RU2580151C1 - Способ определения температурного распределения вдоль оптоволоконной линии - Google Patents

Способ определения температурного распределения вдоль оптоволоконной линии Download PDF

Info

Publication number
RU2580151C1
RU2580151C1 RU2014146610/28A RU2014146610A RU2580151C1 RU 2580151 C1 RU2580151 C1 RU 2580151C1 RU 2014146610/28 A RU2014146610/28 A RU 2014146610/28A RU 2014146610 A RU2014146610 A RU 2014146610A RU 2580151 C1 RU2580151 C1 RU 2580151C1
Authority
RU
Russia
Prior art keywords
signal
response
measured
photodiode
electronic
Prior art date
Application number
RU2014146610/28A
Other languages
English (en)
Inventor
Иван Сергеевич Шелемба
Денис Сергеевич Харенко
Игорь Викторович Сычев
Алексей Геннадьевич Кузнецов
Original Assignee
Общество с ограниченной ответственностью "СибСенсор" (ООО "СибСенсор")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "СибСенсор" (ООО "СибСенсор") filed Critical Общество с ограниченной ответственностью "СибСенсор" (ООО "СибСенсор")
Priority to RU2014146610/28A priority Critical patent/RU2580151C1/ru
Application granted granted Critical
Publication of RU2580151C1 publication Critical patent/RU2580151C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к области оптических измерений и касается способа определения температурного распределения вдоль оптоволоконной линии. Способ включает в себя выделение реального сигнала, обусловленного электронным фототоком из измеряемой суперпозиции реального (электронного) и «дырочного» сигналов. При этом измеряют интенсивность комбинационного рассеяния света с помощью фотодиода, выражают передаточную функцию фотодиода как свертку
Figure 00000015
где gm - измеренный отклик в заданном промежутке, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок, и последующими преобразованиями выделяют реальный сигнал, обусловленный электронным фототоком. Технический результат состоит в повышении точности измерений. 5 ил.

Description

Область техники
Изобретение относится к технике измерения температурного распределения в протяженных объектах и может быть использовано, в частности, в нефтегазодобывающей промышленности для измерения температуры в добывающих скважинах на всем их протяжении, в энергетике, капитальном и гражданском строительстве в качестве систем противопожарной сигнализации с улучшенным пространственным разрешением и точностью измерения.
Уровень техники
Известен способ определения температурного распределения вдоль оптоволоконной линии, реализуемый при работе волоконно-оптического устройства для измерения температурного распределения (патент RU 2221225) [1]. Устройство содержит импульсный источник оптического излучения, включающий лазер, чувствительный элемент датчика в виде оптического волокна и узел обработки сигналов, включающий таймер, направленный оптический ответвитель, узел спектрального разделения и фотоприемные модули, снабжено фотоприемником синхронизации. Оптическое волокно чувствительного элемента датчика выполнено многомодовым. Лазер импульсного источника оптического излучения является одномодовым волоконным с накачкой от полупроводникового лазера. Направленный оптический ответвитель выполнен связывающим одномодовое и многомодовое оптические волокна, причем импульсный источник оптического излучения связан с одномодовым входом направленного оптического ответвителя, узел спектрального разделения связан с многомодовым входом направленного оптического ответвителя, фотоприемник синхронизации связан с одномодовым выходом оптического ответвителя. Узел обработки сигналов дополнительно содержит аналого-цифровые преобразователи и цифровые накопители сигналов. Фотоприемные модули связаны с выходами узла спектрального разделения и с аналого-цифровыми преобразователями, выходы которых связаны с входами цифровых накопителей сигналов. Таймер связан с аналого-цифровыми преобразователями. Устройство может быть снабжено узлом термостабилизации опорного отрезка многомодового оптического волокна. Одномодовый волоконный лазер выполнен на основе световода, легированного ионами редкоземельных элементов.
Недостатками данного изобретения является то, что при измерении учитывается импульсный отклик фотодиода, включающий две составляющие: отклик электронной проводимости и дырочной. Информацию о реальной температуре несет ток электронной проводимости. Вклад дырочного тока составляет до 5%. Это приводит к уменьшению пространственного разрешения и ошибки измерения температуры при резких изменениях его значения вдоль длины волокна. Данное изобретение является ближайшим аналогом заявляемого изобретения, т.е. прототипом.
Раскрытие изобретения
Задача, решаемая изобретением: создание способа определения температурного распределения вдоль оптоволоконной линии, основанного на выделении реального сигнала, обусловленного электронным фототоком из измеряемой суперпозиции реального (электронного) и «дырочного» сигналов.
Технический результат состоит в повышении точности измерений температурного распределения распределенного оптоволоконного датчика.
Поставленная задача решена созданием способа определения температурного распределения вдоль оптоволоконной линии, состоящего в том, что измеряют интенсивность комбинационного рассеяния света с помощью фотодиода, выражают передаточную функцию фотодиода как свертку
Figure 00000001
где gm - измеренный отклик сигнала вдоль оптоволоконной линии, t - текущее время измерения, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок и последующими преобразованиями выделяют реальный сигнал, обусловленный электронным фототоком.
Обоснование разработанного способа
Известно, что комбинационное рассеяние (КР) света сопровождается появлением дополнительных сдвинутых по частоте спектральных компонент в рассеянном свете. Количество и спектральное положение этих линий зависят от структурных характеристик рассеивающего вещества. В КР происходит обмен энергией между падающим фотоном и молекулой вещества: если молекула переходит из основного состояния в возбужденное, то рассеянный фотон смещается по частоте в красную область спектра и таким образом генерируется стоксова компонента КР (Рис. 1). Возможен также и обратный процесс, когда структурная молекула теряет энергию и перерассеянный фотон с более высокой энергией генерирует антистоксову линию в синей области спектра относительно линии накачки. Очевидно, что заселенность возбужденного уровня напрямую зависит от температуры вещества, а значит, и интенсивность анти-стоксовой компоненты будет проявлять температурную зависимость. Таким образом, регистрируя временную динамику интенсивности антистоксовой компоненты КР при зондировании импульсным излучением, с помощью такого датчика можно проводить измерения температуры вдоль всего волокна. Отношение интенсивностей стоксовой Is и антистоксовой Ias компонент описывается известной формулой:
Figure 00000002
где λs и λas - длины волн стоксовой и антистоксовой линий, kB - постоянная Больцмана, h - постоянная планка. Коэффициенты затухания стоксовой и антистоксовой волн различны и зависят от температуры, что должно быть принято во внимание для корректного расчета температуры.
На рис. 1 приведен спектр комбинационного рассеяния в оптоволокне, измеренный в обратном направлении по отношению к распространению лазерного импульса. Видно, что интенсивность антистоксовой линии очень мала (на 30 дБ слабее амплитуды упругого рэлеевского рассеяния), и поэтому регистрация отношения интенсивностей стоксовой и антистоксовой компонент является сложной задачей. Кроме этого мощность зондирующего излучения не должна превышать нескольких Ватт, чтобы избежать проявления таких нелинейных эффектов, как вынужденное комбинационное (рамановское) рассеяние и вынужденное рассеяние Мандельштама - Бриллюэна. Все это требует особенно тщательного подхода к выбору метода спектральной фильтрации полезного сигнала и качеству регистрирующей аппаратуры.
В рамановском измерителе температуры (RDTS) значение температуры вычисляется из отношения амплитуд стоксовой и антистоксовой компоненты рассеяния (обратного) от мощного оптического импульса по вышеуказанной формуле. Поэтому любое искажение исходной амплитуды приводит к искажению температурного распределения.
Входной тракт прибора схематически представлен на рис. 2, где TIA - транс-импедансный усилитель, как правило, составляет единую сборку с фотоприемником (ФД модуль); HFA - high frequency amplifier - высокочастотный усилитель, собранный на дискретных элементах для согласования выходного сигнала ФД модуля с оптимальным диапазоном DAQ; DAQ - модуль регистрации данных (АЦП).
На рис. 3 также схематично изображены примеры идеального сигнала (спадающая экспонента с показателем, равным затуханию оптического сигнала в волокне) и реального сигнала. Здесь W(p) и W(p)-1 - это прямая и обратная передаточные функции всего входного тракта. Один из способов вычисления этих функций - подача образцового (прямоугольного) сигнала на вход и аппроксимация выходного сигнала известными функциями. При этом обратная функция вычисляется при помощи преобразования Лапласа. Зная обратную функцию передаточного тракта, можно восстановить исходный сигнал. Для этой процедуры еще встречается определение «обратная свертка».
Таким образом, нам требуется определить минимальный набор функций, по которым можно разложить передаточную функцию входного тракта и реализовать способ восстановления исходного сигнала по произвольному измеренному сигналу. Решение этой задачи даст нам избавление от нелинейностей калибровок, что позволит получить линейное распределение с точностью лучше 1С.
Отклик, приведенный на рис. 3, обусловлен существенным отличием постоянных времени для импульсной характеристики дырочного и электронного фототока (обусловленного различной подвижностью носителей). InGaAs характеризуется очень большой разницей подвижности - два порядка (Т.Р. Pearsall, J.P. Hirtz, The carrier mobilitiesin Ga0,47In0.53 as grown by organo-metallic cvd and liquid-phase epitaxy. Journal of crystal growth, 54, pp. 127-131 (1981) [2], (S. Datta, K.P. Roenker, M.M. Cahay, William E. Stanchina. Implications of hole vs electron transport properties for high speed Pnp heterojunction bipolar transistors. Solid-State Electronics, 43, pp. 73-79 (1999) [3].
Т.е. получается, что сам фотодиод выдает на выход суперпозицию исходного оптического сигнала, пропущенного через два фильтра первого порядка с отличающимися в ~100 раз постоянными времени. Потом сигнал пропускается через общие фильтры (внутренняя схема фотоприемника, усилитель для фотоприемника и т.д.).
Если мы предполагаем, что верхняя полоса среза ФД, обусловленная электронной проводимостью, нам достаточна (50 МГц), и хотим избавиться только от вклада дырок, то передаточную функцию ФД можно записать как свертку следующим образом:
Figure 00000003
где gm - измеренный отклик, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок.
Если отклик дырок рассматривать как фильтр первого порядка, то его действие на дельта-функцию (импульсный отклик) можно описать обычной экспоненциальной функцией:
Figure 00000004
где α - параметр затухания, определяемый частотой среза фильтра, а - амплитуда, фактически определяющая вклад отклика дырок в общий сигнал.
Далее, если подставить (2) в (1) и сделать прямое преобразование Лапласа (L(t)), то свертка функций перейдет в умножение изображений, что в силу линейности самого преобразования можно записать как:
Figure 00000005
где s=c+iω - комплексная переменная, Gm(s) - изображение измеренного отклика ФД, G0 - изображение исходного сигнала. Таким образом, чтобы «вычесть» из исходного сигнала вклад дырок, необходимо из последнего равенства в (4) выделить G0 и выполнить обратное преобразование Лапласа:
Figure 00000006
В п. 4 §42 Б.К. Чемоданов, «Математические основы теории автоматического регулирования», Том 2, М. 1977 [4] дается связь между преобразованием Фурье и Лапласа. Главное условие состоит в выборе константы с в переменной s, чтобы интеграл преобразования был сходящимся. В нашем случае (рис. 3) сигнал рефлектограммы конечен по времени. Проблемы может доставлять лишь выброс в отрицательные значения после окончания рефлектограммы, вызванный ограничением полосы входного тракта снизу. Чтобы все было корректно с точки зрения преобразования фурье, нужно избавиться от разрыва на краях исследуемого промежутка, домножить весь сигнал на слабую затухающую экпоненту (exp(-β·t), где β - коэффициент затухания, t - текущее время измерения, β·t<1), такую, чтобы разность уровней в начальной и конечной точках не превышала уровня шума. После применения L-1 (s), необходимо домножить получившийся сигнал на обратную экспоненту. Формулы (3) и (4) в этом случае переписывается следующим образом:
Figure 00000007
Figure 00000008
Пример использования способа
В качестве примера использования предлагаемого способа рассмотрим эксперимент, демонстрирующий возможность использования датчика для измерения криогенных температур. Измерительная линия состоит из 4-х отрезков. Первый и последний находятся при нормальных условия, второй и третий с длинами 40 и 25 м соответственно помещены с жидкий азот.
На рис. 4 сплошной линией приведена рефлектограмма для антистоксовой компоненты рассеяния (gm). Здесь вклад медленной дырочной проводимости проявляется в слабом возрастании сигнала на участке после 50-ти метров, тогда как максимальная амплитуда оптического импульса приходится строго на фронт, и после монотонно идет на спад. Аналогичное явление происходит на заднем фронте рефлектограммы в районе 300 метров.
Здесь оптической сигнал уже равен нулю, тогда как электрический отклик с фотодиода затухает до 400 метров. Измерения, проведенные по описанному способу, позволяют избавится от этой паразитной составляющей. Восстановленный сигнал приведен на рис. 4 пунктирной линией.
На рис. 5 приведены результаты вычисления температуры по полученным рефлектограммам. В исходном случае видно, что измерения на участке, находящемся в жидком азоте и имеющем заведомо постоянную температуру, отличаются как от температуры жидкого азота, так и имеют некоторую линию тренда, проходящую через оба отрезка. При этом при использовании описанного метода измерения линия тренда отсутствует (рис. 5, пунктирная линия), а поправка к измеренному значению температуры достигает 10-ти градусов.
Использованные источники информации
[1] патент RU 2221225.
[2] Т.Р. Pearsall, J.P. Hirtz, The carrier mobilitiesin Ga0,47In0. 53 as grown by organo-metallic cvd and liquid-phase epitaxy. Journal of crystal growth, 54, pp. 127-131 (1981).
[3] S. Datta, K.P. Roenker, M.M. Cahay, William E. Stanchina. Implications of hole vs electron transport properties for high speed Pnp heterojunction bipolar transistors. Solid-State Electronics, 43, pp. 73-79 (1999).
[4] Б.К. Чемоданов, «Математические основы теории автоматического регулирования», Том 2, М., 1977.

Claims (1)

  1. Способ определения температурного распределения вдоль оптоволоконной линии, состоящий в том, что измеряют интенсивность комбинационного рассеяния света с помощью фотодиода и выделяют реальный сигнал, обусловленный электронным фототоком, при этом передаточную функцию фотодиода выражают как свертку
    Figure 00000009

    где gm - измеренный отклик сигнала вдоль оптоволоконной линии, g0 - искомый исходный сигнал, обусловленный электронным фототоком, δ - дельта-функция, W - передаточная функция от дырок, t - текущее время измерения,
    рассматривают отклик дырок как фильтр первого порядка, и его действие на дельта-функцию (импульсный отклик) описывают экспоненциальной функцией
    Figure 00000010

    где α - параметр затухания, определяемый частотой среза фильтра, а - амплитуда, фактически определяющая вклад отклика дырок в общий сигнал,
    подставляют (2) в (1) и осуществляют прямое преобразование Лапласа (L(t)), получают умножение изображений, что в силу линейности самого преобразования, записывают как
    Figure 00000011

    где s=c+iω - комплексная переменная, Gm(s) - изображение измеренного отклика ФД, G0 - изображение исходного сигнала g0,
    выделяют G0 и выполняют обратное преобразование Лапласа:
    Figure 00000012

    выбирают константу с в переменной s так, чтобы интеграл преобразования был сходящимся, домножают измеренный сигнал gm на exp(-β·t), где β - коэффициент затухания, t - текущее время измерения, β·t<1, производят обратное преобразование Лапласа L-1 (s) и домножают получившийся сигнал на обратную экпоненту exp(β·t), вычисляют исходный искомый сигнал g0 из формул (3) и (4) следующим образом:
    Figure 00000013

    Figure 00000014
RU2014146610/28A 2014-11-19 2014-11-19 Способ определения температурного распределения вдоль оптоволоконной линии RU2580151C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146610/28A RU2580151C1 (ru) 2014-11-19 2014-11-19 Способ определения температурного распределения вдоль оптоволоконной линии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146610/28A RU2580151C1 (ru) 2014-11-19 2014-11-19 Способ определения температурного распределения вдоль оптоволоконной линии

Publications (1)

Publication Number Publication Date
RU2580151C1 true RU2580151C1 (ru) 2016-04-10

Family

ID=55793908

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146610/28A RU2580151C1 (ru) 2014-11-19 2014-11-19 Способ определения температурного распределения вдоль оптоволоконной линии

Country Status (1)

Country Link
RU (1) RU2580151C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109157198A (zh) * 2018-07-18 2019-01-08 郑州轻工业学院 一种基于磁纳米粒子的机械扫描式二维温度成像方法
CN111562032A (zh) * 2020-06-03 2020-08-21 山东电工电气集团有限公司 一种基于光纤光栅传感器的组合电器温度监测方法
CN114389682A (zh) * 2021-12-09 2022-04-22 武汉光迅科技股份有限公司 一种拉曼光时域反射仪脉冲响应估计方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113277A (en) * 1989-06-22 1992-05-12 Hitachi Cable Limited Fiber optic distributed temperature sensor system
RU2221225C1 (ru) * 2003-04-15 2004-01-10 Зазирный Максим Владимирович Волоконно-оптическое устройство для измерения температурного распределения
WO2009016458A2 (en) * 2007-07-31 2009-02-05 Politecnico Di Milano Sensor and method for determining temperature along an optical fibre
RU2413188C2 (ru) * 2009-04-09 2011-02-27 Общество с ограниченной ответственностью "СибСенсор" Волоконно-оптическое устройство для измерения температурного распределения (варианты)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113277A (en) * 1989-06-22 1992-05-12 Hitachi Cable Limited Fiber optic distributed temperature sensor system
RU2221225C1 (ru) * 2003-04-15 2004-01-10 Зазирный Максим Владимирович Волоконно-оптическое устройство для измерения температурного распределения
WO2009016458A2 (en) * 2007-07-31 2009-02-05 Politecnico Di Milano Sensor and method for determining temperature along an optical fibre
RU2413188C2 (ru) * 2009-04-09 2011-02-27 Общество с ограниченной ответственностью "СибСенсор" Волоконно-оптическое устройство для измерения температурного распределения (варианты)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109157198A (zh) * 2018-07-18 2019-01-08 郑州轻工业学院 一种基于磁纳米粒子的机械扫描式二维温度成像方法
CN109157198B (zh) * 2018-07-18 2021-01-29 郑州轻工业学院 一种基于磁纳米粒子的机械扫描式二维温度成像方法
CN111562032A (zh) * 2020-06-03 2020-08-21 山东电工电气集团有限公司 一种基于光纤光栅传感器的组合电器温度监测方法
CN111562032B (zh) * 2020-06-03 2021-07-23 山东电工电气集团有限公司 一种基于光纤光栅传感器的组合电器温度监测方法
CN114389682A (zh) * 2021-12-09 2022-04-22 武汉光迅科技股份有限公司 一种拉曼光时域反射仪脉冲响应估计方法和装置
CN114389682B (zh) * 2021-12-09 2023-05-16 武汉光迅科技股份有限公司 一种拉曼光时域反射仪脉冲响应估计方法和装置

Similar Documents

Publication Publication Date Title
US9983094B2 (en) Temperature or strain distribution sensor comprising a coherent receiver to determine a temperature or a strain associated with a device under test
EP2966426B1 (en) Optical fiber temperature distribution measuring device
Bahrampour et al. Spatial resolution enhancement in fiber Raman distributed temperature sensor by employing ForWaRD deconvolution algorithm
CN104677396A (zh) 动态分布式布里渊光纤传感装置及方法
US20140253915A1 (en) Coherent dual parametric frequency comb for ultrafast chromatic dispersion measurement
RU2580151C1 (ru) Способ определения температурного распределения вдоль оптоволоконной линии
JP2010531444A (ja) 光周波数コムのビートスペクトルの基準付け
Bahrampour et al. Resolution enhancement in long pulse OTDR for application in structural health monitoring
CN104596670A (zh) 一种解决分布式光纤拉曼温度传感系统温度漂移的方法
Xia et al. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion
CN104776871B (zh) 光纤布里渊分布式测量光路、装置和方法
CN102589748A (zh) 基于光纤瑞利与布里渊原理的环境温度测量方法
CN104617473B (zh) 低插损三环路窄线宽布里渊光纤激光器
CN104390723A (zh) 基于多波长布里渊光纤激光器的光纤温度传感器
Bieler et al. Time-domain optoelectronic vector network analysis on coplanar waveguides
CN110736708A (zh) 一种变温环境下基于恢复的fbg高精度解调装置及解调方法
CN103414513A (zh) 一种具有高动态范围的脉冲光动态消光比测量装置及方法
CN115238231A (zh) 一种窄线宽激光器线宽的检测方法及装置
Hao et al. Effects of modulated pulse format on spontaneous Brillouin scattering spectrum and BOTDR sensing system
Bernini et al. Accuracy enhancement in Brillouin distributed fiber-optic temperature sensors using signal processing techniques
Yao et al. Measurement error analysis of Brillouin lidar system using F–P etalon and ICCD
CN111141414B (zh) 基于混沌bocda的温度与应变同时测量装置及方法
Cyr et al. Random-scrambling tunable POTDR for distributed measurement of cumulative PMD
RU134320U1 (ru) Устройство мониторинга температурного профиля вдоль трубопроводных систем
Ma et al. Using multiple reference points in Raman based distributed temperature sensor for eliminating DC interference