RU2575417C2 - Способ компьютерного моделирования технической системы - Google Patents

Способ компьютерного моделирования технической системы Download PDF

Info

Publication number
RU2575417C2
RU2575417C2 RU2014110489/08A RU2014110489A RU2575417C2 RU 2575417 C2 RU2575417 C2 RU 2575417C2 RU 2014110489/08 A RU2014110489/08 A RU 2014110489/08A RU 2014110489 A RU2014110489 A RU 2014110489A RU 2575417 C2 RU2575417 C2 RU 2575417C2
Authority
RU
Russia
Prior art keywords
output
input
layer
neural network
vectors
Prior art date
Application number
RU2014110489/08A
Other languages
English (en)
Other versions
RU2014110489A (ru
Inventor
Йохен КЛЕВЕ
Ральф ГРОТМАНН
Кай ХЕШЕ
Кристоф ТИТЦ
Ханс-Георг ЦИММЕРМАН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102011081197A external-priority patent/DE102011081197A1/de
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2014110489A publication Critical patent/RU2014110489A/ru
Application granted granted Critical
Publication of RU2575417C2 publication Critical patent/RU2575417C2/ru

Links

Images

Abstract

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при котором: моделируют один или несколько выходных векторов в зависимости от одного или нескольких входных векторов путем обучения нейронной сети (НС), базируясь на тренировочных данных из известных входных векторов и выходных векторов, причем соответствующий выходной вектор содержит один или несколько рабочих параметров технической системы и соответствующий входной вектор содержит один или несколько рабочих входных величин, влияющих на рабочую величину или величины, при этом нейронная сеть есть сеть с прямой связью с несколькими соединенными друг с другом слоями, которая включает входной слой, множество скрытых слоев и один выходной слой, причем выходной слой включает множество скрытых слоев, соответствующее множеству выходных кластеров из соответственно одного или нескольких выходных нейронов. 2 н. и 13 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способу компьютерного моделирования технической системы, а также к способу прогнозирования одного или нескольких параметров технической системы.
Во множестве областей применения желательно моделировать поведение технической системы с помощью компьютера, чтобы таким образом прогнозировать определенные рабочие параметры технической системы. Например, в области производства электроэнергии все чаще используются возобновляемые энерговырабатывающие устройства, количество выработанной энергии которых сильно зависит от влияния внешних величин и, в частности, от погодных условий. Таким образом, желательно для технической системы в виде возобновляемого энерговырабатывающего устройства иметь возможность приемлемо прогнозировать количество энергии, вырабатываемой в будущем, чтобы таким образом иметь возможность лучше планировать энергоснабжение от такого энерговырабатывающего устройства.
Задачей изобретения поэтому является моделирование с помощью компьютера технической системы, которая может надежно и точно прогнозировать ее рабочие параметры.
Эта задача решается способом согласно п.1 формулы изобретения, соответственно п.14 формулы изобретения, соответственно с помощью компьютерного программного продукта согласно п.16 формулы изобретения. Усовершенствования изобретения определены в соответствующих пунктах.
Соответствующий изобретению способ применяет для компьютерного моделирования технической системы искусственную нейронную сеть. При этом моделируется один или несколько выходных векторов в зависимости от одного или нескольких входных векторов путем обучения нейронной сети, базируясь на тренировочных данных входных векторов и выходных векторов, причем соответствующий выходной вектор содержит один или несколько рабочих параметров технической системы, причем соответствующий входной вектор содержит один или несколько входных величин, влияющих на рабочую величину или величины.
Нейронная сеть является при этом специальным вариантом сети с прямой связью (Feed-Forward-Netzes). Сеть с прямой связью характеризуется тем, что несколько лежащих друг над другом нейронных слоев сопряжены между собой в одном направлении обработки от нижних к верхним слоям через соответствующие веса в виде весовой матрицы, причем нейроны внутри слоя не имеют между собой соединений. Сеть с прямой связью, примененная в изобретении, является многослойной сетью с несколькими соединенными между собой слоями, которая содержит входной слой, множество скрытых слоев и выходной слой. Входной слой содержит при этом некоторое количество входных нейронов для описания входного или входных векторов. С другой стороны, соответствующий скрытый слой содержит несколько скрытых нейронов, и выходной слой содержит ряд выходных нейронов для описания выходного вектора или выходных векторов.
Нейтронная сеть изобретения характеризуется тем, что выходной слой включает в себя множество скрытых слоев соответствующих множеству выходных кластеров из, соответственно, одного или нескольких выходных нейронов, причем каждый выходной кластер описывает подобный выходной вектор и соединен с одним из других скрытых слоев. При этом каждому скрытому слою придан выходной кластер, причем скрытый слой сопряжен только с этим выходным кластером. Следовательно, создан отдельный выходной кластер, который описывает независимо друг от друга в нейронной сети одинаковые рабочие параметры технической системы. В отличие от обычной сети с прямой связью в соответствующей изобретению нейронной сети скрытые слои, лежащие ниже высших скрытых слоев, связаны не только с вышележащим скрытым слоем, но и с выходным кластером выходного слоя. При этом к выходному слою подводится дополнительная информация об ошибке так, что соответственно обученная нейронная система может лучше спрогнозировать рабочие параметры технической системы. Поскольку каждый выходной кластер выдает одинаковые рабочие параметры, прогнозируемые параметры могут представляться сообщением через выходной кластер.
В одной из предпочтительных форм соответствующего изобретению способа входной слой нейтронной сети соединен с каждым скрытым слоем, что не имеет место в обычной сети с прямой связью. Там входной слой сопряжен только с самым нижним скрытым слоем. Таким образом, входные величины, которые влияют на работу технической системы, проходят непосредственно к каждому скрытому слою, что в свою очередь ведет к улучшенному прогнозированию рабочих величин технической системы.
В соответствии с одной из особенно предпочтительных форм способа, соответствующего изобретению, соответствующие рабочие величины технической системы моделируются с помощью нейронной сети на более длительный будущий период времени. При этом соответствующий выходной вектор содержит одну или несколько рабочих величин для нескольких следующих друг за другом будущих временных точек в пределах будущего промежутка времени, причем будущий промежуток времени преимущественно включает один или несколько дней и временные точки преимущественно имеют удаление в один час. Такого вида промежутки времени особенно подходят для прогноза количества энергии, которое вырабатывается возобновляемыми энерговырабатывающими установками, которые ниже описываются подробнее.
В соответствии с другой предпочтительной формой осуществления изобретения входные векторы входного слоя нейронной сети представляют прогнозируемые величины. При этом соответствующий входной вектор содержит один или несколько прогнозируемых входных величин для будущей точки времени следующих друг за другом будущих точек времени в пределах будущего временного промежутка времени, причем будущий промежуток времени аналогичен выходным векторам предпочтительно включает один или несколько дней, а временные точки имеют шаг в один час. Соответствующие прогнозируемые точки времени для входных векторов могут совпадать, соответственно, с прогнозируемыми точками времени для выходных векторов.
Как уже выше упомянуто, соответствующим изобретению способом в предпочтительном варианте моделируется техническая система в виде электрической энерговырабатывающей установки, в частности в виде возобновляемой электрической энерговырабатывающей установки. В частности, при этом энерговырабатывающая установка это ветровая силовая установка с одной или несколькими ветровыми турбинами, например, в виде парка ветроустановок. Энерговырабатывающая установка может далее представлять солнечную электростанцию, особенно солнечную тепловую установку и/или фотоэлектрическую установку.
При применении соответствующего изобретению способа для энерговырабатывающей установки в предпочтительном варианте, соответствующий выходной вектор содержит в качестве рабочих величин генерируемое энерговырабатывающей установкой количество энергии для многочисленных будущих временных точек, следующих друг за другом. Обозначение количество энергии при этом понимается широко и может касаться количества выработанной энергии в определенный временной промежуток, соответственно, количества энергии в единицу времени и также электрической мощности. Преимущественно количество энергии представляется как количество энергии, генерируемое в пределах двух друг за другом следующих временных точек. Это количество энергии есть выработанное количество энергии для соответственно рассматриваемой временной точки, которая между предыдущей и последующей рассматриваемой временной точкой, которая также может быть задана в виде электрической мощности выработанной энергии (т.е. количество энергии, разделенное на промежуток времени между временными точками).
В соответствии с одной из предпочтительных форм осуществления изобретения при моделировании энерговыробатывающей установки применяются входные векторы, которые включают соответственно как входные величины одной или нескольких прогнозируемых условий окружающей среды для будущей временной точки из множества будущих временных точек, причем прогнозируемые условия окружающей среды являются, в частности, данными погоды, соответственно, прогнозами погоды, например, которые получают от метеорологической службы. Прогнозируемые погодные данные базируются при этом на данных, которые определены на месте, которое расположено на географическом месте или наиболее ближе к географическому месту нахождения соответствующего энерговыробатывающего устройства. Преимущественно прогнозируемые условия окружающей среды при этом включают одну или несколько следующих величин:
- одно или несколько значений температуры окружающей среды;
- одну или несколько значений влажности воздуха;
- одну или несколько скоростей ветра и/или направлений ветра.
Эти величины применяются особенно в связи с энерговыробатывающими установками в виде ветровой турбины. При этом, например, могут учитываться значения температуры для различных высот, в частности для 25 м, 50 м или 150 м, посредством чего факт расчета учитывает, что ветровые турбины силовой ветровой установки имеют большие поперечные размеры. Дополнительно или альтернативно к названным величинам могут учитываться в качестве других условий окружающей среды одна или несколько величин, касающихся покрытия неба облаками, соответственно, один или несколько величин облучения солнечными лучами (например, выданных в интенсивности света). Наконец, названные условия окружающей среды протекают особенно при применении соответствующего изобретению способа для моделирования солнечных электростанций.
Моделирование технической системы и базирующееся прогнозирование может вследствие этого быть улучшено в предпочтительном варианте изобретения, что также выходы аналитической модели также учитываются. В этом случае входные слои нейронной сети включают один или несколько входных нейронов для описания одним или несколькими другими входными векторами. Эти другие входные векторы отличаются от входных векторов для описания входных величин. Они представляют собой вместо этого одну или несколько рабочих величин технической системы, которые согласованы с подходящей аналитической моделью. По аналогии с нейронной сетью также аналитическая модель, базируясь на соответствующих входных величинах, поставляет рабочие величины технической системы.
Количество скрытых слоев и скрытых нейронов может быть выбрано различно в нейронной сети изобретения в зависимости от варианта применения. В одном варианте изобретения может быть предусмотрено в нейронной сети десять или более скрытых слоев и при этом также десять или более выходных кластеров. Количество скрытых нейронов в скрытом слое лежит, например, между 20 и 30 нейронами.
Нейронная сеть может обучаться в рамках соответствующего изобретению способа с помощью известных самих по себе способов обучения. Особенно при этом в рамках обучения для каждого выходного кластера как целевой величины минимизируется различие между выходным вектором, описанным выходным кластером, и выходным вектором согласно данных тренировки. Обучение в предпочтительном варианте реализуется с помощью адекватно известного из развития техники способа обратного распространения ошибки (английский термин Error Backpropagation).
Наряду с вышеописанным способом для моделирования технической системы, изобретение относится далее к способу прогнозирования одного или нескольких рабочих параметров технической системы, причем к нейронной сети, которая обучена с помощью соответствующего изобретению способа, подводится одна или несколько величин через входной слой, после чего через сеть для по меньшей мере одного выходного кластера выходного слоя нейронной сети определяется соответствующий выходной вектор с одним или несколькими рабочими параметрами технической системы. Способ прогнозирования имеет преимущество, поскольку соответственно только определенная часть нейронной сети в рамках прогноза может применяться, и высшие скрытые слои с сопряженными выходными векторами при прогнозе при этом опускаются. Особенно при этом для прогноза может применяться часть нейронной сети в зависимости от качества пригодности прогнозирования.
В одном варианте соответствующего изобретению способа прогнозирования для нескольких и особенно для всех выходных кластеров определяются соответствующие выходные векторы. При этом их рабочие параметры могут быть затем усреднены, причем средняя величина тогда представляет прогнозируемую рабочую величину.
Наряду с вышеописанным способом изобретение касается далее компьютерного программного продукта со считываемым машиной записанного программного кода на носителе данных для осуществления соответствующего способа, например предпочтительного варианта, когда программный код на ЭВМ запущен.
Примеры исполнения изобретения будут в последующем детально описаны на основе приложенныхчертежей.
Изображено:
фиг.1 - схематическое представление формы осуществления изобретения в соответствующем изобретению способе в примененной нейронной структуре; и
фиг.2 - диаграмма, которая сравнивает с количеством энергии ветряной турбины, спрогнозированное соответствующим изобретению способом, действительно выработанное количество энергии.
В последующем рассматривается форма осуществления способа, соответствующего изобретению, на основе технической системы в виде ветровой силовой установки, причем способом, при котором вырабатываемое ветровой силовой установкой количество энергии, которое вводится в электросеть, прогнозируется через нейронную сеть. Этот прогноз учитывает условия окружающей среды, которые воздействуют на ветровую турбину. Условия окружающей среды - это данные погоды, которые также являются прогнозами, которые, например, поступают от метеорологической службы. В описанной здесь форме осуществления изобретения, при этом для места, на котором установлены ветровые турбины ветровой силовой установки, в качестве условий окружающей среды учитываются температура, влажность воздуха, а также направление ветра. При этом могут входить температуры для различных высот, так как мачта отдельных ветровых турбин простирается в вертикальном направлении на увеличенную длину. В частности, могут учитываться температурные значения на высоте 25 м, 50 м и 150 м.
При необходимости соответствующий изобретению способ может быть применен для других энерговырабатывающих установок таких, как ветровых силовых установок. Например, способ может применяться для прогноза количества энергии, вырабатываемой фотоэлектрической установкой. В этом случае в качестве входных величин поступают преимущественно также температура, влажность воздуха, направление ветра и сила ветра. Дополнительно при этом будут также учитываться степень покрытия неба облаками или также облучение солнечными лучами. Однако более не требуется усреднять величины температур для различных высот, поскольку панели фотоэлектрической установки, как правило, находятся на едином уровне высоты.
Проведенные прогнозы с помощью соответствующего изобретению способа реализованы через нейронную сеть, которая обучена с подходящими данными обучения из известного выработанного количества энергии и известных условий окружающей среды. Нейронная сеть имеет при этом специальную структуру сети, которая показана на фиг.1.
Нейронная сеть на фиг.1 является сетью с прямой связью с множеством лежащих друг над другом слоев, причем сопряжение различных слоев происходит только в направлении обработки от низших до высших слоев и в пределах слоя, при этом имеющиеся нейроны не сопряжены друг с другом. Нейронная сеть на фиг.1 включает входной слой 1 с входными нейронами, три скрытых слоя H1, Н2 и Н3 со скрытыми нейронами, а также выходной слой О, который разделен на три отдельных выходных кластера О1, О2 и О3 из выходных нейронов. Сами по себе известные сопряжения между слоями, через которые с помощью соответствующих весовых матриц нейроны одного слоя соединены с нейтронами других слоев, указаны стрелками. Функции активации отдельных нейронов в сети на фиг.1 не линейные и представлены, соответственно, через линию параболического тангенса (tanh).
В отличие от обычной сети с прямой связью нейронная сеть на фиг.1 характеризуется тем, что для каждого из скрытых слоев H1, Н2, или Н3 существует отдельный выходной кластер О1, О2, соответственно О3. То есть каждый скрытый слой точно закреплен за одним выходным кластером и каждый выходной кластер через весовую матрицу сопряжен только с одним скрытым слоем. Обычно сеть с прямой связью содержит только одно соединение между наивысшим скрытым слоем и выходным слоем. Через соответствующее изобретению применение дополнительных выходных кластеров, которые соединены с нижними скрытыми слоями, к выходным кластерам подводится дополнительная информация об ошибке, посредством чего избегается пропадание информации об ошибке для малых весов.
Каждый из выходных кластеров от О1 до О3 разрешает одинаковые количества энергии ветровой силовой установки для множества будущих временных точек (мгновений). То есть через каждый выходной кластер прогнозируются одинаковые рабочие величины ветровой силовой установки. Следовательно, каждый выходной кластер выдает независимо от других кластеров прогнозируемые величины для количеств энергии. В качестве окончательной прогнозной величины для соответствующей будущей временной точки может быть при этом определена усредненная величина из количеств энергии отдельных кластеров. В описанной здесь форме исполнения изобретения один выходной кластер описывает почасовые прогнозы для количеств энергии, выработанных ветровой силовой установкой в пределах периода прогнозирования продолжительностью один или также несколько дней. Отдельный выходной нейрон представляет при этом спрогнозированное количество энергии для определенной временной точки. Если в качестве прогнозируемого периода рассматривается интервал продолжительностью один день, то выходной кластер содержит при этом 24 нейрона для каждого часа в пределах дня.
Другое отличие сети фиг.1 по сравнению с обычной сетью с прямой связью состоит в том, что входной слой I соединен не только с самым нижним скрытым слоем H1, но также прямо соединен и с другими, при этом лежащими скрытыми слоями Н2 и Н3. Через этот подвод входного слоя ко всем скрытым слоям избегается то, что информация входного слоя в рамках обработки в нейронной сети теряется.
В рамках применения нейронной сети для ветровых силовых установок входной слой I содержит множество входных нейронов, которые создают соответствующие входные векторы, причем каждый входной вектор представляет прогнозированные данные для определенной прогнозируемой временной точки. По аналогии для выходного слоя прогнозируемые данные погоды в почасовых интервалах могут учитываться для следующих 24 часов. То есть входной слой содержит для каждого часа соответствующий входной вектор, который включает входной нейрон для каждой прогнозируемой величины. В зависимости от варианта использования может варьироваться количество примененных скрытых слоев в нейронной сети. Например, могут применяться десять скрытых слоев, которые затем в свою очередь ведут к десяти выходным кластерам. Количество нейронов в отдельных скрытых слоях может также варьироваться. В частности, скрытый слой может включать от 20 до 30 нейронов.
В одной вариации нейронной сети фиг.1 наряду с входными векторами, которые описывают условия окружающей среды, учитываются другие входные векторы, которые представляют прогнозирования количества энергии, которые определяются через аналитическую модель. В одном из реализованных исследователями вариантов была применена в качестве аналитической модели при этом сама по себе известная из развития техники модель Дженсен. Эта модель описывает генерируемое ветровой силовой установкой количество энергии в зависимости от данных погоды и, например, описано в изданиях [1] и [2]. Через применение рабочих параметров, спрогнозированных через аналитическую модель как других входных векторов, может быть далее улучшено качество прогнозирования нейронной сети.
В рамках обучения нейронной сети на фиг.1 каждый выходной кластер от О1 до О3 обучается тренировочными данными из известных спрогнозированных данных погоды и при этом базирующихся количеств энергии, причем целевая величина обучения это минимизация отклонения между количеством энергии, выданных через соответствующие выходные кластеры, и количеств энергии согласно тренировочным данным. Нейронная сеть может обучаться сама по себе известным способом с помощью известных способов обучения. В особенно предпочтительном варианте применяется известный из развития техники способ обратного распространения ошибки (английский термин Error Backpropagation).
После обучения нейронной сети пригодными тренировочными данными могут затем быть в будущем спрогнозированы питающие магистрали при реальной эксплуатации ветровой силовой установки. Пользователю ветровой силовой установки создается возможность лучшего планирования при распределении выработанного количества энергии. В частности, пользователь может приспособить свое предложение количества энергии на энергетическом рынке на прогнозные величины. На основе пригодного прогноза будущей выработки энергии можно также лучше применять выработанное количество энергии, чем регулируемую энергию в энергетической сети. При применении нейронной сети в реальной эксплуатации технической системы при необходимости имеется возможность эту сеть дальше обучать в режиме онлайн при работе, базируясь на регулярных промежутках на вновь поступивших действительно выработанных количествах энергии.
Фиг.2 показывает диаграмму, которая сравнивает со спрогнозированным соответствующим изобретению нейронной сетью количеством энергии ветряной силовой установки действительно выработанное количество энергии. Вдоль абсциссы диаграммы нанесено при этом время t в единицах дней и вдоль ординаты произведенное количество энергии ES (ES = Energy Supply) для соответствующего дня. Заштрихованная линия L2 представляет при этом количество энергии для прогнозируемой временной точки 12 часов в будущем, спрогнозированное соответствующей изобретению нейронной сетью. В противоположность этому нарисованная линия LI представляет фактически выработанное количество энергии ветровой силовой установки. Установлено, что с помощью соответствующей изобретению нейронной сети можно достичь реально очень хорошего прогноза количества энергии и при этом достичь очень хороших питающих мощностей ветровой силовой установки.
В предшествующих описанных формах осуществления способа, соответствующего изобретению, имеется ряд преимуществ. В частности, имеется возможность предусмотреть с помощью соответствующей изобретению сетевой структуры, в которой для каждого скрытого слоя предусмотрен выходной кластер, очень хорошие рабочие параметры технической системы с высокой степенью нелинейности. Способ особенно хорошо пригоден для предсказания количества энергии, вырабатываемой возобновляемой энерговырабатывающей установкой, базируясь на предсказанных погодных данных, причем при необходимости дополнительно через аналитическую, соответственно физическую модель может быть подведено усредненное количество энергии входного слоя нейронной сети.
Ллитература
1. Н.О. Дженсен. Заметки по взаимодействию ветрового генератора. Технический отчет m-2411, Рисо Национальная лаборатория, Роскилле, 1983.
2. И. Катис, Дж. Хойструп, и Н.О. Дженсен. Простая модель для эффективности кластера. Восточная группа ветровой энергии, 1986, том 1, стр.407-410, Роде, 1986 г.

Claims (15)

1. Способ для компьютерного моделирования технической системы, при котором:
- моделируют один или несколько выходных векторов в зависимости от одного или нескольких входных векторов путем обучения нейронной сети (НС), базируясь на тренировочных данных из известных входных векторов и выходных векторов, причем соответствующий выходной вектор содержит один или несколько рабочих параметров технической системы и соответствующий входной вектор содержит один или несколько рабочих входных величин, влияющих на рабочую величину или величины, при этом
- нейронная сеть (НС) есть сеть с прямой связью с несколькими друг с другом соединенными слоями (I, H1, Н2, Н3, 0), которая включает входной слой (I), множество скрытых слоев (H1, Н2, Н3) и один выходной слой (0), причем входной слой (I) содержит множество входных нейронов для описания входного или входных векторов, и причем соответствующий скрытый слой (H1, Н2, Н3) содержит множество скрытых нейронов, и причем выходной слой (0) содержит множество выходных нейронов для описания выходного или выходных векторов, отличающийся тем, что выходной слой (0) включает множество скрытых слоев (H1, Н2, Н3), соответствующее множеству выходных кластеров (01, 02, 03) из соответственно одного или нескольких выходных нейронов, причем каждый выходной кластер (01, 02, 03) описывает подобный выходной вектор и соединен с другим скрытым слоем (H1, Н2, Н3).
2. Способ по п. 1, при котором входной слой (I) нейронной сети (НС) соединен с каждым из скрытых слоев (H1, Н2, Н3).
3. Способ по п. 1 или 2, при котором соответствующий выходной вектор содержит одну или несколько рабочих величин для нескольких следующих друг за другом будущих временных точек в пределах будущего промежутка времени, причем будущий промежуток времени преимущественно включает один или несколько дней и временные точки преимущественно имеют интервал в один час.
4. Способ по п. 1, при котором соответствующий выходной вектор содержит одну или несколько прогнозируемых входных величин для будущей временной точки друг за другом следующих будущих временных точек в пределах будущего промежутка времени, причем будущий промежуток времени преимущественно включает один или несколько дней и временные точки преимущественно имеют интервал в один час.
5. Способ по п. 1, при котором способом моделируется техническая система в виде электрической энерговырабатывающей установки и особенно в виде возобновляемой электрической энерговырабатывающей установки.
6. Способ по п. 5, при котором энерговырабатывающая установка включает ветровую силовую установку и/или солнечную электростанцию, особенно солнечную тепловую установку и/или фотоэлектрическую установку.
7. Способ по п. 5 или 6, при котором соответствующий выходной вектор как рабочие величины включает сгенерированное энерговырабатывающим устройством количество энергии (ES) для множества друг за другом следующих временных точек, причем количество энергии (ES) - это преимущественно сгенерированное количество энергии между двумя следующими друг за другом будущими временными точками.
8. Способ по п. 5 или 6, при котором соответствующий входной вектор в качестве входной величины включает одно или несколько спрогнозированных условий окружающей среды для будущей временной точки из множества будущих временных точек, причем спрогнозированные условия окружающей среды это, в частности, данные погоды.
9. Способ по п. 8, при котором спрогнозированное условие окружающей среды или спрогнозированные условия окружающей среды включают одну или несколько следующих величин:
- одно или несколько значений температуры окружающей среды;
- одно или несколько значений влажности воздуха;
- одно или несколько скоростей ветра и/или направлений ветра;
- одно или несколько значений касательно покрытия неба облаками;
- одно или несколько величин солнечного облучения.
10. Способ по п. 1, при котором входной слой (I) включает далее один или несколько входных нейронов для описания одного или несколько других входных векторов, причем другой или другие входные векторы включают один или несколько рабочих величин технической системы, которая определена аналитической моделью.
11. Способ по п. 1, при котором предусмотрено 10 или более скрытых слоев и/или каждый скрытый слой включает от 20 до 30 скрытых нейронов.
12. Способ по п. 1, при котором в рамках обучения нейронной сети для каждого выходного кластера (01, 02, 03), как целевой величины, минимизируется различие между выходным вектором, описанным выходным кластером (01, 02, 03), и выходным вектором согласно данных тренировки.
13. Способ по п. 1, при котором обучение нейронной сети осуществляется, базируясь на обратном распространении ошибки.
14. Способ для прогнозирования одного или нескольких рабочих параметров технической системы, при котором к нейронной сети (НС), которая обучена способом, согласно п. 1, подводится одна или несколько входных величин через входной слой (I), после чего через нейронную сеть (НС) для по меньшей мере одного выходного кластера (O1, O2, O3) выходного слоя (О) определен соответствующий выходной вектор с одним или несколькими рабочими параметрами технической системы.
15. Способ по п. 14, при котором для нескольких и особенно для всех выходных кластеров (O1, O2, O3) определяются выходные векторы, чьи рабочие величины вслед за этим усредняются.
RU2014110489/08A 2011-08-18 2012-07-24 Способ компьютерного моделирования технической системы RU2575417C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011081197.4 2011-08-18
DE102011081197A DE102011081197A1 (de) 2011-08-18 2011-08-18 Verfahren zur rechnergestützten Modellierung eines technischen Systems
PCT/EP2012/064529 WO2013023887A1 (de) 2011-08-18 2012-07-24 Verfahren zur rechnergestützten modellierung eines technischen systems

Publications (2)

Publication Number Publication Date
RU2014110489A RU2014110489A (ru) 2015-09-27
RU2575417C2 true RU2575417C2 (ru) 2016-02-20

Family

ID=

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494792A (zh) * 2018-11-21 2019-03-19 国网青海省电力公司 光伏电站弃光电量的确定方法及装置
RU191374U1 (ru) * 2018-11-16 2019-08-02 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Устройство на основе ансамбля гетерогенных нейронных сетей для уточнения прогнозов модели metro в задаче прогнозирования параметров и оценки состояния дорожного покрытия
RU2699685C1 (ru) * 2018-12-18 2019-09-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ анализа и контроля состояния технической установки, содержащей множество динамических систем
RU2762983C1 (ru) * 2019-08-02 2021-12-24 Сентрал Саус Юниверсити Способ и система мониторинга качества внутреннего воздуха и управления вентиляцией для поезда
RU2785362C1 (ru) * 2022-09-09 2022-12-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Устройство для моделирования солнечной электростанции в энергетической системе

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185555A (ja) * 1989-12-14 1991-08-13 Yokogawa Electric Corp ニューラル・ネットワーク・システム
US5347613A (en) * 1990-08-18 1994-09-13 Samsung Electronics Co., Ltd. MOS multi-layer neural network including a plurality of hidden layers interposed between synapse groups for performing pattern recognition
RU2303812C2 (ru) * 2004-12-29 2007-07-27 Общество с ограниченной ответственностью "НПФ РЕНАМ" Способ распознавания и подсчета клеток в биологических средах человека и животных и устройство для его осуществления
CN101546389A (zh) * 2008-03-26 2009-09-30 中国科学院半导体研究所 一种主方向神经网络系统
EP2192456A1 (en) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Estimation an achievable power production of a wind turbine by means of a neural network
TW201116256A (en) * 2009-11-09 2011-05-16 Charder Electronic Co Ltd Device for measuring human body composition by using biolectrical impedance method and artificial neural network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185555A (ja) * 1989-12-14 1991-08-13 Yokogawa Electric Corp ニューラル・ネットワーク・システム
US5347613A (en) * 1990-08-18 1994-09-13 Samsung Electronics Co., Ltd. MOS multi-layer neural network including a plurality of hidden layers interposed between synapse groups for performing pattern recognition
RU2303812C2 (ru) * 2004-12-29 2007-07-27 Общество с ограниченной ответственностью "НПФ РЕНАМ" Способ распознавания и подсчета клеток в биологических средах человека и животных и устройство для его осуществления
CN101546389A (zh) * 2008-03-26 2009-09-30 中国科学院半导体研究所 一种主方向神经网络系统
EP2192456A1 (en) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Estimation an achievable power production of a wind turbine by means of a neural network
TW201116256A (en) * 2009-11-09 2011-05-16 Charder Electronic Co Ltd Device for measuring human body composition by using biolectrical impedance method and artificial neural network

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU191374U1 (ru) * 2018-11-16 2019-08-02 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Устройство на основе ансамбля гетерогенных нейронных сетей для уточнения прогнозов модели metro в задаче прогнозирования параметров и оценки состояния дорожного покрытия
CN109494792A (zh) * 2018-11-21 2019-03-19 国网青海省电力公司 光伏电站弃光电量的确定方法及装置
CN109494792B (zh) * 2018-11-21 2022-05-13 国网青海省电力公司 光伏电站弃光电量的确定方法及装置
RU2699685C1 (ru) * 2018-12-18 2019-09-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ анализа и контроля состояния технической установки, содержащей множество динамических систем
RU2762983C1 (ru) * 2019-08-02 2021-12-24 Сентрал Саус Юниверсити Способ и система мониторинга качества внутреннего воздуха и управления вентиляцией для поезда
RU2785362C1 (ru) * 2022-09-09 2022-12-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Устройство для моделирования солнечной электростанции в энергетической системе

Similar Documents

Publication Publication Date Title
Diab et al. Application of different optimization algorithms for optimal sizing of PV/wind/diesel/battery storage stand-alone hybrid microgrid
Behera et al. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
Iqbal et al. Optimization classification, algorithms and tools for renewable energy: A review
CN105426956B (zh) 一种超短期光伏预测方法
Rahbari et al. Towards realistic designs of wind farm layouts: Application of a novel placement selector approach
CN103733210B (zh) 用于对技术系统进行计算机辅助的建模的方法
CN109103926A (zh) 基于多辐照特性年气象场景的光伏发电接纳能力计算方法
Marinelli et al. Wind and photovoltaic large-scale regional models for hourly production evaluation
Bansal Sizing and forecasting techniques in photovoltaic-wind based hybrid renewable energy system: A review
CN104978613A (zh) 一种考虑组件温度的光伏出力短期预测方法
Yan et al. Solar radiation forecasting using artificial neural network for local power reserve
CN110110948A (zh) 一种多目标分布式电源优化配置方法
Lipu et al. Data-driven hybrid approaches for renewable power prediction toward grid decarbonization: Applications, issues and suggestions
Navothna et al. Analysis on large-scale solar PV plant energy performance–loss–degradation in coastal climates of India
Garcia‐Sanz A Metric Space with LCOE Isolines for Research Guidance in wind and hydrokinetic energy systems
Ashfaq et al. Hour-ahead global horizontal irradiance forecasting using long short term memory network
Zayas-Gato et al. Intelligent model for active power prediction of a small wind turbine
Nazir et al. Wind energy, its application, challenges, and potential environmental impact
Bukala et al. Evolutionary computing methodology for small wind turbine supporting structures
Hogg et al. UK Wind Energy Technologies
Wang et al. Co‐allocation of solar field and thermal energy storage for CSP plants in wind‐integrated power system
Bhol et al. Decarbonizing the grid by optimal scheduling of solar PV‐WIND turbine‐pumped hydro storage considering application on heuristic algorithms: A comprehensive review
RU2575417C2 (ru) Способ компьютерного моделирования технической системы
Jogunuri et al. Artificial intelligence methods for solar forecasting for optimum sizing of PV systems: A review
Shirsath et al. A review of wind station data modeling for wind turbine reliability enhancement to optimize wind energy considering turbine design