RU2580270C1 - Способ получения антифрикционной композиции - Google Patents

Способ получения антифрикционной композиции Download PDF

Info

Publication number
RU2580270C1
RU2580270C1 RU2015101459/02A RU2015101459A RU2580270C1 RU 2580270 C1 RU2580270 C1 RU 2580270C1 RU 2015101459/02 A RU2015101459/02 A RU 2015101459/02A RU 2015101459 A RU2015101459 A RU 2015101459A RU 2580270 C1 RU2580270 C1 RU 2580270C1
Authority
RU
Russia
Prior art keywords
vermiculite
modified
chitosan
solution
acid
Prior art date
Application number
RU2015101459/02A
Other languages
English (en)
Inventor
Лев Борисович Леонтьев
Николай Павлович Шапкин
Андрей Львович Леонтьев
Василий Николаевич Макаров
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority to RU2015101459/02A priority Critical patent/RU2580270C1/ru
Application granted granted Critical
Publication of RU2580270C1 publication Critical patent/RU2580270C1/ru

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к смазочным композициям и может быть использовано в машиностроении для обработки пар трения, а также при эксплуатации механизмов и машин для продления межремонтного ресурса или во время ремонтно-восстановительных работ. Способ включает перемешивание в углеводородном связующем природного дисперсного материала, содержащего вермикулит, модифицированный природным высокомолекулярным полисахаридом - хитозаном. При этом вермикулит обрабатывают раствором 12 % соляной кислоты из расчета 10-15 мл 12 % соляной кислоты на 1 г вермикулита, после чего кислотно-модифицированный вермикулит обрабатывают в 1,5 % растворе хитозана, растворенном в 2 % уксусной кислоте из расчета 2 мл на 1 г кислотно-модифицированного вермикулита, и далее осаждают 12,5% раствором аммиака до pH=7, после чего к полученному гелю хитозана и вермикулита добавляют насыщенный раствор карбоната магния, нагретый до температуры 120-130 °C, образовавшийся осадок фильтруют и сушат на воздухе, после чего смешивают с углеводородным связующим. Полученная композиция обеспечивает повышение стабильности, прочности и долговечности антифрикционных покрытий. 1 з.п. ф-лы, 3 ил., 3 табл.

Description

Изобретение относится к смазочным композициям, в частности к составам для обработки пар трения, и может быть использовано в машиностроении для обработки пар трения, а также при эксплуатации механизмов и машин для продления межремонтного ресурса или во время ремонтно-восстановительных работ.
Известен способ формирования антифрикционного покрытия контактирующих трущихся поверхностей, заключающийся в размещении между ними антифрикционной композиции модифицирующей контактирующие трущиеся поверхности, содержащей смешанную с углеводородным связующим смесь природных дисперсных серпентинсодержащего материала и вспученного вермикулита, (см. RU 2361015, МПК С23С 26/00, В23Р 6/00, 2008).
Недостаток этого решения: недостаточно высокие триботехнические характеристики антифрикционной композиции, необходимость использования в составе смеси достаточно дефицитного компонента - чистого серпентинсодержащего минерала (распространенного далеко не во всех регионах страны). Кроме того, авторы изобретения не приводят каких-либо данных определения триботехнических свойств композиции по принятым методикам, что не позволяет сопоставить характеристики известного материала с аналогичными характеристиками других композиций сходного назначения.
Известен способ получения состава для модифицирования металлов и восстановления металлических поверхностей, представляющий собой серпентинит, модифицированный природным высокомолекулярным полисахаридом, предпочтительно хитозаном, при крупности частиц твердого меньше 1 мкм, при следующем соотношении компонентов в составе смеси их дисперсных твердых частиц, мас. %: серпентинит 96,5-97,5; хитозан 2,5-3,5 (см. RU 2484179, МПК С23С 26/00, F16C 33/04, С10М 119/20, 2013).
Недостаток этого решения - существенная абразивность серпентинита, что ограничивает применение данного состава для модифицирования металлов и восстановления металлических поверхностей, имеющих задиры.
Известен также способ получения антифрикционной композиции, включающий перемешивание в углеводородном связующем природного дисперсного материала, содержащего вермикулит, модифицированный природным высокомолекулярным полисахаридом, предпочтительно хитозаном. В качестве серпентинсодержащего материала используют серпентинит при следующем соотношении компонентов в составе смеси дисперсных твердых частиц, мас. %: серпентинит 80-93, модифицированный вспученный вермикулит 7-20, при этом антифрикционную композицию получают путем смешивания упомянутых смеси и связующего в гидродинамическом кавитационном диспергаторе с получением дисперсных твердых частиц крупностью меньше 1 мкм, а антифрикционное покрытие получают при трении контактирующих поверхностей (см. RU 2487192, МПК С23С 26/00, В23Р 6/00, 2013).
Недостаток этого решения - существенная абразивность компонентов материала, отделение которых от серпентина практически невозможно или очень трудоемко, что ограничивает применение данного состава для модифицирования металлов и восстановления металлических поверхностей до случаев обработки поверхностей, имеющих задиры, нагартовки на вязких, тугоплавких металлах (в пределах допуска). Кроме того, серпентинит даже из одного месторождения существенно отличается по химическому составу и структуре и, соответственно, по триботехническим характеристикам.
Задачей предлагаемого изобретения является повышение триботехнических характеристик антифрикционной композиции.
Технический результат, проявляющийся при решении поставленной задачи, выражается в снижении фрикционных качеств композиции за счет удаления значительной части абразивных элементов, таких как Al2O3, TiO2 и др. Используется недорогой и широко распространенный вермикулит и обеспечивается возможность изменения структуры вермикулита. Кроме того, обеспечивается возможность плакирования частиц вермикулита при использовании хитозана. При этом создается основа, на которой формируется металлокерамическое покрытие. Благодаря этому повышаются стабильность, прочность и долговечность антифрикционного покрытия.
Решение поставленной задачи обеспечивается тем, что способ получения антифрикционной композиции, включающий перемешивание в углеводородном связующем природного дисперсного материала, содержащего вермикулит, модифицированный природным высокомолекулярным полисахаридом, предпочтительно хитозаном, отличается тем, что вермикулит обрабатывают раствором 12% соляной кислоты из расчета 10-15 мл 12% соляной кислоты на 1 г вермикулита, после чего кислотно-модифицированный вермикулит обрабатывают в 1,5% растворе хитозана, растворенном в 2% уксусной кислоте из расчета 2 мл на 1 г кислотно-модифицированного вермикулита, и далее осаждают 12,5% раствором аммиака до pH=7, после чего к полученному гелю хитозана и вермикулита добавляют насыщенный раствор карбоната магния, нагретый до температуры 120-130°С, образовавшийся осадок фильтруют и сушат на воздухе, после чего смешивают с углеводородным связующим. Кроме того, в качестве связующего используют предпочтительно дизельное топливо, при этом дисперсный модифицированный вермикулит вводят в дизельное топливо из расчета 220-300 г смеси на литр и подвергают гидродинамической кавитационной диспергации с частотой около 200 Гц предпочтительно не менее 30 мин.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач:
Признак, указывающий, что «вермикулит обрабатывают раствором 12% соляной кислоты из расчета 10-15 мл 12% соляной кислоты на 1 г вермикулита», приводит к увеличению удельной поверхности в 20 раз и образованию большого числа кислотных центров (см. Шапкин Н.П., Майоров В.О., Леонтьев Л.Б., Шкуратов Д.Л., Шапкина В.Я., Хальченко И.Г. Исследования сорбионных свойств модифицированного слоистого силиката // Коллоидный журнал, 2014, т. 76, №6. С. 798-804).
Признаки «…кислотно-модифицированный вермикулит обрабатывают в 1,5% растворе хитозана, растворенном в 2% уксусной кислоте из расчета 2 мл на 1 г кислотно-модифицированного вермикулита» приводят к образованию ониевых групп и взаимодействию их с некомпенсированными отрицательными зарядами кислорода поверхности.
Осаждение «12,5% раствором аммиака до pH=7» приводит к получению геля хитозана и вермикулита.
Признак, указывающий, что «к полученному гелю хитозана и вермикулита добавляют насыщенный раствор карбоната магния, нагретый до температуры 120-130°С», приводит к компенсации отрицательных зарядов атомов кислорода поверхности и, соответственно, заряжает ее положительно. При этом слой положительных ионов аммонийных групп хитозана отталкивается от положительно заряженной поверхности вермикулита, что обеспечивает более легкое скольжение слоя по слою.
Признаки «…образовавшийся осадок фильтруют и сушат на воздухе, после чего смешивают с углеводородным связующим…» обеспечивают получение антифрикционной композиции.
Признаки, указывающие на то, что «в качестве связующего используют, предпочтительно, дизельное топливо», обеспечивают возможность использования распространенного жидкого углеводородного связующего.
Признаки, указывающие, что «композицию модифицированного вермикулита и карбоната магния вводят в дизельное топливо из расчета 220-300 г смеси на литр и подвергают гидродинамической кавитационной диспергации с частотой около 200 Гц предпочтительно не менее 30 минут», определяют режимные параметры способа, обеспечивающие получение антифрикционной композиции.
Заявленный способ иллюстрируется чертежами, где на фиг. 1 показана дифрактограмма исходного вермикулита; на фиг. 2 - дифрактограмма вермикулита после гидролиза и модифицирования хитозаном и карбонатом магния и на фиг. 3 - структура вермикулита, модифицированного соляной кислотой, хитозаном и карбонатом магния.
Для реализации заявленного способа используют известное оборудование, обеспечивающее дезинтеграцию компонентов композиции и их последующую гидродинамическую кавитационную активацию.
В качестве ингредиентов композиции используют вермикулит, хитозан и карбонат магния и дизтопливо.
Вермикулит имеет следующий элементный состав:
Figure 00000001
Его брутто-формула: Mg·Fe0.8·Al0.4·Si2.1O9·H2O·(CaSiO3)0.9. Крупность размола вермикулита (до его модифицирования) - до 0,5-1,0 мкм.
Хитозан имеет следующие характеристики:
Figure 00000002
Используется обычное дизельное топливо.
Вермикулит подготавливаемый к модифицированию, обрабатывают раствором 12% соляной кислоты из расчета 10-15 мл 12% соляной кислоты на 1 г вермикулита. После этого кислотно-модифицированный вермикулит обрабатывают в 1,5% растворе хитозана, растворенном в 2% уксусной кислоте из расчета 2 мл на 1 г кислотно-модифицированного вермикулита, и далее осаждают разбавленным раствором аммиака (концентрацией 12,5%) до pH=7. К полученному гелю хитозана и вермикулита добавляют насыщенный раствор карбоната магния, нагретый до температуры 120-130°С. Образовавшийся осадок фильтруют и сушат на воздухе. Модифицированный вермикулит вводят в дизельное топливо из расчета 220-300 г смеси на литр и подвергают гидродинамической кавитационной диспергации с частотой около 200 Гц предпочтительно не менее 30 минут.
В результате обработки вермикулита соляной кислотой его структура разрушается - рентгено-фазовый анализ показал гало при
Figure 00000003
=20° (фиг. 2).
Большое влияние на износостойкость материалов оказывают структура и химический состав тонкопленочного покрытия. Известно, что минералы (серпентинит, алюмосиликат и т.д.) в исходном состоянии имеют кристаллическую структуру, однако полиморфные структуры обладают большей износостойкостью. Для полиморфитизации алюмосиликата его подвергли кислотному гидролизу и последующему модифицированию. После кислотного гидролиза дифрактограмма алюмосиликата (фиг. 2) отвечает типичному силоксановому полимеру. Кристаллическая структура алюмосиликата разрушается и становится аморфной. На дифрактограмме имеются отражения в области 2° и 22°, т.е. полученная структура очень похожа на структуру перлита, характерную для вермикулита. Такая картина наблюдается и для остальных модифицированных продуктов с небольшим отличием. Первое отражение, отвечающее межплоскостному расстоянию, несколько сдвигается в область малых углов, т.е. больших расстояний (22 Å). При этом второе отражение, отвечающее расстоянию внутри силоксановой цепи, не изменяется. Изменение для d1 составляет примерно 10,5 Å. Введение ионов магния увеличивает расстояние между слоями. Причем в случае вермикулита, модифицированного природным полисахаридом, введение ионов магния еще больше увеличивает расстояние между слоями.
Введение хитозана практически не изменяет структуру модифицированного вермикулита. Однако введение ионов магния, которые образовались в результате взаимодействия карбоната магния с кислой средой по уравнению MgCO3+2H+→Mg2++H2O+CO2↑, привело к появлению новой структуры на поверхности вермикулита за счет реакции линейного полимера (хитозана) с ионами магния (фиг. 3).
Исследования триботехнических свойств покрытий проводили на универсальной машине трения модели УМТВК по схеме «ролик - колодка» при постоянной скорости скольжения 0,71 м/с. Для триботехнических испытаний образцы изготавливали из стали 45 в форме роликов диаметром 45 мм, шириной 10 мм. На исследуемых судовых среднеоборотных дизелях шейки коленчатых валов имеют твердость в интервале от 164 НВ до 58 HRC, поэтому часть образцов изготавливали из стали 45 без дополнительной термообработки, их твердость находилась в диапазоне 190-225 НВ (средняя величина твердости 212 НВ), часть образцов подвергали закалке с последующим отпуском для получения величин твердости 44±1 HRC. Часть образцов различной твердости модифицировали. Перед проведением испытаний образцы полировали до Ra=0,32 мкм.
В качестве неподвижного образца использовались колодки, вырезанные из вкладышей судовых среднеоборотных дизелей типа «Rillenlager» («Miba» 33). Отличительная особенность этих вкладышей - наличие регулярного микрорельефа в виде винтовой канавки глубиной 16-40 мкм и шагом около 0,15 мм на всей поверхности трения, что в сочетании с правильно выбранной комбинацией материалов обеспечивает им высокую усталостную прочность и способность выдерживать высокие удельные нагрузки. Участки меньшей ширины (слой AlSn6) воспринимают нагрузку, а участки большей ширины поглощают абразивные частицы.
Смазку пары трения осуществляли капельным способом (5-6 капель в минуту). Для смазки применялось работающее дизельное масло марки М-14-Д2 (цл 30) ГОСТ 12337-84.
Модифицирование поверхности вращающегося образца проводили фрикционно-механическим методом при нагрузке 400 Н в течение 1 мин. Толщина модифицированного слоя достигает 1 мкм.
Результаты сравнительных триботехнических испытаний пары трения «вал - вкладыш» при различных упрочняющих покрытиях и твердости шеек вала 42-45 HRC приведены в таблице 1.
Figure 00000004
Figure 00000005
В результате сравнительных триботехнических испытаний пары трения «вал - вкладыш» при различных упрочняющих покрытиях и твердости вала 42-45 HRC установлено (см. табл. 1), что модифицирование стали вермикулитом, модифицированным HCl, хитозаном и MgCO3 снижает коэффициент трения и температуру в зоне трибоконтакта по сравнению с упрочнением серпентинитом, модифицированным хитозаном. Скорость изнашивания стального образца и антифрикционного покрытия вкладыша также существенно меньше в условиях трения при граничной смазке.
Температура циркуляционного смазочного масла на входе в дизель для обеспечения заданной вязкости в зависимости от марки двигателя находится в пределах 40-60°С. Для определения влияния температуры циркуляционного смазочного масла на триботехнические свойства пары трения «сталь 45 - антифрикционное покрытие» были проведены ускоренные испытания в течение 1 ч при нагрузке 400 Н в условиях трения при граничной смазке.
Триботехнические свойства износостойких покрытий при различных температурах подогрева смазки (сталь 45, 212 НВ) приведены в таблице 2.
Figure 00000006
Figure 00000007
Установлено (см. табл. 2), что наилучшие триботехнические параметры обеспечивает упрочнение вермикулитом, модифицированным хитозаном и MgCO3 во всем рабочем диапазоне температур смазочного масла, т.е. позволяет повысить износостойкость сопряжения, снизить величины коэффициентов трения и температуры в зоне трибоконтакта и, соответственно, существенно повысить долговечность трибоузла. Причем по мере увеличения температуры подогрева масла эффект от модифицирования стали возрастает: уменьшаются величины скорости изнашивания стали и трибосопряжения в целом.
Механические свойства стали 45 (твердость 212 НВ) с различными износостойкими покрытиями представлены в Таблице 3
Таблица 3
Figure 00000008
Примечания. 1. Величина упругого восстановления покрытий рассчитана по формуле:
Figure 00000009
где hmax - максимальная глубина отпечатка при максимальной нагрузке;
hr - глубина остаточного отпечатка после снятия нагрузки.
Анализ механических характеристик поверхностного слоя на глубине 0,1-0,3 мкм показал, что более высокие величины твердости и упругого восстановления покрытия и наименьшую величину модуля упругости имеет сталь после ее упрочнения вермикулитом, модифицированным хитозаном и MgCO3, которые и обеспечивают высокую износостойкость покрытия.

Claims (2)

1. Способ получения антифрикционной композиции, включающий перемешивание в углеводородном связующем природного дисперсного материала, содержащего вермикулит, модифицированный природным высокомолекулярным полисахаридом в виде хитозана, отличающийся тем, что вермикулит обрабатывают раствором 12% соляной кислоты из расчета 10-15 мл 12% соляной кислоты на 1 г вермикулита, после чего кислотно-модифицированный вермикулит обрабатывают в 1,5% растворе хитозана, растворенном в 2% уксусной кислоте из расчета 2 мл на 1 г кислотно-модифицированного вермикулита, и далее осаждают 12,5% раствором аммиака до pH=7, после чего к полученному гелю хитозана и вермикулита добавляют насыщенный раствор карбоната магния, нагретый до температуры 120-130°C, образовавшийся осадок фильтруют и сушат на воздухе, после чего смешивают с углеводородным связующим.
2. Способ по п. 1, отличающийся тем, что в качестве связующего используют дизельное топливо, при этом дисперсный модифицированный вермикулит вводят в дизельное топливо из расчета 220-300 г смеси на литр и подвергают гидродинамической кавитационной диспергации с частотой около 200 Гц, предпочтительно не менее 30 мин.
RU2015101459/02A 2015-01-19 2015-01-19 Способ получения антифрикционной композиции RU2580270C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015101459/02A RU2580270C1 (ru) 2015-01-19 2015-01-19 Способ получения антифрикционной композиции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015101459/02A RU2580270C1 (ru) 2015-01-19 2015-01-19 Способ получения антифрикционной композиции

Publications (1)

Publication Number Publication Date
RU2580270C1 true RU2580270C1 (ru) 2016-04-10

Family

ID=55793993

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015101459/02A RU2580270C1 (ru) 2015-01-19 2015-01-19 Способ получения антифрикционной композиции

Country Status (1)

Country Link
RU (1) RU2580270C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622547C1 (ru) * 2016-04-21 2017-06-16 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях
RU2634100C1 (ru) * 2016-04-21 2017-10-23 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038466A1 (en) * 1999-11-22 2001-05-31 Sergei Nikolaevich Alexandrov Method of treatment of friction surfaces of friction units
RU2243427C1 (ru) * 2003-06-10 2004-12-27 Цейко Александр Павлович Способ формирования антифрикционного покрытия кинематических пар трущихся поверхностей
WO2006058768A1 (de) * 2004-12-02 2006-06-08 Rewitec Gmbh Zuschlagstoff zur beimischung in einen betriebsstoff einer technischen anlage, verwendung eines zuschlagstoffs und verfahren zur oberflächenbehandlung von arbeitskomponenten einer technischen anlage
RU2361015C1 (ru) * 2008-02-01 2009-07-10 Виктор Петрович Носов Состав для модифицирования металлов и восстановления металлических поверхностей
RU2484179C1 (ru) * 2011-12-15 2013-06-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения антифрикционной композиции
RU2487192C1 (ru) * 2011-12-15 2013-07-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения антифрикционной композиции

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038466A1 (en) * 1999-11-22 2001-05-31 Sergei Nikolaevich Alexandrov Method of treatment of friction surfaces of friction units
RU2243427C1 (ru) * 2003-06-10 2004-12-27 Цейко Александр Павлович Способ формирования антифрикционного покрытия кинематических пар трущихся поверхностей
WO2006058768A1 (de) * 2004-12-02 2006-06-08 Rewitec Gmbh Zuschlagstoff zur beimischung in einen betriebsstoff einer technischen anlage, verwendung eines zuschlagstoffs und verfahren zur oberflächenbehandlung von arbeitskomponenten einer technischen anlage
RU2361015C1 (ru) * 2008-02-01 2009-07-10 Виктор Петрович Носов Состав для модифицирования металлов и восстановления металлических поверхностей
RU2484179C1 (ru) * 2011-12-15 2013-06-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения антифрикционной композиции
RU2487192C1 (ru) * 2011-12-15 2013-07-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Способ получения антифрикционной композиции

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622547C1 (ru) * 2016-04-21 2017-06-16 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях
RU2634100C1 (ru) * 2016-04-21 2017-10-23 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях

Similar Documents

Publication Publication Date Title
Jatti et al. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil
Zhang et al. A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel
CA2661585C (en) Method for composing a nano-particle metal treatment composition for creating a ceramic-metal layer
US20100135909A1 (en) Dendrimers and methods of making and using thereof
RU2487192C1 (ru) Способ получения антифрикционной композиции
RU2580270C1 (ru) Способ получения антифрикционной композиции
Vadiraj et al. Effect of solid lubricants on friction and wear behaviour of alloyed gray cast iron
Aulin et al. Wear resistance increase of samples tribomating in oil composite with geo modifier КgМf-1
CA2818802C (en) Method of preparing a lubricating composition containing dehydrated oxide hydrates
RU2415176C2 (ru) Нанотехнологическая антифрикционная порошковая композиция (варианты), нанотехнологическая смазочная композиция и способ нанотехнологической смазки
RU2559077C1 (ru) Способ формирования антифрикционного покрытия контактирующих трущихся поверхностей
RU2345176C1 (ru) Способ формирования восстанавливающего антифрикционного и износостойкого покрытия для узлов и деталей машин и механизмов
RU2420562C1 (ru) Модификатор трения
WO2006046885A2 (fr) Composition permettant de former une couche neoformee sur des surfaces metalliques d'usure
RU2634100C1 (ru) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях
Xue et al. Tribological performance of modified flocculent graphite as lubricant additives
Johansson On the influence of gear oil properties on pitting life
RU2309274C2 (ru) Способ обеспечения минимальных механических потерь в цилиндро-поршневых группах двигателя внутреннего сгорания при формировании покрытий поверхностей деталей без разборки двигателя
CN101787321A (zh) 具有自修复功能的微纳米矿物颗粒润滑添加剂、润滑油及生产方法
Leontiev et al. Functional nanostructured tribotechnical materials
Leont’ev et al. Tribotechnical properties of thin-film coatings obtained by the tribomodifcation of crankshaft pins for ship diesel engines
WO2012108994A2 (en) Metal treatment composition and method of treating rubbing surfaces
RU2622547C1 (ru) Способ получения антифрикционного покрытия на контактирующих трущихся поверхностях
Albagachiev et al. Serpentines as additives to oils: Efficiency and mechanism of lubrication
Dolgopolov et al. The structure of lubricating layers appearing during friction in the presence of additives of mineral friction modifiers

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20170531