RU2576072C2 - Солнечный модуль с концентратором и способ его изготовления - Google Patents

Солнечный модуль с концентратором и способ его изготовления Download PDF

Info

Publication number
RU2576072C2
RU2576072C2 RU2014124257/06A RU2014124257A RU2576072C2 RU 2576072 C2 RU2576072 C2 RU 2576072C2 RU 2014124257/06 A RU2014124257/06 A RU 2014124257/06A RU 2014124257 A RU2014124257 A RU 2014124257A RU 2576072 C2 RU2576072 C2 RU 2576072C2
Authority
RU
Russia
Prior art keywords
prism
angle
focusing
solar module
radiation
Prior art date
Application number
RU2014124257/06A
Other languages
English (en)
Other versions
RU2014124257A (ru
Inventor
Дмитрий Семенович Стребков
Original Assignee
Дмитрий Семенович Стребков
Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Семенович Стребков, Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) filed Critical Дмитрий Семенович Стребков
Priority to RU2014124257/06A priority Critical patent/RU2576072C2/ru
Publication of RU2014124257A publication Critical patent/RU2014124257A/ru
Application granted granted Critical
Publication of RU2576072C2 publication Critical patent/RU2576072C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле, содержащем фокусирующую призму с острым углом Ψ0, и коэффициентом преломления n0 с эффектом полного внутреннего отражения на рабочей поверхности, на которую падает излучение, с углом входа лучей β0 и с устройством переотражения, между приемником и фокусирующей призмой в оптическом контакте с ними установлена дополнительная прямоугольная призма, над которой и над частью рабочей поверхности фокусирующей призмы установлена отклоняющая оптическая система с поверхностями входа и выхода лучей, выполненная из множества миниатюрных призм с коэффициентом преломления n1 и с острыми углами Ψ1, установленными однонаправленно с острым углом Ψ0 фокусирующей призмы. Способ изготовления солнечного модуля заключается в изготовлении фокусирующей призмы из оптически прозрачного материала, установке приемника излучения, устройства переотражения излучения с зеркальными отражателями, из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 5-25° и дополнительной прямоугольной призмы и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и проводят сборку оптической отклоняющей системы. Изобретение должно обеспечить повышение оптического КПД за счет снижения потерь излучения в модуле и коэффициента концентрации солнечного излучения. 2 н. и 7 з.п. ф-лы, 2 ил.

Description

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии.
Известен солнечный модуль с концентратором, выполненным в виде прозрачной фокусирующей призмы с треугольным поперечным сечением и устройства отражения проходящего через фокусирующую призму излучения, расположенного с зазором относительно фокусирующей призмы со стороны грани переотражения излучения. Устройство отражения выполнено в виде одной призмы или набора призм (авт. свид. СССР №1089365, Б.И. 1984, №16).
Недостатком солнечного модуля с концентратором является большая масса призменного концентратора и высокая стоимость изготовления фокусирующей призмы и призмы устройства отражения.
Известен солнечный модуль с концентратором в виде прозрачной фокусирующей призмы и устройством отражения в виде плоского зеркального отражателя (прототип) (патент РФ №2154778, Б.И. 2000, №23).
Известный солнечный модуль с концентратором имеет малую массу и низкую стоимость. Недостатком известного солнечного модуля с концентратором является невысокий коэффициент концентрации и низкий оптический КПД из-за потерь излучения в устройстве отражения модуля.
Задачей предлагаемого изобретения является повышение оптического КПД за счет снижения потерь излучения в модуле и повышение коэффициента концентрации солнечного излучения. В результате использования предлагаемого изобретения увеличивается оптический КПД модуля, снижаются оптические потери при переотражении излучения и увеличивается коэффициент концентрации солнечного излучения.
Вышеуказанный результат достигается тем, что в солнечном модуле с концентратором, содержащем фокусирующую призму с острым углом Ψ0 и коэффициентом преломления n0 с эффектом полного внутреннего отражения на рабочей поверхности, на которую падает излучение, с углом входа лучей β0 и с устройством переотражения в виде зеркального отражающего покрытия на стороне, противоположной рабочей поверхности, и приемник излучения, между приемником и фокусирующей призмой в оптическом контакте с ними установлена дополнительная прямоугольная призма с коэффициентом преломления n0 и с поперечным сечением, по ширине и высоте, равным ширине и высоте приемника, и с зеркальным отражающим покрытием на стороне, противоположной рабочей поверхности, над дополнительной прямоугольной призмой и над частью рабочей поверхности фокусирующей призмы установлена отклоняющая оптическая система с поверхностями входа и выхода лучей, выполненная из множества миниатюрных призм с коэффициентом преломления n1 и с острыми углами Ψ1, установленными однонаправленно с острым углом Ψ0 фокусирующей призмы, поверхность входа лучей оптической отклоняющей системы параллельна рабочей поверхности фокусирующей призмы, общая длина солнечного модуля составляет:
Figure 00000001
где l1 - длина фокусирующей призмы с острым углом Ψ0,
Δ - длина оптической отклоняющей системы с острым углом Ψ1,
Δ1 - часть длины фокусирующей призмы, имеющей над рабочей поверхностью отклоняющую оптическую систему,
d - высота приемника излучения,
β1 - угол преломления лучей на входе внутри фокусирующей призмы,
Figure 00000002
- угол преломления лучей на поверхности входа внутри дополнительной прямоугольной призмы, где все углы отсчитываются от вертикали к поверхности, угол входа лучей β0 связан с углом входа лучей
Figure 00000002
следующим соотношением:
Figure 00000003
В варианте конструкции солнечного модуля с концентратором модуль выстроен в кровельную солнечную панель.
В варианте конструкции солнечного модуля с концентратором в качестве приемника излучения установлен гибридный фотоэлектрический модуль с когенерацией электрической и тепловой энергии.
В другом варианте конструкции солнечного модуля с концентратором в качестве приемника излучения использован тепловой абсорбер для получения горячей воды и отопления.
В способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения излучения с зеркальными отражателями, из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 5-25° и дополнительной прямоугольной призмы и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и проводят сборку оптической отклоняющей системы на части рабочей поверхности фокусирующей призмы и над всей поверхностью дополнительной прямоугольной призмы.
В варианте способа изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют дистиллированную воду с добавками для предотвращения цветения и замерзания воды.
В другом варианте способа изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют силиконовые теплоносители, например на основе полиметилсилоксановых композиций.
В другом варианте способа изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют структурированные полисилоксановые гели.
В варианте способа изготовления солнечного модуля с концентратором полости фокусирующей призмы и дополнительной прямоугольной призмы с приемником и отклоняющей оптической системой встраивают в кровельную солнечную панель.
Сущность предлагаемого изобретения поясняется на фиг. 1 и 2, где на фиг. 1 показано поперечное сечение солнечного модуля с концентратором и ход лучей в нем, на фиг. 2 - ход лучей в отклоняющей оптической системе.
Солнечный фотоэлектрический модуль с концентратором содержит приемник 1, фокусирующую призму 2 из материала с коэффициентом преломления n0, с гранью входа 3, которая совпадает с рабочей поверхностью 4, устройство переотражения 5 с зеркальным отражающим покрытием 6 и дополнительную прямоугольную призму 7 с коэффициентом преломления n0 с поверхностью входа 8. Острый двухгранный угол Ψ0 есть угол между рабочей поверхностью 4, на которую падает излучение, и устройством переотражения 5. Угол входа (падения) солнечного излучения на рабочую поверхность 4 есть угол β0 между лучом и вектором n ¯
Figure 00000004
, перпендикулярным к поверхности, на которую падает излучение.
Над прямоугольной призмой 7 установлена оптическая отклоняющая система 9, выполненная из множества миниатюрных призм 10 с коэффициентом преломления n1 с острым углом Ψ1, установленных однонаправленно с острым углом Ψ0 фокусирующей призмы 2. Оптическая отклоняющая система 9 имеет поверхность входа 11 лучей, которая параллельна рабочей поверхности 4, и поверхность выхода лучей 12. На фиг. 1 показан ход лучей в солнечном модуле с концентратором, где β0 - угол входа лучей, β - угол преломления лучей у грани входа 3 внутри фокусирующей призмы 2, β2 - угол прихода луча на устройство переотражения 5, β3 - угол отражения лучей от зеркального отражающего покрытия 6, β4 - угол падения лучей на грань входа 3 изнутри фокусирующей призмы 2. Углы β0, β1, β2, β3, β4 и Ψ0 выбираются из условия, что β4≤α, α=αn+δ, где
Figure 00000005
- угол полного внутреннего отражения, δ - малая величина угла, гарантирующая полное внутреннее отражение, δ=2°-3°.
Figure 00000006
β2310.
β43+ψ=β1+2ψ0.
Длина фокусирующей призмы 2:
l1=d·ctgΨ0.
Δ1 определяет расстояние от места входа 13 крайнего луча β0, который после преломления под углом β1 попадает на место пересечения 14 устройства переотражения 5 с плоскостью сопряжения 15 фокусирующей призмы 2 и прямоугольной призмы 7.
Δ1=d·tgΔ1.
Оптическая отклоняющая система (ООС) 9 на фиг. 2 имеет угол входа лучей β0, угол преломления лучей β5 у поверхности входа 11 внутри ООС, угол β6 падения лучей на поверхность выхода 12 внутри OOC, β7 - угол выхода лучей из поверхности выхода 12 снаружи OOC, угол β8 входа лучей на поверхности входа 8 прямоугольной призмы 7,
Figure 00000002
- угол преломления лучей в прямоугольной призме 7.
Figure 00000007
β611.
Figure 00000008
β831.
Figure 00000009
Figure 00000010
Угол входа лучей β0 в OOC и угол преломления лучей
Figure 00000002
на поверхности входа прямоугольной призмы связаны соотношением:
Figure 00000011
Длина OOC Δ равна расстоянию от места входа 13 крайнего луча β0 до приемника 1:
Δ=2d·tgβ1.
Общая длина солнечного модуля равна:
Figure 00000012
Коэффициент концентрации:
Figure 00000013
Пример выполнения солнечного модуля с концентратором
Устройство переотражения 5 и стенки солнечного модуля с концентратором выполнены из полированного алюминия и заполнены полисилоксановым гелем с коэффициентом преломления n=1,36. Рабочая поверхность 4 модуля выполнена из закаленного стекла толщиной 3,2 мм. Начальный угол входа лучей
Figure 00000014
Принимаем угол, обеспечивающий полное внутреннее отражение, α=50°. Острый угол Ψ0 фокусирующей призмы 2:
Figure 00000015
Приемник 1 имеет высоту d=42 мм. Длина фокусирующей призмы 2:
l1=d·ctgΨ0=135,9 мм.
Отклоняющая оптическая система (OOC) 9 выполнена из стекла с коэффициентом преломления n1=1,51 и имеет острый угол Ψ1=20°, угол входа лучей β0=21,55°, угол входа лучей в прямоугольную призму 7 β8=37,8°. Угол преломления лучей у поверхности входа прямоугольной призмы:
Figure 00000016
Длина OOC 9 Δ=2dtg26,79°=42,41 мм.
Длина Δ1=dtgβ1=42·tg15,67=11,78 мм.
Общая длина солнечного модуля:
L=l1+Δ-Δ1=135,9+42,41-11,78=166,59 мм.
Общий коэффициент концентрации:
Figure 00000017
Солнечный модуль с концентратором работает в диапазоне углов входа лучей θ=90°-β00=50,79°, что превышает годовой угол склонения Солнца 47,5°. Таким образом, солнечный модуль с концентратором не требует корректировки по склонению за Солнцем, однако для снижения косинусных потерь рекомендуется сезонная корректировка положения модуля 22 марта весной и 22 сентября осенью.
Приемник 1 выполнен в виде скоммутированных солнечных элементов. В варианте конструкции модуля приемник 1 представляет собой тепловой абсорбер для получения тепловой энергии. Наиболее перспективно использование гибридного приемника 1, содержащего скоммутированные солнечные элементы, установленные на тепловом абсорбере с отводом и утилизацией тепловой энергии.
Солнечный фотоэлектрический модуль работает следующим образом. Солнечное излучение луч Л1 падает на рабочую поверхность 4 фокусирующей призмы 2 под углом β0 (фиг. 1), входит в призму 2 под углом β1, попадает на грань переотражения 5 под углом β23, отражается и попадает на рабочую поверхность призмы 2 изнутри под углом β4, который должен быть больше угла полного внутреннего отражения β4>arcsin 1/n, где n - коэффициент преломления материала призмы 2. После полного внутреннего отражения и переотражения излучение попадает на приемник 1.
Солнечное излучение луч Л2 на фиг. 1 и Л3 на фиг. 2 попадает на поверхность входа оптической отклоняющей системы 9 под углом β0, входит в призму 10 под углом β5, попадает на поверхность выхода 11 изнутри призмы 10 под углом β6, выходит из призмы 10 под углом β7, поступает на поверхность входа 8 прямоугольной призмы 7 под углом β8, входит в прямоугольную призму 7 под углом
Figure 00000002
, отражается от устройства переотражения 5 под углом
Figure 00000002
и поступает на приемник 1 при условии
Figure 00000018
Для изготовления солнечного модуля с концентратором из отражающего материала толщиной 3-5 мм изготавливают и герметизируют дно и стенки полости фокусирующей призмы 2 с двухгранным углом при вершине 5-30° и прямоугольной призмы 7, а затем заполняют полученную полость оптически прозрачной средой. При использовании в качестве оптически прозрачной среды дистиллированной воды уменьшение тока солнечного элемента I(x) при увеличении толщины слоя воды x описывается соотношением:
Figure 00000019
где I0 - ток солнечного элемента в приповерхностном слое воды.
Коэффициент поглощения воды, измеренный кремниевым солнечным элементом, составляет 0,025 см-1, при этом средняя толщина слоя воды, в которой ток солнечного элемента уменьшался в е=2,73 раза, составляет 40 см. При длине фокусирующей призмы 2 на фиг. 1 0,5 м, длина пути луча Л1 внутри фокусирующей призмы 2 составляет 24 см. Поток фотоактивного излучения на приемнике
Figure 00000020
уменьшается в 1,82 раза. Таким образом, на приемник поступает 55,5% энергии излучения, а 45,5% солнечного излучения поглощается водой внутри фокусирующей призмы 2. Поглощенная энергия, в основном в длинноволновой части спектра, используется для повышения температуры воды. За счет конвекции горячая вода нагревает приемник. Солнечное излучение в коротковолновой части спектра концентрируется в фокусирующей и прямоугольной призме, поглощается в приемнике и преобразуется в электрическую энергию в солнечных элементах. Таким образом, обеспечивается энергоэффективное преобразование солнечной энергии в электрическую и тепловую энергию в гибридном приемнике или только в тепловую энергию для горячего водоснабжения и отопления в приемнике с тепловым абсорбером.
Если использовать полиметилсилоксановые жидкости, более 90% солнечного излучения будет поглощаться в приемнике за счет низкого коэффициента поглощения излучения в жидкости. При использовании в качестве оптически прозрачной среды структурированного полисилоксанового геля его заливают в полость фокусирующей призмы 2 и прямоугольной призмы 7 в жидком виде, а потом проводят его отверждение - структурирование. В этом случае высокая прозрачность полисилоксанового геля и отсутствие утечек геля при случайной разгерметизации полости фокусирующей линзы обеспечивает высокий оптический КПД и большой срок службы солнечного модуля с концентратором.
Объем оптически прозрачной среды внутри полости фокусирующей призмы 2 и прямоугольной призмы 7 зависит от размера солнечного модуля и угла Ψ. Для солнечного модуля с концентратором размером длиной 0,5 м, шириной 1,2 м объем оптически прозрачной среды составит для угла Ψ0=8° 22,5 л.
Конструкция и технология изготовления солнечного модуля с концентратором позволяет в 4 раза снизить потребление металла для абсорберов по сравнению с известными солнечными коллекторами и в 4 раза снизить площадь солнечных элементов по сравнению с солнечными планарными модулями без концентраторов. Солнечный модуль с концентратором может быть использован в составе солнечной электростанции с системой слежения за Солнцем. При слежении за Солнцем вырабатываемая энергия увеличивается на 20-25%.
Геометрический коэффициент концентрации
Figure 00000021
для одного солнечного модуля с концентратором с односторонним фотоприемником и k=2 k для двух солнечных модулей с концентратором с общим двухсторонним приемником. При стационарном расположении солнечного модуля плоскости зеркальных отражателей ориентированы в направлении Восток - Запад, а годовое склонение Солнца для снижения косинусных потерь компенсируется поворотом модуля 2 раза в год весной и осенью.
Солнечный модуль с концентратором имеет малую массу, высокую эффективность, низкую стоимость, прост в изготовлении и может быть использован для получения тепла и электроэнергии как в автономных установках со слежением за Солнцем, так и в энергоактивных зданиях в качестве элемента солнечного фасада здания или солнечной крыши.

Claims (9)

1. Солнечный модуль с концентратором, содержащий фокусирующую призму с острым углом Ψ0 и коэффициентом преломления n0 с эффектом полного внутреннего отражения на рабочей поверхности, на которую падает излучение, с углом входа лучей β0 и с устройством переотражения в виде зеркального отражающего покрытия на стороне, противоположной рабочей поверхности, и приемник излучения, отличающийся тем, что между приемником и фокусирующей призмой в оптическом контакте с ними установлена дополнительная прямоугольная призма с коэффициентом преломления n0 и с поперечным сечением, по ширине и высоте равным ширине и высоте приемника, и с зеркальным отражающим покрытием на стороне, противоположной рабочей поверхности, над дополнительной прямоугольной призмой и над частью рабочей поверхности фокусирующей призмы установлена отклоняющая оптическая система с поверхностями входа и выхода лучей, выполненная из множества миниатюрных призм с коэффициентом преломления n1 и с острыми углами Ψ1, установленными однонаправленно с острым углом Ψ0 фокусирующей призмы, поверхность входа лучей оптической отклоняющей системы параллельна рабочей поверхности фокусирующей призмы, общая длина солнечного модуля составляет:
Figure 00000022

где l1 - длина фокусирующей призмы с острым углом Ψ0,
Δ - длина оптической отклоняющей системы с острым углом Ψ1,
Δ1 - часть длины фокусирующей призмы, имеющей над рабочей поверхностью отклоняющую оптическую систему,
d - высота приемника излучения,
β1 - угол преломления лучей на входе внутри фокусирующей призмы,
Figure 00000023
- угол преломления лучей на поверхности входа внутри дополнительной прямоугольной призмы, где все углы отсчитываются от вертикали к поверхности, угол входа лучей β0 связан с углом входа лучей
Figure 00000023
следующим соотношением:
Figure 00000024
2. Солнечный модуль с концентратором по п. 1, отличающийся тем, что модуль выстроен в кровельную солнечную панель.
3. Солнечный модуль с концентратором по п. 1, отличающийся тем, что в качестве приемника излучения установлен гибридный фотоэлектрический модуль с когенерацией электрической и тепловой энергии.
4. Солнечный модуль с концентратором по п. 1, отличающийся тем, что в качестве приемника излучения использован тепловой абсорбер для получения горячей воды и отопления.
5. Способ изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения излучения с зеркальными отражателями, отличающийся тем, что из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 5-25° и дополнительной прямоугольной призмы и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и проводят сборку оптической отклоняющей системы на части рабочей поверхности фокусирующей призмы и над всей поверхностью дополнительной прямоугольной призмы.
6. Способ изготовления солнечного модуля с концентратором по п. 5, отличающийся тем, что в качестве оптически прозрачной среды используют дистиллированную воду с добавками для предотвращения цветения и замерзания воды.
7. Способ изготовления солнечного модуля с концентратором по п. 5, отличающийся тем, что в качестве оптически прозрачной среды используют силиконовые теплоносители, например на основе полиметилсилоксановых композиций.
8. Способ изготовления солнечного модуля с концентратором по п. 5, отличающийся тем, что в качестве оптически прозрачной среды используют структурированные полисилоксановые гели.
9. Способ изготовления солнечного модуля с концентратором по п. 5 или 8, отличающийся тем, что полости фокусирующей призмы и дополнительной прямоугольной призмы с приемником и отклоняющей оптической системой встраивают в кровельную солнечную панель.
RU2014124257/06A 2014-06-17 2014-06-17 Солнечный модуль с концентратором и способ его изготовления RU2576072C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014124257/06A RU2576072C2 (ru) 2014-06-17 2014-06-17 Солнечный модуль с концентратором и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014124257/06A RU2576072C2 (ru) 2014-06-17 2014-06-17 Солнечный модуль с концентратором и способ его изготовления

Publications (2)

Publication Number Publication Date
RU2014124257A RU2014124257A (ru) 2015-12-27
RU2576072C2 true RU2576072C2 (ru) 2016-02-27

Family

ID=55023172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014124257/06A RU2576072C2 (ru) 2014-06-17 2014-06-17 Солнечный модуль с концентратором и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2576072C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612725C1 (ru) * 2016-03-28 2017-03-13 Дмитрий Семенович Стребков Гибридная кровельная солнечная панель
RU2742680C1 (ru) * 2020-09-18 2021-02-09 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Оконная створка со встроенным фотоэлектрическим модулем с увеличенным сроком службы и способ её изготовления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133415C1 (ru) * 1998-04-29 1999-07-20 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль (варианты)
RU2154778C1 (ru) * 1998-12-02 2000-08-20 Стребков Дмитрий Семенович Солнечный фотоэлектрический модуль с концентратором
RU2503895C2 (ru) * 2011-09-08 2014-01-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный модуль с концентратором и способ его изготовления (варианты)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133415C1 (ru) * 1998-04-29 1999-07-20 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль (варианты)
RU2154778C1 (ru) * 1998-12-02 2000-08-20 Стребков Дмитрий Семенович Солнечный фотоэлектрический модуль с концентратором
RU2503895C2 (ru) * 2011-09-08 2014-01-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный модуль с концентратором и способ его изготовления (варианты)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612725C1 (ru) * 2016-03-28 2017-03-13 Дмитрий Семенович Стребков Гибридная кровельная солнечная панель
WO2017168277A1 (ru) * 2016-03-28 2017-10-05 Анатолий Иванович КИРСАНОВ Гибридная кровельная солнечная панель
RU2742680C1 (ru) * 2020-09-18 2021-02-09 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Оконная створка со встроенным фотоэлектрическим модулем с увеличенным сроком службы и способ её изготовления

Also Published As

Publication number Publication date
RU2014124257A (ru) 2015-12-27

Similar Documents

Publication Publication Date Title
Jaaz et al. Design and development of compound parabolic concentrating for photovoltaic solar collector
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
Wu et al. Smart solar concentrators for building integrated photovoltaic façades
US8101850B2 (en) Asymmetric parabolic compound concentrator with photovoltaic cells
Yang et al. Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system
Proell et al. Experimental efficiency of a low concentrating CPC PVT flat plate collector
Li Design and development of a lens-walled compound parabolic concentrator-a review
TW201110386A (en) Non-imaging light concentrator
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
RU2503895C2 (ru) Солнечный модуль с концентратором и способ его изготовления (варианты)
RU2520803C2 (ru) Солнечный модуль с концентратором и способ его изготовления
RU2576072C2 (ru) Солнечный модуль с концентратором и способ его изготовления
RU2612725C1 (ru) Гибридная кровельная солнечная панель
RU2576752C2 (ru) Солнечный модуль с концентратором
Edmonds The performance of bifacial solar cells in static solar concentrators
Li et al. A note on design of linear dielectric compound parabolic concentrators
CN102201477B (zh) 一种基于周期性微结构的太阳能聚光方法
RU2154778C1 (ru) Солнечный фотоэлектрический модуль с концентратором
JP2010169981A (ja) 太陽レンズと太陽光利用装置
Tabet et al. Performances Improvement of photovoltaic thermal air collector by planer reflector
RU2557272C1 (ru) Кровельная солнечная панель
CN201852991U (zh) 四重抛物柱面聚光器
Kivalov et al. Non-imagine solar stationary concentrators with using combination of prisms and reflective surfaces
Nitsas et al. Performance evaluation of asymmetric CPC-PVT collectors connected in series
RU2572167C1 (ru) Солнечный модуль с концентратором (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160618