RU2579580C1 - Способ приготовления компактного гидрида титана - Google Patents

Способ приготовления компактного гидрида титана Download PDF

Info

Publication number
RU2579580C1
RU2579580C1 RU2014150147/05A RU2014150147A RU2579580C1 RU 2579580 C1 RU2579580 C1 RU 2579580C1 RU 2014150147/05 A RU2014150147/05 A RU 2014150147/05A RU 2014150147 A RU2014150147 A RU 2014150147A RU 2579580 C1 RU2579580 C1 RU 2579580C1
Authority
RU
Russia
Prior art keywords
hydrogen
sample
temperature
saturation
titanium hydride
Prior art date
Application number
RU2014150147/05A
Other languages
English (en)
Inventor
Александр Николаевич Голубков
Аркадий Аркадьевич Юхимчук
Сергей Васильевич Баранов
Георгий Шамилевич Баторшин
Салават Минни-Ахметович Валеев
Святослав Владимирович Светлаков
Original Assignee
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Федеральное государственное унитарное предприятие "Производственное объединение "Маяк"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ", Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" filed Critical Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Priority to RU2014150147/05A priority Critical patent/RU2579580C1/ru
Application granted granted Critical
Publication of RU2579580C1 publication Critical patent/RU2579580C1/ru

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к водородной технологии и может быть использовано в качестве элемента биологической защиты ядерных энергетических установок. Образец титана подвергают активации с последующим насыщением водородом. Насыщение проводят при 580-670°C, скорости подачи водорода к образцу не более 600 см3/грамм Ti в час. После достижения фазового перехода β→(β+δ) скорость подачи водорода к образцу поддерживают не более 200 см3/грамм Ti в час. Активация образца может проводиться при температуре насыщения его водородом. Максимальное давление водорода 0,17 МПа. Повышается качество компактного гидрида титана за счёт устранения трещин, упрощается технология за счет сокращения времени взаимодействия образца компактного титана с водородом в 1,9-7,5 раз. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к водородной технологии и направлено на получение компактных (без пор и трещин) частиц гидридов титана, которые могут использоваться в качестве элемента биологической защиты ядерных энергетических установок.
Гидриды металлов в качестве элемента биологической защиты ядерных энергетических установок по условиям эксплуатации должны иметь высокую объемную плотность водорода и быть устойчивыми при повышенных температурах. Гидрид титана имеет одну из наиболее высоких объемных плотностей водорода, а повышение термической стойкости гидрида титана достигается путем получения гидридов без трещин. Показано, что при наличии в гидриде титана трещин скорость его окисления при 400°C в ~ 2 раза выше, чем для гидрида без трещин /Борисовский А.Ф, Малюков Е.Е., Моломин В.И. и др. Некоторые свойства компактного гидрида титана как материала радиационной защиты. Водородное материаловедение и химия гидридов металлов. Труды VIII Международной конференции ICHM′S 2003, р.р. 384-387./. Поэтому разработки в данной области направлены на получение образцов компактного гидрида титана, в которых трещины отсутствуют или их количество сведено до минимума.
Известен способ получения компактного гидрида титана, согласно которому образец дегазируют в течение 0,5 часа при 800°C, после чего температуру поднимают до 1000°C и к образцу подают водород при давлении 1 атм (1,01 бара). Насыщение при этих условиях проводят до содержания водорода 50 см3/грамм Ti. Затем температуру снижают до 900°C и подают водород до содержания 100 см3 на 1 грамм Ti. Затем температуру снижают до 800°C и подают водород до содержания 140 см3/грамм Ti. Затем температуру снижают до 700°C и подают водород до содержания 170 см3/ грамм Ti. После этого температуру металла снижают с такой скорость, чтобы образец поглощал не более 0,8 ат.% водорода за 1 час (3,27 см3/грамм Ti в час при содержании газа 170 см3/грамм Ti). После достижения заданного состава образцы дополнительно отжигают в течение 2-3 часов при температуре окончания опыта и охлаждают до комнатной температуры /Брынза А.П, Патрушева А.Г., Кулик Л.Я. и др. Синтез и металлография сплавов системы титан-водород. В кн.: Вопросы химии и химической технологии, 31, "Вища школа", Харьков, 1973/.
Недостатком способа является его сложность. Согласно способу взаимодействие титана с водородом происходит в пять этапов. Сначала образец взаимодействует с водородом при четырех различных постоянных температурах, а затем - в условиях снижения температуры образца.
Взаимодействие с водородом в условиях снижения температуры образца ведет к появлению градиента температуры в нем, неравномерному насыщению и растрескиванию образца. Видимо, поэтому максимальное содержание водорода в образце, полученное в указанной работе, составляло 55ат.% .(содержание газа 286,3 см3/грамм Ti).
Процесс взаимодействия с водородом по описанному методу является очень длительным. В качестве примера можно сказать, что взаимодействие только на последней стадии в условиях снижения температуры, где содержание газа менялось от 170 до 286,3 см3/грамм Ti, при скорости поглощения не более 0,8 ат.% водорода за 1 час (4,19 см3/грамм Ti в час при содержании газа 286,3 см3/грамм Ti) занимает более 27 часов.
Указанные недостатки не позволяют использовать данный способ для получения компактного гидрида титана в промышленных масштабах.
Наиболее близким к предлагаемому способу является способ, согласно которому образец в виде титановой дроби диаметром 0,2-2,5 мм активируют путем прогрева при температуре от 650 до 700°C в течение 2 часов, после чего при этой температуре производится поглощение подаваемого отдельными порциями водорода в течение от 4,3 до 4,6 часов. Затем производят постепенное понижение температуры образца до ~ 500°C с одновременной медленной подачей водорода. После поглощения образцом необходимого количества газа подачу водорода прекращают, а образец охлаждают /Рудских В.В., Левченкова О.Н, Волкова Т.С. и др. Гидрирование дроби титана при пониженном давлении водорода. Сборник тезисов докладов Пятой Международной Конференции и Девятой Международной Школы молодых ученых и специалистов им. А.А. Курдюмова. Саров, 7-11 июля 2014 г. Саров, ФГУП "РФЯЦ-ВНИИЭФ", 2014, стр. 166-169/.
Недостатком известного способа является сложность процесса, включающего в себя 2 этапа, проводимых при разных температурах, - подачу водорода при постоянной температуре образца и последующую подачу водорода к образцу в процессе постепенного снижения температуры.
Процесс получения гидрированной дроби, согласно описанному способу, занимает достаточно много времени. Так, длительность только времени взаимодействия водорода с образцом (времени, когда к образцу подается водород), согласно приведенным данным, составляет 8,7-10,5 часов.
Недостатком данного способа является также наличие этапа подачи к образцу водорода в условиях снижения температуры образца от температуры активации (650-700°C) до 500°C. Взаимодействие с водородом в условиях меняющейся температуры образца приводит к появлению температурных градиентов в нем, следствием чего являются неоднородное распределение газа в образце и его растрескивание. На это указывают и приведенные в источнике данные, согласно которым в полученной данным способом гидрированной дроби обнаружено наличие трещин на отдельных частицах, а также образование агломератов из спекшихся друг с другом частиц. И чем больше размеры образца, тем больше температурные градиенты и вероятность растрескивания образца. Это затрудняет применение описанного способа при изготовлении образцов, большого объема. Для снижения температурных градиентов в образце можно снизить скорость его охлаждения, но это подразумевает увеличение времени для получения образца. Таким образом, данный способ не может быть высокопроизводительным, обеспечивающим производство гидрида в промышленных масштабах.
Задачей, которую решает настоящее изобретение, является сокращение времени получения компактного гидрида титана, упрощение способа его получения и повышение качества компактного гидрида титана.
Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:
- упрощение способа за счет взаимодействия образца титана с водородом при одной температуре вместо нескольких;
- повышение производительности способа за счет сокращения времени подачи водорода к образцу в 1,9-7,5 раз (с 8,7-10,5 до 1,4-4,6 часов);
- устранение образования трещин в получаемом образце компактного гидрида титана.
Для решения указанной задачи и достижения технического результата предлагается способ получения компактного гидрида титана, заключающийся в активации образца титана и последующем насыщении его водородом, в котором согласно изобретению насыщение проводят при температуре, выбранной из диапазона 580-670°C, при скорости подачи водорода к образцу не более 600 см3/грамм Ti в час, при этом после достижения фазового перехода β→(β+δ) скорость подачи водорода к образцу поддерживают не более 200 см3/грамм Ti в час.
Для сокращения общего времени синтеза активацию проводят при температуре насыщения водородом образца титана.
Для упрощения способа и повышения его безопасности максимальное давление подаваемого к образцу водорода составляет 0,17 МПа.
Способ получения компактного гидрида титана упрощается за счет того, что подачу водорода к образцу производят при одной температуре из диапазона 580-670°C.
Из-за того что все взаимодействие образца с водородом происходит только в области высоких температур (при температуре не менее 580°C), скорость подачи водорода к образцу может быть увеличена (до 600 см3/грамм Ti в час) без образования трещин в образце и за счет этого сокращено время получения компактного гидрида.
С целью снижения вероятности образования трещин максимальная скорость подачи газа после достижения фазового перехода β→(β+δ) снижена и не должна превышать 200 см3/грамм Ti в час. Это вызвано тем, что после достижения фазового перехода β→(β+δ) начинается образование δ-фазы гидрида титана, сопровождающееся расширением кристаллической решетки.
Дополнительное сокращение времени можно получить, если проводить активацию при температуре последующего насыщения образца водородом. Так как активацию титана можно проводить в широком диапазоне температур от 400 до более 1000°C, изменение температуры активации в указанных пределах само по себе не повлияет на реакционную способность Ti. В случае проведения активации и последующего насыщения образца водородом при одной температуре устраняются затраты времени для перевода температуры образца от температуры активации до используемой при насыщении.
Так как взаимодействие титана с водородом происходит при постоянной температуре, температурные градиенты в образце могут быть сведены до минимума. За счет этого улучшается однородность образца по содержанию водорода и снижаются напряжения в нем. Это позволяет получать образцы компактного гидрида титана большого размера. Из-за того что взаимодействие образца компактного титана с водородом происходит только в области высоких температур (при температуре не менее 580°C), улучшаются условия для релаксации напряжений, возникающих в образце при поглощении газа. Все это снижает вероятность растрескивания отдельных частиц образца.
Для упрощения получения компактного гидрида титана и повышения безопасности этого процесса максимальное давление водорода может быть ограничено величиной 0,17 МПа. Согласно правилам Ростехнадзора /Правила устройства и безопасной эксплуатации сосудов, работающих под давлением, ПБ 03-576-03/ при таком давлении газа не предъявляется каких-либо особых требований к проведению работ, устройству установок или помещений, в которых они расположены.
Для экспериментального подтверждения настоящего изобретения использовалась титановая дробь производства ОАО «Композит» (г. Королев), диаметром 0,63-2,5 мм, изготовленная из сплава ВТ 1-0 методом центробежного распыления плазмой в среде смеси гелия и аргона и водород технический марки А (ГОСТ 3022-80).
Активация образца и его взаимодействие с водородом производились в установке типа установки Сивертса, снабженной регулятором скорости подачи газа, имеющим функцию определения количества прошедшего через регулятор газа.
Удельное содержание водорода в компактном гидриде титана определялось путем сплавления пробы с медью, по массе взятой не менее чем в двукратном количестве по отношению к массе гидрида, и измерении количества выделившегося газа волюмометрическим методом.
Контроль на наличие трещин производился визуально с помощью стереомикроскопа при увеличении до 100 раз.
В таблице представлены некоторые из имеющихся экспериментальных данных, иллюстрирующих применимость заявляемого способа получения компактного гидрида титана.
Figure 00000001
Как видно из приведенных в таблице данных, предлагаемый способ получения компактного гидрида титана был успешно реализован при подаче газа в температурной области 580-680°C (опыты 2-11). При увеличении температуры до 700°C отмечено спекание отдельных дробин гидрида (опыт 1). При снижении температуры до 570°C отмечено заметное растрескивание отдельных дробин (опыт 12).
Предлагаемый способ получения компактного гидрида титана является более простым, чем прототип. Из приведенных в таблице параметров проведения экспериментов видно, что взаимодействие образца с водородом проводилось при одной температуре.
Активация образцов проводилась, в основном, при температуре последующей подачи газа к образцу в температурном диапазоне 580-700°C. Из сравнения результатов опытов 2-3 и 5-6 видно, что изменение температуры активации по сравнению с температурой последующей подачи газа к образцу не повлияло заметным образом на качество или содержание газа в конечном продукте. При проведении активации при температуре последующей подачи газа устраняются затраты времени для перевода температуры образца от температуры активации до температуры насыщения.
Время взаимодействия водорода с образцом во всем заявляемом диапазоне температур составляло от 1,4 (опыт №6) до 4,5 часа (опыт №10).
Используемые скорости подачи водорода к образцу достигали 600 см3/грамм Ti в час (опыты 4, 6, 7), однако после достижения фазового перехода β→(β+δ) для предотвращения растрескивания максимальная используемая скорость подачи водорода составляла от 80 (опыт 7) до 200 см3/грамм Ti в час (опыты 5 и 6). Очевидно, что при снижении скорости подачи газа к образцу менее 80 см3/грамм Ti в час растрескивания также не произойдет, однако время синтеза увеличится.
Как видно из экспериментальных данных, в результате синтеза при температурах 580-680°C во всех случаях были получены дробины без заметных дефектов.
Использование предлагаемого способа получения компактного гидрида титана обеспечивает по сравнению с существующим способом следующие преимущества:
- за счет подбора режимов взаимодействия титана с водородом упрощается технология получения компактного гидрида титана;
- время взаимодействия образца с водородом сокращается в 1,9-7,5 раз (с 8,7-10,5 до 1,4-4,5 часов);
- повышается качество компактного гидрида титана (устраняется образование трещин и достигается более равномерное распределение водорода по объему).

Claims (3)

1. Способ приготовления компактного гидрида титана, заключающийся в активации образца титана с последующим насыщением его водородом, отличающийся тем, что насыщение проводят при температуре, выбранной из диапазона 580-670ºС, при скорости подачи водорода к образцу не более 600 см3/грамм Ti в час, при этом после достижения фазового перехода β→(β+δ) скорость подачи водорода к образцу поддерживают не более 200 см3/грамм Ti в час.
2. Способ по п. 1, отличающийся тем, что активацию образца проводят при температуре насыщения его водородом.
3. Способ по п. 1, отличающийся тем, что максимальное давление подаваемого к образцу водорода составляет 0,17 МПа.
RU2014150147/05A 2014-12-10 2014-12-10 Способ приготовления компактного гидрида титана RU2579580C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014150147/05A RU2579580C1 (ru) 2014-12-10 2014-12-10 Способ приготовления компактного гидрида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014150147/05A RU2579580C1 (ru) 2014-12-10 2014-12-10 Способ приготовления компактного гидрида титана

Publications (1)

Publication Number Publication Date
RU2579580C1 true RU2579580C1 (ru) 2016-04-10

Family

ID=55793593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014150147/05A RU2579580C1 (ru) 2014-12-10 2014-12-10 Способ приготовления компактного гидрида титана

Country Status (1)

Country Link
RU (1) RU2579580C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240896C1 (ru) * 2003-03-11 2004-11-27 ФГУП "Производственное объединение "Маяк" Способ получения мелкодисперсного порошка титана
RU2494837C1 (ru) * 2012-01-30 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Способ очистки порошка титана от примеси кислорода
RU2507150C1 (ru) * 2012-07-03 2014-02-20 Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") Способ получения порошкообразного гидрида титана

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240896C1 (ru) * 2003-03-11 2004-11-27 ФГУП "Производственное объединение "Маяк" Способ получения мелкодисперсного порошка титана
RU2494837C1 (ru) * 2012-01-30 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Способ очистки порошка титана от примеси кислорода
RU2507150C1 (ru) * 2012-07-03 2014-02-20 Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") Способ получения порошкообразного гидрида титана

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.A.MWAMBA, L.H.CHOWN, The use of titanium hydride in blending and mechanical alloying of Ti-Al alloys, The Journal of The Southern African Inst. of Mining and Metallurgy, 2011, v. 111, p.p.159-165. *

Similar Documents

Publication Publication Date Title
US11577314B2 (en) Spheroidal titanium metallic powders with custom microstructures
Suárez et al. Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials
EP3810820A1 (en) Spheroidal titanium metallic powders with custom microstructures
Sun et al. Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique
JP2018514325A (ja) 中性子捕捉療法用ビーム整形アセンブリ
Geng et al. An original way to investigate silver migration through silicon carbide coating in TRISO particles
Yousfi et al. Chromium segregation at phase boundaries in Cr-doped WC-Co cemented carbides
RU2579580C1 (ru) Способ приготовления компактного гидрида титана
RU2631692C1 (ru) Способ получения мелкодисперсных сферических титансодержащих порошков
Zeng et al. Synthesis and characterization of translucent MgO-doped Al2O3 hollow spheres in millimeter-scale
Prokudina et al. SHS hydrogenation of titanium: Some structural and kinetic features
Talagañis et al. Study of annealing effects on structural and sorption properties of low energy mechanically alloyed AB5's
Andreev et al. Specific features of hydrogenation of chromium-doped polycrystalline thin vanadium dioxide films
Fernandes et al. Kinetic aspects of reaction between tantalum and carbon material (active carbon or graphite) under solar radiation heating
Papynov et al. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die
Guo et al. Preparation and hydrogen diffusion evaluation of the yttrium oxide dispersed tungsten matrix for use in nuclear thermal propulsion
Kim et al. Effect of plasma-sintering consolidation on the reactivity of beryllium
Haglöf et al. Experimental study of carbides in the Ti–Cr–C system
Wada et al. Oxidation resistance of Be12Ti fabricated by plasma-sintering method
Torikai et al. Quartz crystal reinforced silica glass obtained by spark plasma sintering
Dekhtyar et al. The mechanical properties of compact titanium produced from titanium hydride powders using self-propagating high-temperature synthesis
Kim et al. Oxidation property and homogenization treatment of plasma sintered beryllides
RU2507150C1 (ru) Способ получения порошкообразного гидрида титана
Han et al. Effects of Y on helium behavior in Y-doped TiH2 films prepared by magnetron sputtering
Nor et al. Sintering Of Alumina-AIN System for Heat Sink