это отображение обычно зависит от конкретного UE, и NodeB может конфигурировать набор из C
Figure 00000036
сот для UE, с использованием, например, сигнализации управления радиоресурсами (RRC), и активировать поднабор из A
Figure 00000037
сот ( A C )
Figure 00000038
для приема PDSCH в подкадре, с использованием, например, сигнализации управления доступом к среде (MAC) (UE может не отслеживать неактивные соты для связи с NodeB). В случае пропуска PDSCH, активирующего или деактивирующего сконфигурированные соты, UE и NodeB могут иметь неверное представление относительно активных сот. Кроме того, для поддержания связи, одна сота с парой DL/UL должна всегда оставаться активированной и называется первичной сотой. Предполагается, что передачи PUCCH с UE осуществляются только в его первичной соте (Pcell), и информация HARQ-ACK переносится только в одном PUSCH.
На Фиг. 9 показана схема, демонстрирующая распараллеливание исполнения DAI DL на фиг. 7 на множественные соты DL.
Согласно фиг. 9, NodeB передает SA DL на UE в 3 подкадрах DL в соте 0 910 и устанавливает значения IE DAI DL согласно количеству SA DL, передаваемых на UE только для приемов PDSCH в соте 0. Аналогичным образом, NodeB передает SA DL на UE в 2 подкадрах DL в соте 1 920 и 2 подкадрах DL в соте 2 930 и устанавливает значения IE DAI DL согласно количеству SA DL, передаваемых на UE только для приемов PDSCH в соте 1 и соте 2, соответственно.
Основное условие правильной передачи информации HARQ-ACK состоит в том, что UE и NodeB должны иметь взаимопонимание в отношении полезной нагрузки HARQ-ACK. Это включает в себя взаимопонимание в отношении упорядочения битов информации HARQ-ACK по сотам и подкадрам в передаваемом кодовом слове HARQ-ACK и способа кодирования, используемого для передачи полезной нагрузки HARQ-ACK (одиночный или двойной код RM).
Фактическая полезная нагрузка HARQ-ACK также подлежит ограничению, поскольку иначе трудно добиться выполнения желаемых требований к надежности. Дополнительно, необходимые ресурсы в PUSCH для передачи больших полезных нагрузок HARQ-ACK могут чрезмерно возрастать и приводить к неприемлемым издержкам или к неспособности надежно принимать полезную нагрузку HARQ-ACK. По этой причине полезная нагрузка HARQ-ACK подлежит сжатию, и пространственное объединение рассматривается как первый выбор, возможно, сопровождаемый объединением по подкадрам DL (временным объединением) или по сотам (сотовым объединением).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение призвано решать, по меньшей мере, вышеописанные проблемы и/или недостатки и обеспечивать, по меньшей мере, преимущества, описанные ниже. Соответственно, аспект настоящего изобретения предусматривает способы и устройство для UE, работающего в системе связи TDD и сконфигурированного с множественными сотами DL для определения способа кодирования битов информации квитирования как функции их количества.
В соответствии с аспектом настоящего изобретения, предусмотрен способ, осуществляемый на UE, для кодирования битов информации квитирования для передачи на базовую станцию в системе связи TDD. Биты информации квитирования генерируются для каждого из множества TTI и для каждой из множества сот, сконфигурированных для UE. Один бит информации квитирования генерируется для каждой соты, сконфигурированной c режимом передачи (TM), который переносит один TB данных. Два бита информации квитирования генерируются для каждой соты, сконфигурированной с TM, переносящим два TB данных. Биты информации квитирования, соответствующие множеству TTI, для каждой из множества сот, размещены в первом кодовом слове в порядке возрастания значений индекса соты. Первое кодовое слово кодируется, когда общее количество битов информации квитирования меньше или равно заранее определенному значению. Последовательные биты информации квитирования из первого кодового слова попеременно помещаются во второе кодовое слово и третье кодовое слово, и второе кодовое слово и третье кодовое слово кодируются, когда общее количество битов информации квитирования больше заранее определенного значения.
В соответствии с другим аспектом настоящего изобретения, предусмотрен способ, осуществляемый на UE, для передачи битов информации квитирования на базовую станцию в системе связи TDD. Биты информации квитирования генерируются для каждого из множества TTI и для каждой из множества сот, сконфигурированных для UE. Один бит информации квитирования генерируется для каждой соты, сконфигурированной с TM, который переносит один TB данных. Два бита информации квитирования генерируются для каждой соты, сконфигурированной с TM, переносящим два TB данных. UE сконфигурировано для применения пространственного объединения для битов информации квитирования по поднабору множества сот посредством сигнализации более высокого уровня. Общее количество битов информации квитирования передаются в соответствии с пространственным объединением, размером множества TTI, размером множества сот и размером поднабора множества сот.
В соответствии с дополнительным аспектом настоящего изобретения, предусмотрено устройство UE для передачи битов информации квитирования. Устройство UE осуществляет связь с базовой станцией в системе TDD. Устройство включает в себя приемник для приема транспортных блоков (TB) данных в, по меньшей мере, одной из множества сконфигурированных сот и в, по меньшей мере, одном из множества интервалов (TTI) времени передачи, для генерации битов информации квитирования для каждого из поднабора множества TTI и для каждой из множества сконфигурированных сот, причем один бит информации квитирования генерируется для каждой соты, сконфигурированной режимом передачи (TM), который переносит один TB данных, и два бита информации квитирования генерируются для каждой соты, сконфигурированной с TM, который переносит два TB данных, и для размещения, в первом кодовом слове, битов информации квитирования, соответствующих поднабору множества TTI для каждой из множества сот, в порядке возрастания значений индекса соты. Устройство также включает в себя кодер для кодирования первого кодового слова, когда общее количество битов информации квитирования меньше или равно заранее определенному значению, и для попеременного помещения последовательных битов информации квитирования из первого кодового слова во второе кодовое слово и третье кодовое слово и кодирования второго кодового слова и третьего кодового слова, когда общее количество битов информации квитирования больше заранее определенного значения. Устройство дополнительно включает в себя передатчик для передачи кодированных битов информации квитирования первого кодового слова или кодированных битов информации квитирования второго кодового слова и третьего кодового слова.
В соответствии с дополнительным аспектом настоящего изобретения, предусмотрено устройство UE для передачи битов информации квитирования. Устройство UE осуществляет связь с базовой станцией в системе TDD. Устройство включает в себя приемник для приема TB данных в, по меньшей мере, одной из множества сконфигурированных сот и в, по меньшей мере, одном из множества TTI, для генерации битов информации квитирования для каждого из поднабора множества TTI и для каждой из множества сконфигурированных сот, причем один бит информации квитирования генерируется для каждой соты, сконфигурированной с TM, который переносит один TB данных, и два бита информации квитирования генерируются для каждой соты, сконфигурированной с TM, который переносит два TB данных, и для применения пространственного объединения для битов информации квитирования по поднабору множества сот посредством сигнализации более высокого уровня. Устройство также включает в себя передатчик для передачи общего количества битов информации квитирования в соответствии с пространственным объединением, размером множества TTI, размером множества сот и размером поднабора множества сот.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Вышеизложенные и другие аспекты, признаки и преимущества настоящего изобретения станут понятными из нижеследующего подробного описания, приведенного совместно с прилагаемыми чертежами, в которых:
фиг. 1 - схема, демонстрирующая структуру кадра для системы TDD;
фиг. 2 - схема, демонстрирующая традиционную структуру PUCCH в одном слоте подкадра для передачи множественных битов информации HARQ-ACK с использованием способа передачи DFT-S-OFDM.
Фиг. 3 - блок схема, демонстрирующая передатчик для передачи информации HARQ-ACK, закодированной с использованием одинарного кода RM;
фиг. 4 - блок схема, демонстрирующая приемник для приема информации HARQ-ACK, закодированной с использованием одинарного кода RM;
фиг. 5 - блок схема, демонстрирующая передатчик для передачи информации HARQ-ACK, закодированной с использованием двойного кода RM;
фиг. 6 - блок схема, демонстрирующая приемник для приема информации HARQ-ACK, закодированной с использованием двойного кода RM;
фиг. 7 - схема, демонстрирующая настройку для IE DAI DL в 4 подкадрах DL окна объединения;
фиг. 8 - схема, демонстрирующая принцип CA;
фиг. 9 - схема, демонстрирующая распараллеливание исполнения IE DAI DL на фиг. 7 на множественные соты DL;
фиг. 10 - схема, демонстрирующая применение пространственного объединения HARQ-ACK по сотам и подкадрам, согласно варианту осуществления настоящего изобретения;
фиг. 11 - схема, демонстрирующая применение пространственного объединения HARQ-ACK на PUSCH, связанном с SA UL, переносящем IE DAI UL, согласно варианту осуществления настоящего изобретения;
фиг. 12 - схема, демонстрирующая применение пространственного объединения HARQ-ACK, сопровождаемого временным объединением, которому отдается приоритет для сот без пространственного объединения, согласно варианту осуществления настоящего изобретения;
фиг. 13 - схема, демонстрирующая применение другого объединения HARQ-ACK на PUSCH относительно PUCCH, согласно варианту осуществления настоящего изобретения;
фиг. 14 - схема, демонстрирующая первое разделение битов информации HARQ-ACK и битов другой информации управления UL, если таковые существуют, для кодирования 2 кодами RM, согласно варианту осуществления настоящего изобретения; и
фиг. 15 - схема, демонстрирующая второе разделение битов информации HARQ-ACK и битов другой информации управления UL, если таковые существуют, для кодирования 2 кодами RM, согласно варианту осуществления настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Варианты осуществления настоящего изобретения подробно описаны со ссылкой на прилагаемые чертежи. Идентичные или аналогичные компоненты могут обозначаться идентичными или аналогичными позиционными обозначениями, даже если они проиллюстрированы на разных чертежах. Подробные описания конструкций или процессов, известных в технике могут быть опущены во избежание затруднения понимания предмета настоящего изобретения.
Дополнительно, хотя варианты осуществления настоящего изобретения описаны ниже со ссылкой на передачу OFDM с DFT-расширением, они также применимы, в целом, ко всем передачам на основе мультиплексирования с частотным разделением (FDM) и, в частности, множественного доступа с частотным разделением на одной несущей (SC-FDMA) и OFDM.
Предполагается, что UE генерирует информацию HARQ-ACK в ответ на каждый TB, связанный с SA DL. Однако UE также может детерминировано генерировать информацию HARQ-ACK, связанную с каждым TB SPS, который NodeB передает на UE в заранее определенных подкадрах DL, не передавая соответствующий SA DL. Понятно, что UE включает информацию HARQ-ACK вследствие SPS PDSCH, когда оно существует, с тем, которое оно генерирует в ответ на SA DL, и его размещение может быть, например, в начале кодового слова HARQ-ACK. Предполагается, что UE генерирует бит информации HARQ-ACK, соответствующий каждому SA DL. Варианты осуществления настоящего изобретения соотносят сконфигурированные соты с пользовательским оборудованием UE, но также могут непосредственно применяться, если вместо этого рассматриваются активированные соты.
Варианты осуществления настоящего изобретения рассматривают аспекты для определения способа кодирования для битов информации HARQ-ACK на PUCCH или в PUSCH как функции полезной нагрузки HARQ-ACK, и для разбиения битов информации HARQ-ACK в двойном коде RM. Предполагается, что одинарный код RM используется, если полезная нагрузка HARQ-ACK меньше или равна S 1
Figure 00000039
битам, и что двойной код RM используется, если полезная нагрузка HARQ-ACK больше S 1
Figure 00000040
битов, но меньше или равна S 2
Figure 00000041
битам. Если полезная нагрузка HARQ-ACK больше S 2
Figure 00000042
битов, применяется избирательное или полное пространственное объединение для снижения полезной нагрузки HARQ-ACK до S 2
Figure 00000041
битов или ниже S 2
Figure 00000041
битов, соответственно. Если, после полного пространственного объединения, полезная нагрузка HARQ-ACK по-прежнему превышает S 2
Figure 00000041
битов, дополнительно осуществляется временное объединение или сотовое объединение, пока полезная нагрузка HARQ-ACK не станет меньше или равной S 2
Figure 00000041
битам.
Для UE с C
Figure 00000043
сконфигурированными сотами, N DAI DL ( c )
Figure 00000044
обозначает количество SA DL, которые UE определяет как передаваемые с NodeB на основании IE DAI DL в SA DL, которые UE обнаруживает в окне объединения N bundle
Figure 00000045
подкадров, и Q add ( c )
Figure 00000046
обозначает количество дополнительных SA DL, которые UE может не иметь возможности определить из IE DAI DL в обнаруженных им SA DL (например, Q add ( c ) = 0
Figure 00000047
, если UE обнаруживает SA DL в последнем подкадре DL окна объединения в соте c
Figure 00000048
и Q add ( c ) = 1
Figure 00000049
в противном случае). T B max ( c )
Figure 00000050
обозначает максимальное количество TB, которые UE может принимать в подкадре в соте c
Figure 00000051
согласно сконфигурированному TM PDSCH, полезную нагрузку HARQ-ACK без пространственного объединения в PUCCH или в PUSCH, не связанном с SA UL, можно определять без разногласий между NodeB и UE, как показано ниже в уравнении (2).
O HARQ ACK = c = 0 C 1 ( N DAI DL ( c ) + Q add ( c ) ) T B max ( c )
Figure 00000052
. …(2)
В зависимости от исполнения DAI DL, полезную нагрузку HARQ-ACK можно определять иначе, чем в уравнении (2), но точное определение не существенно для вариантов осуществления настоящего изобретения, и уравнение (2) приведено только в порядке примера. Например, согласно альтернативному подходу к вычислению полезной нагрузки HARQ-ACK, O HARQ ACK = N bundle ( C + C 2 )
Figure 00000053
, где C 2
Figure 00000054
- количество сот, для которого UE сконфигурировано TM, допускающим прием 2 TB на подкадр.
На основании значения O HARQ ACK
Figure 00000055
, способ кодирования для передачи HARQ-ACK на PUCCH определяется следующим образом:
a) Если 2 O H A R Q A C K S 1
Figure 00000056
, одинарный код RM используется без пространственного объединения
a. Поскольку CA DL предусматривает наличие, по меньшей мере, C = 2
Figure 00000057
сот, минимальное значение O HARQ ACK
Figure 00000058
получается при N DAI DL ( c ) = 1
Figure 00000059
, Q add ( c ) = 0
Figure 00000060
и T B max ( c ) = 1
Figure 00000061
.
b. Хотя другой способ кодирования можно использовать для передачи O HARQ ACK = 2
Figure 00000062
битов на PUSCH, для простоты, предполагается одинарный код RM.
b) Если S 1 < O HARQ ACK S 2
Figure 00000063
, двойной код RM используется без пространственного объединения.
c) Если S 2 < O HARQ ACK
Figure 00000064
, двойной код RM используется с пространственным объединением и, возможно, временным или сотовым объединением.
Первый аспект вариантов осуществления настоящего изобретения фокусируется на случае, когда S 2 < O HARQ ACK
Figure 00000065
, и предусматривает выбор одинарного кода RM или двойного кода RM и применение объединения в различных областях. Предполагая, что UE присвоило каждой соте уникальное значение Cell_Index, пространственное объединение HARQ-ACK, соответствующее последнему подкадру DL в окне объединения, осуществляется, начиная с соты с наибольшим (или наименьшим) Cell_Index, рассматривая только соты со сконфигурированным TM, допускающим прием 2 TB, и продолжая сначала по сотовой области и затем по временной области в итерационном порядке. Пространственное объединение в первичной соте, если UE сконфигурировано TM, допускающим прием 2 TB в первичной соте, может осуществляться в последнюю очередь независимо от соответствующего Cell_Index. Пространственное объединение сначала осуществляется по сотовой области с целью минимизации или избежания штрафования некоторых сот больше чем других сот. Причина, по которой пространственное объединение сначала осуществляется для последнего подкадра окна объединения, состоит в том, что он с большей вероятностью не переносит биты фактической информации HARQ-ACK (поскольку UE не может определить, потерпело ли оно неудачу в обнаружении SA DL в последнем подкадре), что позволяет минимизировать влияние потери информации вследствие объединения.
На Фиг. 10 показана схема, демонстрирующая применение пространственного объединения HARQ-ACK по сотам и подкадрам, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 10, Cell_Index каждой соты представлен соответствующим номером. В соте 0 1010, соте 2 1030 и соте 3 1040, UE сконфигурировано TM, допускающим прием 2 TB на подкадр DL, и для N DAI DL ( c ) = 3
Figure 00000066
подкадров DL ( Q add ( c ) = 1
Figure 00000067
), оно генерирует 8 битов 1015, 1035 и 1045 HARQ-ACK для каждой из этих сот, соответственно. Порядок битов HARQ-ACK совпадает с порядком подкадров DL, которым они соответствуют. В соте 1 1020, UE сконфигурировано TM, допускающим прием 1 TB на подкадр DL, и генерирует 4 бита 1025 HARQ-ACK. Поэтому общее количество битов HARQ-ACK равно 28. Предполагая, что S 2 = 20
Figure 00000068
, требуется пространственное объединение 8 пар HARQ-ACK, и оно начинается с последнего подкадра в окне объединения N bundle = 4
Figure 00000069
подкадров (подкадра DL 3) и с соты с наибольшим Cell_Index (или наименьшим Cell_Index) и продолжается последовательно в порядке убывания (или возрастания) Cell_Index, для сот, сконфигурировавших TM, допускающий передачу 2 TB, если необходимо, до соты с наименьшим Cell_Index. Поэтому пространственное объединение осуществляется для битов HARQ-ACK, соответствующих подкадрам DL 3, 2 и 1 соты 3, для битов HARQ-ACK, соответствующих подкадрам DL 3, 2 и 1 соты 2, и для подкадров DL 3 и 2 соты 0, в результате чего, получаются объединенные биты 1050, 1060 и 1070 HARQ-ACK, соответственно.
Первичную соту можно рассматривать в последнюю очередь для пространственного объединения. Дело в том, что в первичной соте планирование может происходить чаще, чем в других сотах, поэтому более вероятно, что пространственное объединение в первичной соте будет применяться к битам фактического HARQ-ACK вместо предпочтительного применения к битам HARQ-ACK, не связанным с фактическими SA DL. Последние биты HARQ-ACK генерируются для достижения заранее определенного размера кодового слова HARQ-ACK в O HARQ ACK
Figure 00000070
битов и не предназначены для переноса информации (они являются битами заполнения, установленными на значение NACK, которое заранее известно декодеру NodeB, поскольку они соответствуют SA DL, которые NodeB не передавал). Кроме того, первичная сота может переносить данные с более высоким приоритетом, чем данные в остальных сотах, и может быть желательно не сжимать информацию HARQ-ACK посредством пространственного объединения.
Альтернативный подход к осуществлению пространственного объединения предусматривает, что NodeB конфигурирует UE посредством RRC, сигнализирующего порядок сот, для которых UE должно осуществлять пространственное объединение. Поэтому, Cell_Index можно рассматривать как заменяемый сконфигурированным NodeB порядком для набора сконфигурированных сот, для которых UE должно осуществлять пространственное объединение. Дополнительно, NodeB также может конфигурировать, для UE, начальный подкадр для пространственного объединения.
Если UE принимает SA UL для передачи PUSCH в том же подкадре UL, в котором ожидается передача сигнала HARQ-ACK, и информация HARQ-ACK включена в PUSCH, полезная нагрузка HARQ-ACK определяется согласно нижеследующему уравнению (3).
O HARQ ACK = V DAI UL ( C + C 2 )
Figure 00000071
…(3)
где предполагается, что V DAI UL
Figure 00000072
указывает соту с наибольшим количеством SA DL, и что биты HARQ-ACK генерируются для всех сот, исходя из того, что передача V DAI UL
Figure 00000073
SA DL в каждой соте осуществляется независимо от фактического количества SA DL в каждой соте. UE может использовать значение NACK для битов информации HARQ-ACK в соте, которые не соответствуют принятому TB или SA DL (битов заполнения для передачи общего количества O HARQ ACK
Figure 00000074
битов согласно уравнению (3)). Если полезная нагрузка HARQ-ACK, определенная согласно уравнению (2), меньше, чем определенная согласно уравнению (3), первую можно рассматривать независимо от значения IE DAI UL.
Для V DAI UL = 3
Figure 00000075
и N bundle = 4
Figure 00000069
, полезная нагрузка HARQ-ACK на PUSCH для C = 4
Figure 00000076
и C 2 = 3
Figure 00000077
снижается от O HARQ ACK = c = 0 C 1 ( N DAI DL ( c ) + Q add ( c ) ) T B max ( c ) = 28
Figure 00000078
битов (или от O HARQ ACK = N bundle ( C + C 2 ) = 28
Figure 00000079
битов) до O HARQ ACK = V DAI UL ( C + C 2 ) = 21
Figure 00000080
битов. Следовательно, предполагая, что S 2 = 20
Figure 00000068
, требуется пространственное объединение только для 1 пары HARQ-ACK.
На Фиг. 11 показана схема, демонстрирующая применение пространственного объединения HARQ-ACK на PUSCH, связанном с SA UL, переносящем IE DAI UL, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 11, Cell_Index каждой соты представлен соответствующим номером. В соте 0 1110, соте 2 1130 и соте 3 1140, UE сконфигурировано TM, допускающим прием 2 TB на подкадр DL, и для V DAI UL = 3
Figure 00000081
, генерирует 6 битов 1115, 1135 и 1145 HARQ-ACK для каждой из этих сот, соответственно. Порядок битов HARQ-ACK совпадает с порядком подкадров DL, которым они соответствуют. В соте 1 1120, UE сконфигурировано TM, допускающим прием 1 TB на подкадр DL, и для V DAI UL = 3
Figure 00000081
, генерирует 3 бита 1125 HARQ-ACK. Поэтому общее количество битов HARQ-ACK равно 21. Поскольку пространственное объединение битов HARQ-ACK начинается с последнего подкадра в окне объединения (подкадра DL 3) и с соты с наибольшим Cell_Index, оно осуществляется только для битов HARQ-ACK, соответствующих подкадру DL 3 соты 3, в результате чего получаются объединенные биты 1150 HARQ-ACK.
Если пространственного объединения недостаточно для снижения полезной нагрузки HARQ-ACK в S 2
Figure 00000082
битов или ниже, дополнительно применяется временное объединение и/или сотовое объединение. Предполагая, что сначала осуществляется временное объединение (хотя возможно и обратное), поскольку пространственное объединение уже сжимает информацию HARQ-ACK для 2 TB в 1 бит HARQ-ACK, временному объединению отдается приоритет в сотах, где пространственное объединение не осуществляется (то есть, в сотах, где сконфигурированный TM допускает прием на UE только 1 TB). В противном случае, если временное объединение осуществляется на сотах, для которых также осуществляется пространственное объединение, информация HARQ-ACK для 4 TB будет дополнительно сжиматься в 1 HARQ-ACK что нежелательно, поскольку это увеличивает потерю пропускной способности система вследствие сжатой информации HARQ-ACK.
На Фиг. 12 показана схема, демонстрирующая применение пространственного объединения HARQ-ACK, сопровождаемого временным объединением, которому отдается приоритет для сот без пространственного объединения, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 12, порядок сот для пространственного объединения не существенен, поскольку пространственное объединение осуществляется по всем сотом, к которым оно применимо, в соте 0 1210, соте 2 1230, соте 3 1240 и соте 4 1250, и, для окна объединения размером N bundle = 4
Figure 00000083
подкадров DL, соответствующие 8 битов 1215, 1235, 1245 и 1255 HARQ-ACK сжимаются в соответствующие 4 бита 1218, 1238, 1248 и 1258 HARQ-ACK. Поскольку общее количество Q = 24
Figure 00000084
битов HARQ-ACK после пространственного объединения превышает S 2 = 20
Figure 00000068
, выполняется временное объединение для соты 1 1220 и соты 5 1260. Размер объединения во временной области в каждой применимой соте определяется из необходимого сокращения числа битов HARQ-ACK как ( Q S 2 ) N bundle / C 1
Figure 00000085
(или, для последней соты, где осуществляется временное объединение, как ( Q S 2 ) N bundle / C 1
Figure 00000086
), где
Figure 00000087
- функция округления до меньшего целого, которая округляет число до ближайшего меньшего целого числа, и C 1
Figure 00000088
- количество сот, сконфигурировавших TM, допускающий прием только 1 TB. Затем первоначальные 4 бита 1225 и 1265 HARQ-ACK, сжимаются в соответствующие 2 бита 1228 и 1268 HARQ-ACK.
Порядок сот для применения временного объединения может базироваться на соответствующем “Cell_Index” или может конфигурироваться на NodeB для каждого UE, и временное объединение на первичной соте может осуществляться в последнюю очередь.
Для передачи HARQ-ACK по PUCCH, необходимые ресурсы для максимальной полезной нагрузки уже существуют, например, для передачи 10 битов на фиг. 3 или передачи 20 битов на фиг. 5, и дополнительное снижение полезной нагрузки HARQ-ACK ниже максимума не приведет к снижению издержек. Этого не происходит в случае передачи HARQ-ACK по PUSCH, где необходимые ресурсы увеличиваются с возрастанием полезной нагрузки HARQ-ACK (например, как указано в уравнении (1)). Для очень больших полезных нагрузок HARQ-ACK, например, 10 битов или выше, издержки, вносимые мультиплексированием HARQ-ACK на PUSCH, могут быть существенными и влиять на надежность приема данных, особенно, если они не связаны с SA UL (например, в случае передачи SPS или неадаптивной повторной передачи HARQ, где можно предположить наличие максимально возможной полезной нагрузки HARQ-ACK). Кроме того, максимальных ресурсов, которые могут выделяться для мультиплексирования HARQ-ACK на PUSCH, может оказаться недостаточно для обеспечения желаемой надежности приема HARQ-ACK.
Второй аспект вариантов осуществления настоящего изобретения решает проблему, исходя из того, что к передаче HARQ-ACK на PUSCH можно применять дополнительное объединение по сравнению с передачей HARQ-ACK на PUCCH для достижения меньшей полезной нагрузки HARQ-ACK на PUSCH. Например, допустимая полезная нагрузка HARQ-ACK на PUCCH может достигать S 2
Figure 00000089
битов, тогда как допустимая полезная нагрузка HARQ-ACK на PUSCH может достигать S 0
Figure 00000090
битов, где S 0 < S 2
Figure 00000091
(например, S 0 = S 1
Figure 00000092
).
Процесс дополнительного объединения HARQ-ACK на PUSCH может следовать тем же принципам, которые были описаны ранее на фиг. 10 и фиг. 12, где оно сначала осуществляется в пространственной области, и, если для достижения максимально допустимой полезной нагрузки HARQ-ACK требуется дополнительное объединение, оно продолжается во временной области (или в сотовой области). В отличие от передачи HARQ-ACK на PUCCH, где применение или неприменение объединения HARQ-ACK задано по умолчанию согласно максимальной полезной нагрузке HARQ-ACK, которая может поддерживаться соответствующей структурой PUCCH (то есть, согласно значениям S 1
Figure 00000093
и S 2
Figure 00000094
), применение объединения HARQ-ACK на PUSCH может дополнительно зависеть от параметров передачи PUSCH, например, ее размера и/или MCS для передачи данных, и тогда S 0
Figure 00000095
является функцией этих параметров.
В первом подходе, значение S 0
Figure 00000095
может быть заранее определенным, например, равным S 1
Figure 00000093
. В этом случае, хотя объединение HARQ-ACK на PUCCH применяется, пока полезная нагрузка HARQ-ACK не сожмется до S 2
Figure 00000096
битов, и используется двойной код RM, для передачи HARQ-ACK на PUSCH можно применять дополнительное объединение HARQ-ACK, пока полезная нагрузка HARQ-ACK не сожмется до S 1
Figure 00000097
битов и всегда использовать одинарный код RM.
Во втором подходе, значение S 0
Figure 00000095
динамически вычисляется в зависимости от параметров передачи PUSCH. Одним таким параметром является MCS передачи данных. Например, S 0 = S 1
Figure 00000098
, если MCS ниже заранее определенного порога M C S thr
Figure 00000099
, и S 0 = S 2
Figure 00000100
в противном случае. Это обусловлено тем фактом, что MCS передачи данных, или, эквивалентно, спектральная эффективность передачи данных, определяет ресурсы PUSCH, необходимые для мультиплексирования HARQ-ACK на PUSCH, например, как указано в уравнении (1). Тогда, во избежание существенных издержек HARQ-ACK, особенно для передач PUSCH со сравнительно низкой спектральной эффективностью данных, для MCS ниже M C S thr
Figure 00000101
можно применять объединение HARQ-ACK в большем объеме для повышения надежности приема, как данных, так и информации HARQ-ACK.
В третьем подходе, значение S 0
Figure 00000095
динамически вычисляется в зависимости от размера передачи PUSCH ( M sc PUSCH
Figure 00000102
), который также определяет максимальный объем ресурсов, доступных для мультиплексирования HARQ-ACK на PUSCH, например, как описано в уравнении (1). В этом случае, S 0
Figure 00000095
можно определять как S 0 = 4 M sc PUSCH Q m / M r
Figure 00000103
, где M r
Figure 00000104
- заранее определенное число, например 2, гарантирующее, что результирующая скорость кодирования RM не будет превышать 1 / M r
Figure 00000105
.
Фиг. 13 - схема, демонстрирующая принцип применения различного объединения HARQ-ACK на PUSCH и PUCCH, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 13, для передачи полезной нагрузки HARQ-ACK в O HARQ ACK
Figure 00000106
битов 1305 на PUCCH 1310, если на этапе 1320 определено, что O HARQ ACK S 1
Figure 00000107
, на этапе 1325 используется одинарный код RM, и объединение не используется. Альтернативно, на этапе 1330 проверяется условие S 1 < O HARQ ACK S 2
Figure 00000108
. Если оно выполняется, на этапе 1335 используется двойной код RM, и объединение не используется, а если нет, т.е. S 2 < O HARQ ACK
Figure 00000109
, на этапе 1345 используются двойной код RM и объединение HARQ-ACK, как описано ранее. Для передачи HARQ-ACK на PUSCH 1315, S 0
Figure 00000110
сначала определяется, как описано ранее, на этапе 1350. На блоке 1360 проверяется условие O HARQ ACK S 0
Figure 00000111
. Если оно выполняется, на этапе 1365 применяется такой же процесс для определения полезной нагрузки HARQ-ACK (осуществляется ли объединение) и кодирования, как для передачи на PUCCH. В противном случае, на этапе 1380 применяется объединение HARQ-ACK для снижения полезной нагрузки HARQ-ACK от O HARQ ACK
Figure 00000112
до S 0
Figure 00000110
. Затем, на этапе 1390 применяется такой же процесс для определения полезной нагрузки HARQ-ACK (осуществляется ли объединение) и кодирования, как для передачи на PUCCH, за исключением того, что вместо начальной полезной нагрузки в O HARQ ACK
Figure 00000113
битов используется полезная нагрузка в S 0
Figure 00000110
битов, сжатая посредством объединения.
Когда S 1 < O HARQ ACK S 2
Figure 00000114
и используется двойной код RM, надежность приема информации HARQ-ACK должна гарантироваться за счет минимизации или устранения неравной защиты от ошибок между двумя кодовыми словами HARQ-ACK двойного кода RM и обеспечения гарантии того, что никакое кодовое слово не испытывает высокой скорости кодирования, которая может негативно сказываться на надежности приема соответствующего кодового слова HARQ-ACK. Как описано ранее, одно кодовое слово двойного кода RM, по большей части, не должно содержать биты HARQ-ACK, связанные с фактическими SA DL, тогда как другое кодовое слово двойного кода RM, по большей части, содержит биты HARQ-ACK, не связанные с фактическими SA DL, которые генерируются, напротив, только для достижения заранее определенного размера кодового слова HARQ-ACK в O HARQ ACK
Figure 00000070
битов и не предназначены для переноса информации (биты заполнения).
Третий аспект вариантов осуществления настоящего изобретения предусматривает разбиение битов HARQ-ACK на 2 кодовых слова для двойного кода RM. Как описано ранее в отношении фиг. 5, вместо помещения первых S 1
Figure 00000115
битов HARQ-ACK в первый из двух кодов RM и остальных O HARQ ACK S 1
Figure 00000116
битов HARQ-ACK во второй из двух кодов RM, предусмотрено практически равное разделение полезной нагрузки HARQ-ACK в каждом из двух кодов RM за счет обеспечения O H A R Q A C K 1 = O H A R Q A C K / 2
Figure 00000117
битов HARQ-ACK для первого их двух кодов RM и обеспечения остальных O H A R Q A C K 2 = O HARQ ACK / 2
Figure 00000118
битов HARQ-ACK для второго из двух кодов RM.
Варианты осуществления настоящего изобретения предусматривают, что если дополнительная информация управления UL, отличная от HARQ-ACK, с полезной нагрузкой в O other UCI
Figure 00000119
битов, кодируется совместно с информацией HARQ-ACK на PUCCH, практически равное разделение между двумя кодами RM также применяется для O other_UCI
Figure 00000120
битов (исходя из того, что S 1 < O HARQ ACK + O other_UCI S 2
Figure 00000121
). Например, дополнительной информацией управления может быть индикатор запроса услуги (SRI) или информация состояния канала (CSI). Затем O other_UCI / 2
Figure 00000122
битов дополнительной информации управления обеспечивается для первого из двух кодов RM, и остальные O other_UCI / 2
Figure 00000123
биты дополнительной информации управления обеспечиваются для второго из двух кодов RM. Хотя все O other_UCI
Figure 00000120
биты представляют фактическую информацию, целью равного разделения между 2 словами кода RM является поддержание равного разделения O HARQ ACK
Figure 00000124
битов с одновременным достижением равновесия между разными типами битов информации, переносимых каждым из 2 слов кода RM.
Разделение битов HARQ-ACK и битов другой информации управления UL может осуществляться путем попеременного помещения битов из начальных полезных нагрузок в O HARQ ACK
Figure 00000125
битов и O other_UCI
Figure 00000126
битов (если существуют), в соответствующие первое и второе кодовые слова двойного кода RM во избежание неравных скоростей кодирования между двумя кодовыми словами (поскольку, в противном случае, одно кодовое слово может, по большей части, содержать биты HARQ-ACK, связанные с фактическими SA DL, тогда как другое кодовое слово может, по большей части, содержать биты HARQ-ACK, не связанные с фактическими SA DL, которые генерируются, напротив, для достижения заранее определенного размера кодового слова HARQ-ACK и не предназначены для переноса информации).
На Фиг. 14 показана схема, демонстрирующая первое разделение битов информации HARQ-ACK и битов другой информации управления UL, если таковые существуют, для кодирования 2 кодами RM, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 14, полезная нагрузка 1410 HARQ-ACK делится на O HARQ ACK / 2
Figure 00000127
битов и O HARQ ACK / 2
Figure 00000128
битов 1420. Полезная нагрузка другой информации 1430 управления UL, если существует, делится на O other_UCI / 2
Figure 00000129
битов и O other_UCI / 2
Figure 00000130
битов 1440. Затем, O HARQ ACK / 2
Figure 00000131
+ O other_UCI / 2
Figure 00000132
битов 1450 помещается в первый код 1460 RM, и O HARQ ACK / 2
Figure 00000133
+ O other_UCI / 2
Figure 00000134
битов 1470 помещается во второй код RM 1480.
На Фиг. 15 показана схема, демонстрирующая второе разделение битов информации HARQ-ACK и битов другой информации управления UL, если таковые существуют, для кодирования 2 кодами RM, согласно варианту осуществления настоящего изобретения.
Согласно фиг. 15, к полезной нагрузке 1510 HARQ-ACK O HARQ ACK
Figure 00000135
присоединяется полезная нагрузка другой информации 1520 управления UL O other _ UCI
Figure 00000136
, и комбинированная полезная нагрузка помещается в первое кодовое слово из O HARQ ACK + O other _ UCI
Figure 00000137
битов 1530 информации, которое затем делится на второе кодовое слово из ( O HARQ ACK + O other _ UCI ) / 2
Figure 00000138
битов 1540 информации и третье кодовое слово из ( O HARQ ACK + O other _ UCI ) / 2
Figure 00000139
битов 1550 информации (предполагая S 1 < O HARQ ACK + O other_UCI S 2
Figure 00000121
и попеременно помещая последовательные биты первого кодового слова во второе кодовое слово и третье кодовое слово). Затем, ( O HARQ ACK + O other _ UCI ) / 2
Figure 00000138
битов 1540 информации помещается в первый код 1560 RM, и ( O HARQ ACK + O other _ UCI ) / 2
Figure 00000139
битов информации 1550 помещается во второй код 1570 RM. В отсутствие другой информации управления UL, структура на фиг. 15 идентична структуре на фиг. 14.
При использовании двойного кода RM для передачи HARQ-ACK на PUSCH, чтобы гарантировать одинаковую надежность для каждого из двух кодовых слов, желательно иметь одинаковое количество Q
Figure 00000014
кодированных символов, при их вычислении, например с использованием уравнения (1), каждому из двух кодовых слов кода RM. Это особенно важно, если Q
Figure 00000014
является малым (положительным) целым числом. Поэтому вычисление Q
Figure 00000014
следует видоизменить, если Q
Figure 00000014
нечетно, путем добавления еще одного кодированного символа, чтобы получилось четное количество Q
Figure 00000014
кодированных символов. Например, если O HARQ ACK β offset PUSCH / ( Q m R )
Figure 00000140
нечетно, вычисление в уравнении (1) можно видоизменить, как указано в нижеследующем уравнении (4).
Q = min ( O HARQ ACK β offset PUSCH Q m R + 1, 4 M s c P U S C H )
Figure 00000141
. (4)
Хотя изобретение показано и описано со ссылкой на определенные варианты его осуществления, специалисты в данной области техники могут предложить различные изменения, касающиеся формы и деталей, не выходящие за рамки сущности и объема настоящего изобретения, заданные нижеследующей формулой изобретения и ее эквивалентами.

Claims (14)

1. Способ для пользовательского оборудования (UE) для кодирования битов информации квитирования для передачи на базовую станцию в системе дуплексной связи с временным разделением (TDD), причем способ содержит этапы, на которых:
генерируют биты информации квитирования для каждого из множества подкадров и для каждой из множества сот, сконфигурированных для UE, причем один бит информации квитирования в одном подкадре генерируется для каждой соты, сконфигурированной с режимом передачи (TM), который переносит один транспортный блок (TB) данных, и при этом два бита информации квитирования в одном подкадре генерируются для каждой соты, сконфигурированной с TM, переносящим два TB данных,
генерируют первое кодовое слово посредством компоновки битов информации квитирования, соответствующих множеству подкадров, для каждой из множества сот в порядке возрастания значений индекса соты,
кодируют это первое кодовое слово, если общее количество битов информации квитирования меньше или равно заранее определенному значению, и
помещают биты информации квитирования из первого кодового слова во второе кодовое слово и третье кодовое слово попеременно и кодируют второе кодовое слово и третье кодовое слово, если общее количество битов информации квитирования больше заранее определенного значения.
2. Способ по п. 1, в котором передача информации квитирования осуществляется по физическому совместно используемому каналу восходящей линии связи, и размер множества подкадров сообщается в UE посредством информационного элемента в по меньшей мере одном назначении планирования, передаваемом базовой станцией в одной из множества сконфигурированных сот.
3. Способ по п. 1, в котором передача информации квитирования осуществляется по физическому каналу управления восходящей линии связи, и в одной из упомянутого множества сконфигурированных сот.
4. Способ по п. 1, в котором другая информация управления UL, содержащая множество битов информации, присоединяется к общему количеству битов информации квитирования, и, если сумма общего количества битов информации квитирования и множества битов информации больше заранее определенного значения, последовательные биты информации из суммы помещаются в четвертое кодовое слово и в пятое кодовое слово попеременно, на физическом канале управления восходящей линии связи, и упомянутые четвертое кодовое слово и пятое кодовое слово кодируются.
5. Способ для пользовательского оборудования (UE) для передачи битов информации квитирования на базовую станцию в системе дуплексной связи с временным разделением (TDD), причем способ содержит этапы, на которых:
генерируют биты информации квитирования для каждого из множества подкадров и для каждой из множества сот, сконфигурированных для UE, причем один бит информации квитирования в одном подкадре генерируется для каждой соты, сконфигурированной с режимом передачи (TM), который переносит один транспортный блок (TB) данных, и при этом два бита информации квитирования в одном подкадре генерируются для каждой соты, сконфигурированной с TM, переносящим два TB данных,
конфигурируют, посредством сигнализации более высокого уровня, UE для применения объединения в пространственной области для битов информации квитирования по упомянутому множеству сот, и
передают общее количество битов информации квитирования в соответствии с объединением в пространственной области, размер множества подкадров, размер множества сот и размер множества сот.
6. Способ по п. 5, в котором поднабор упомянутых сот неявно определяется через базовую станцию путем конфигурирования UE с использованием количества сот и путем определения упомянутого количества сот согласно порядку убывания значений индекса соты.
7. Способ по п. 5, в котором UE применяет пространственное объединение, если передача битов информации квитирования осуществляется на физическом совместно используемом канале восходящей линии связи, причем UE не применяет объединение в пространственной области, если передача битов информации квитирования осуществляется на физическом канале управления восходящей линии связи.
8. Устройство пользовательского оборудования (UE) для передачи битов информации квитирования, причем UE осуществляет связь с базовой станцией в системе дуплексной связи с временным разделением (TDD), причем устройство содержит:
приемник, выполненный с возможностью приема транспортных блоков (TB) данных в по меньшей мере одной из множества сконфигурированных сот и в по меньшей мере одном из множества подкадров,
кодер, выполненный с возможностью кодирования первого кодового слова, если общее количество битов информации квитирования меньше или равно заранее определенному значению, и для помещения последовательных битов информации квитирования из первого кодового слова во второе кодовое слово и третье кодовое слово попеременно и кодирования второго кодового слова и третьего кодового слова, если общее количество битов информации квитирования больше заранее определенного значения, и
передатчик, выполненный с возможностью передачи кодированных битов информации квитирования первого кодового слова или кодированных битов информации квитирования второго кодового слова и третьего кодового слова,
контроллер, выполненный с возможностью генерации битов информации квитирования для каждого из поднабора множества подкадров и для каждой из множества сконфигурированных сот, причем один бит информации квитирования в одном подкадре генерируется для каждой соты, сконфигурированной с режимом передачи (TM), который переносит один TB данных, и при этом два бита информации квитирования в одном подкадре генерируются для каждой соты, сконфигурированной с TM, который переносит два TB данных, для генерирования первого кодового слова посредством размещения битов информации квитирования, соответствующих упомянутому поднабору множества подкадров для каждой из множества сот, в порядке возрастания значений индекса соты, и для управления упомянутыми приемником, кодером и передатчиком.
9. Устройство пользовательского оборудования по п. 8, в котором передача информации квитирования осуществляется по физическому совместно используемому каналу восходящей линии связи, и размер множества подкадров сообщается в UE посредством информационного элемента в по меньшей мере одном назначении планирования, передаваемом базовой станцией в одной из множества сконфигурированных сот.
10. Устройство пользовательского оборудования по п. 8, в котором передача информации квитирования осуществляется по физическому каналу управления восходящей линии связи, и в одной из упомянутого множества сконфигурированных сот.
11. Устройство пользовательского оборудования по п. 8, в котором другая информация управления UL, содержащая множество битов информации, присоединяется к общему количеству битов информации квитирования, и, если сумма общего количества битов информации квитирования и множества битов информации больше заранее определенного значения, последовательные биты информации из упомянутой суммы помещаются в четвертое кодовое слово и пятое кодовое слово попеременно, причем четвертое кодовое слово и пятое кодовое слово поступают на кодер, и передача осуществляется на физическом канале управления восходящей линии связи.
12. Устройство пользовательского оборудования (UE) для передачи битов информации квитирования, причем устройство UE осуществляет связь с базовой станцией в системе дуплексной связи с временным разделением (TDD), причем устройство содержит:
приемник, выполненный с возможностью приема транспортных блоков (TB) данных в по меньшей мере одной из множества сконфигурированных сот и в по меньшей мере одном из множества подкадров;
передатчик, выполненный с возможностью передачи общего количества битов информации квитирования в соответствии с объединением в пространственной области, размера множества подкадров, размера множества сот и размера множества сот,
контроллер, выполненный с возможностью генерации битов информации квитирования для каждого из поднабора множества подкадров и для каждой из множества сконфигурированных сот, причем один бит информации квитирования в одном подкадре генерируется для каждой соты, сконфигурированной с режимом передачи (TM), который переносит один TB данных, и два бита информации квитирования в одном подкадре генерируются для каждой соты, сконфигурированной с TM, который переносит два TB данных, и для применения объединения в пространственной области для битов информации квитирования по упомянутому множеству сот посредством сигнализации более высокого уровня.
13. Устройство пользовательского оборудования по п. 12, в котором упомянутый поднабор упомянутых сот неявно определяется через базовую станцию путем конфигурирования UE с использованием количества сот, и контроллер определяет количество согласно порядку убывания значений индекса соты.
14. Устройство пользовательского оборудования по п. 12, в котором контроллер выполнен с возможностью применения объединения в пространственной области, если передача битов информации квитирования осуществляется на физическом совместно используемом канале восходящей линии связи, и причем контроллер выполнен с возможностью не применять объединение в пространственной области, если передача битов информации квитирования осуществляется на физическом канале управления восходящей линии связи.
RU2013125450/08A 2010-11-03 2011-11-03 Способ и устройство для кодирования передачи harq-ack в системах tdd с агрегацией несущих нисходящей линии связи RU2580795C2 (ru)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US40966210P 2010-11-03 2010-11-03
US61/409,662 2010-11-03
US41016210P 2010-11-04 2010-11-04
US61/410,162 2010-11-04
US41064210P 2010-11-05 2010-11-05
US61/410,642 2010-11-05
US41120910P 2010-11-08 2010-11-08
US61/411,209 2010-11-08
US201161512614P 2011-07-28 2011-07-28
US61/512,614 2011-07-28
PCT/KR2011/008335 WO2012060647A2 (en) 2010-11-03 2011-11-03 Method and apparatus for coding of harq-ack transmission in tdd systems with downlink carrier aggregation

Publications (2)

Publication Number Publication Date
RU2013125450A RU2013125450A (ru) 2014-12-10
RU2580795C2 true RU2580795C2 (ru) 2016-04-10

Family

ID=44992610

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125450/08A RU2580795C2 (ru) 2010-11-03 2011-11-03 Способ и устройство для кодирования передачи harq-ack в системах tdd с агрегацией несущих нисходящей линии связи

Country Status (11)

Country Link
US (3) US8594022B2 (ru)
EP (2) EP2451111B1 (ru)
JP (2) JP2014501067A (ru)
KR (1) KR101927719B1 (ru)
CN (2) CN107835069B (ru)
AU (1) AU2011324151B2 (ru)
CA (1) CA2817003C (ru)
ES (1) ES2567791T3 (ru)
RU (1) RU2580795C2 (ru)
WO (1) WO2012060647A2 (ru)
ZA (1) ZA201303992B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897328B2 (en) 2017-07-07 2021-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products
RU2747207C2 (ru) * 2016-09-21 2021-04-29 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
WO2010114252A2 (en) 2009-03-29 2010-10-07 Lg Electronics Inc. Method for transmitting control information in wireless communication system and apparatus therefor
US8543867B2 (en) * 2010-04-02 2013-09-24 Sharp Laboratories Of America, Inc. Transmission of acknowledgement and negative acknowledgement in a wireless communication system
US8594022B2 (en) * 2010-11-03 2013-11-26 Samsung Electronics Co., Ltd. Method and apparatus for coding of HARQ-ACK transmission in TDD systems with downlink carrier aggregation
CN102932112B (zh) * 2011-08-11 2015-11-25 华为技术有限公司 一种多天线传输的方法及装置
KR101595198B1 (ko) 2011-09-23 2016-02-17 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US9635651B2 (en) * 2011-09-26 2017-04-25 Lg Electronics Inc. Method and apparatus for transmitting channel state information using PUCCH format 3 in a wireless access system
CN107070542B (zh) * 2011-11-01 2019-05-03 Lg电子株式会社 用于发送和接收信号的方法及其设备
CN103188062B (zh) * 2011-12-31 2018-08-17 中兴通讯股份有限公司 混合自动重传请求应答信息发送方法及装置
PT3010171T (pt) * 2012-05-10 2017-12-11 ERICSSON TELEFON AB L M (publ) Método e aparelho para sinalização de pedido de repetição automático híbrido
US9577803B2 (en) 2012-05-11 2017-02-21 Nokia Solutions And Networks Oy ACK/NAK bit bundling in carrier aggregation scenarios
CN109412775B (zh) 2012-06-27 2021-08-03 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
US9560640B2 (en) 2012-07-13 2017-01-31 Lg Electronics Inc. Method and apparatus for transmitting control information
US9485677B2 (en) * 2012-09-25 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Determining hearability in a heterogenous communication network
EP2903196B1 (en) * 2012-10-16 2017-12-13 Huawei Technologies Co., Ltd. Transmission method, device, ue, and base station of harq-ack
JP6592448B2 (ja) * 2014-10-17 2019-10-16 シャープ株式会社 端末装置、通信方法、および、集積回路
EP3217747B1 (en) * 2014-11-06 2022-11-23 Ntt Docomo, Inc. User terminal, wireless base station, wireless communication system, and wireless communication method for ack/nack transmission and reception
EP3026835A1 (en) * 2014-11-28 2016-06-01 Gemalto M2M GmbH Method of detecting a jamming transmitter affecting a communication user equipment
WO2016093556A1 (ko) * 2014-12-09 2016-06-16 엘지전자 주식회사 5개를 초과하는 셀을 반송파 집성에 따라 사용하는 경우 하향링크 데이터에 대한 harq ack/nack를 전송하는 방법 및 사용자 장치
CN106160957B (zh) * 2015-01-29 2021-07-23 北京三星通信技术研究有限公司 Harq-ack信息的反馈方法及设备
CN105846977B (zh) * 2015-01-29 2021-02-02 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
US11218254B2 (en) 2015-01-29 2022-01-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving HARQ-ACK signal in wireless communication system supporting carrier aggregation
ES2935264T3 (es) 2015-01-29 2023-03-03 Samsung Electronics Co Ltd Procedimiento y aparato de retroalimentación de información HARQ-ACK
US10009160B2 (en) * 2015-03-13 2018-06-26 Qualcomm Incorporated System and method for low latency acknowledgements
US11115858B2 (en) 2015-03-31 2021-09-07 Ntt Docomo, Inc. User terminal, radio communication system, and radio communication method
US9888465B2 (en) * 2015-04-06 2018-02-06 Samsung Electronics Co., Ltd. Codeword determination for acknowledgement information
CN107852646A (zh) 2015-05-14 2018-03-27 司亚乐无线通讯股份有限公司 无线通信系统中半双工频分复用的资源分配的方法和装置
CN106301703B (zh) 2015-05-15 2020-04-07 中兴通讯股份有限公司 Harq发送、接收方法、装置及节点
US10637629B2 (en) * 2015-06-25 2020-04-28 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
CN107294665A (zh) * 2016-04-01 2017-10-24 北京三星通信技术研究有限公司 Harq-ack信息的反馈方法及设备
US10560233B2 (en) * 2015-12-08 2020-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Interlace pattern selection for low CM/PAPR transmission
US10404511B2 (en) * 2016-11-23 2019-09-03 Qualcomm Incorporated Space-time block coding schemes for DFT-s-OFDM
KR102165255B1 (ko) * 2017-02-06 2020-10-13 삼성전자 주식회사 non-3gpp를 통해 5G네트워크에 접속하는 단말에 대한 registration 관리 방안
CN115460686A (zh) 2017-02-06 2022-12-09 三星电子株式会社 基站、接入和移动性管理功能实体及其方法
JP6833971B2 (ja) 2017-03-08 2021-02-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて無線信号の送受信方法及び装置
US10771196B2 (en) 2017-03-20 2020-09-08 Qualcomm Incorporated Techniques for signaling compressed HARQ or retransmission information between a base station and a user equipment
US10970832B2 (en) 2017-07-31 2021-04-06 Rachio, Inc. Image data for improving and diagnosing sprinkler controller performance
WO2019028717A1 (en) 2017-08-10 2019-02-14 Panasonic Intellectual Property Corporation Of America USER EQUIPMENT, BASE STATION AND WIRELESS COMMUNICATION METHOD
WO2019032029A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) ACKNOWLEDGMENT OF CONTROL IN A WIRELESS COMMUNICATION SYSTEM
WO2019073358A1 (en) * 2017-10-10 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) PUCCH CONFIGURATION WITH HARQ CODES BOOK SIZE
WO2019090710A1 (zh) * 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 无线通信方法和设备
EP3711453B1 (en) * 2017-11-14 2023-10-04 Telefonaktiebolaget LM Ericsson (Publ) Methods and devices for hybrid automatic repeat request acknowledgement/non-acknowledgement bundling
US10855416B2 (en) * 2017-11-16 2020-12-01 Mediatek Inc. Segmentation of control payload for channel encoding
EP3534555B1 (en) * 2018-01-05 2020-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for sending feedback response information
WO2019191923A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Techniques and apparatuses for codeword bit selection for rate-compatible polar coding
AU2018417494B2 (en) * 2018-04-04 2021-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product
CN109962757A (zh) * 2019-02-22 2019-07-02 视联动力信息技术股份有限公司 基于视联网的数据传输方法及装置
CN115442001A (zh) * 2019-06-03 2022-12-06 北京小米移动软件有限公司 混合自动重传请求反馈的传输方法、装置及存储介质
WO2023132693A1 (en) * 2022-01-07 2023-07-13 Samsung Electronics Co., Ltd. Method and apparatus for transceiving harq-ack information in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455522B2 (en) * 2002-10-04 2008-11-25 Fuji Xerox Co., Ltd. Systems and methods for dynamic reading fluency instruction and improvement
RU2340105C2 (ru) * 2004-03-12 2008-11-27 Самсунг Электроникс Ко., Лтд. Способ управления схемой h-arq в системе связи с широкополосным радиодоступом
RU2378764C2 (ru) * 2005-07-20 2010-01-10 Квэлкомм Инкорпорейтед Асимметричный режим работы в системах связи с множеством несущих
EP2244401A2 (en) * 2009-04-21 2010-10-27 Research In Motion Limited Methods and apparatus to prioritize mobile station transmissions in response to network acknowledgment polling

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112323A (en) 1998-06-29 2000-08-29 Microsoft Corporation Method and computer program product for efficiently and reliably sending small data messages from a sending system to a large number of receiving systems
KR100800795B1 (ko) * 2004-05-31 2008-02-04 삼성전자주식회사 통신 시스템에서 상향 링크 응답 정보 송/수신 방법 및 장치
TW200807946A (en) * 2006-05-01 2008-02-01 Ntt Docomo Inc Mobile station, base station, and communication control method
US8964560B2 (en) 2007-10-11 2015-02-24 Nokia Solutions And Networks Oy Apparatus, method, computer program product and system for requesting acknowledgment of transmitted data packets
US8477734B2 (en) * 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
US9030948B2 (en) * 2008-03-30 2015-05-12 Qualcomm Incorporated Encoding and decoding of control information for wireless communication
US20090285122A1 (en) * 2008-04-21 2009-11-19 Texas Instruments Incorporated Uplink control for time-division duplex with asymmetric assignment
US8634333B2 (en) * 2008-05-07 2014-01-21 Qualcomm Incorporated Bundling of ACK information in a wireless communication system
WO2010062061A2 (ko) * 2008-11-03 2010-06-03 엘지전자주식회사 다중 반송파 시스템에서 통신방법 및 장치
US8737374B2 (en) * 2009-01-06 2014-05-27 Qualcomm Incorporated System and method for packet acknowledgment
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
WO2010114252A2 (en) * 2009-03-29 2010-10-07 Lg Electronics Inc. Method for transmitting control information in wireless communication system and apparatus therefor
US9236985B2 (en) * 2009-04-23 2016-01-12 Qualcomm Incorporated Method and apparatus for control and data multiplexing in a MIMO communication system
JP2011101891A (ja) * 2009-11-10 2011-05-26 Suzuki Motor Corp 接合方法
EP2326037A1 (en) * 2009-11-18 2011-05-25 Telefonaktiebolaget L M Ericsson (publ) Method and base station for detecting a HARQ-ACK codeword
US8756477B2 (en) * 2009-12-21 2014-06-17 Qualcomm Incorporated System, method and apparatus for early termination based on transport block fail for acknowledgment bundling in time division duplex
RU2519409C2 (ru) * 2010-02-12 2014-06-10 Интердиджитал Пэйтент Холдингз, Инк. Обратная связь посылки многочисленных несущих нисходящей линии связи
KR101717528B1 (ko) * 2010-02-22 2017-03-17 엘지전자 주식회사 Ack/nack 정보를 전송하는 방법 및 이를 위한 장치와, ack/nack 정보를 수신하는 방법 및 이를 위한 장치
CN102792656B (zh) * 2010-03-10 2015-11-25 Lg电子株式会社 在无线通信系统中发送上行链路控制信息的方法和装置
US9553697B2 (en) * 2010-04-05 2017-01-24 Qualcomm Incorporated HARQ ACK/NACK transmission for multi-carrier operation
KR101846164B1 (ko) * 2010-08-20 2018-04-06 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 송신하는 방법 및 이를 위한 장치
US8842609B2 (en) * 2010-10-21 2014-09-23 Lg Electronics Inc. Method and apparatus for transmitting ACK/NACK information in multicarrier-supporting wireless communication system
JP4948671B1 (ja) 2010-10-29 2012-06-06 シャープ株式会社 移動局装置、処理方法および集積回路
US8594022B2 (en) 2010-11-03 2013-11-26 Samsung Electronics Co., Ltd. Method and apparatus for coding of HARQ-ACK transmission in TDD systems with downlink carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455522B2 (en) * 2002-10-04 2008-11-25 Fuji Xerox Co., Ltd. Systems and methods for dynamic reading fluency instruction and improvement
RU2340105C2 (ru) * 2004-03-12 2008-11-27 Самсунг Электроникс Ко., Лтд. Способ управления схемой h-arq в системе связи с широкополосным радиодоступом
RU2378764C2 (ru) * 2005-07-20 2010-01-10 Квэлкомм Инкорпорейтед Асимметричный режим работы в системах связи с множеством несущих
EP2244401A2 (en) * 2009-04-21 2010-10-27 Research In Motion Limited Methods and apparatus to prioritize mobile station transmissions in response to network acknowledgment polling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747207C2 (ru) * 2016-09-21 2021-04-29 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
US10897328B2 (en) 2017-07-07 2021-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products
RU2743666C1 (ru) * 2017-07-07 2021-02-24 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ указания данных и связанные продукты
US11368252B2 (en) 2017-07-07 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products

Also Published As

Publication number Publication date
EP2451111A3 (en) 2013-05-01
JP6348536B2 (ja) 2018-06-27
KR101927719B1 (ko) 2018-12-11
EP3029873B1 (en) 2019-05-01
EP2451111A2 (en) 2012-05-09
KR20130143073A (ko) 2013-12-30
WO2012060647A2 (en) 2012-05-10
AU2011324151B2 (en) 2016-02-25
JP2014501067A (ja) 2014-01-16
ES2567791T3 (es) 2016-04-26
US20120106408A1 (en) 2012-05-03
CN103314560A (zh) 2013-09-18
US8594022B2 (en) 2013-11-26
RU2013125450A (ru) 2014-12-10
US20140056187A1 (en) 2014-02-27
CN103314560B (zh) 2018-01-12
US9419778B2 (en) 2016-08-16
US9106351B2 (en) 2015-08-11
CA2817003A1 (en) 2012-05-10
EP2451111B1 (en) 2016-01-20
WO2012060647A3 (en) 2012-07-26
AU2011324151A1 (en) 2013-05-09
CN107835069A (zh) 2018-03-23
CA2817003C (en) 2018-09-11
JP2016184937A (ja) 2016-10-20
US20150349941A1 (en) 2015-12-03
ZA201303992B (en) 2014-08-27
CN107835069B (zh) 2021-06-18
EP3029873A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
RU2580795C2 (ru) Способ и устройство для кодирования передачи harq-ack в системах tdd с агрегацией несущих нисходящей линии связи
US10979179B2 (en) Apparatus and method for transmitting acknowledgement information in a TDD communication system
US11533131B2 (en) Method, apparatus, and system for transmitting or receiving data channel and control channel in wireless communication system
US9019872B2 (en) Generation of HARQ-ACK information and power control of HARQ-ACK signals in TDD systems with downlink of carrier aggregation
EP3487246B1 (en) Method and device for allocating resource for uplink control channel in wireless communicaiton system
US8611238B2 (en) Multiplexing large payloads of control information from user equipments
US20120033587A1 (en) Transmission of uplink control signals in a communication system
JP5871917B2 (ja) 端末装置及び応答信号送信方法