RU2573309C1 - Способ получения композиционного армированного порошкового материала - Google Patents

Способ получения композиционного армированного порошкового материала Download PDF

Info

Publication number
RU2573309C1
RU2573309C1 RU2014127725/02A RU2014127725A RU2573309C1 RU 2573309 C1 RU2573309 C1 RU 2573309C1 RU 2014127725/02 A RU2014127725/02 A RU 2014127725/02A RU 2014127725 A RU2014127725 A RU 2014127725A RU 2573309 C1 RU2573309 C1 RU 2573309C1
Authority
RU
Russia
Prior art keywords
powder
reinforcing
hardness
matrix
particle size
Prior art date
Application number
RU2014127725/02A
Other languages
English (en)
Inventor
Татьяна Игоревна Бобкова
Максим Анатольевич Юрков
Алексей Александрович Черныш
Александр Андреевич Елисеев
Артем Андреевич Деев
Владимир Николаевич Климов
Евгений Александрович Самоделкин
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2014127725/02A priority Critical patent/RU2573309C1/ru
Application granted granted Critical
Publication of RU2573309C1 publication Critical patent/RU2573309C1/ru

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь дополнительно вводят тонкодисперсный порошок оксидов алюминия, или оксидов кремния, или оксидов титана с размером частиц 20-40 мкм в количестве 5-10 мас.%. Проводят механическую обработку порошковой смеси в высокоэнергетической истирательной установке в течение 30 мин при скоростях вращения 1400-2000 об/мин. В качестве армирующего нанопорошка используют карбиды, нитриды и карбонитриды в количестве 50 мас.%. В качестве матричного порошка используют порошки металлов или их сплавов с твердостью не выше 235 HV и с размером частиц, определяемым по заданному соотношению. Обеспечивается повышение твердости и снижение пористости покрытий, получаемых с использованием армированного порошкового материала. 3 ил., 1 табл., 2 пр.

Description

Изобретение относится к порошковой металлургии, в частности к получению металлокерамических порошковых материалов на основе пластичной матрицы и твердофазных включений и может быть использовано при получении металлокерамических порошковых материалов на основе пластичной матрицы и твердых армирующих компонентов для напыления износостойких покрытий методом холодного сверхзвукового газодинамического напыления.
Способ получения композиционного армированного порошкового материала включает смешение пластичного матричного материала с абразивно-упрочняющей компонентой; обработку в смесителе типа «пьяная бочка» с целью удаления оксидной пленки с частиц матричного материала, сопровождающуюся агломерированием; введение сверхтвердого наноразмерного армирующего компонента и высокоэнергетическую истирательную обработку. За счет силового воздействия рабочих тел истирателя пластичные частицы деформируются, плакируют абразивно-упрочняющую компоненту микронного размера, создавая твердое беспористое ядро, армированное наноразмерным сверхтвердым компонентом.
Известен способ получения композиционного порошка, предусматривающий обработку порошковой смеси, состоящей из металлической матрицы на основе сплава Ni, Fe, Al и тугоплавкого соединения из числа карбидов, нитридов, боридов, оксидов тория и иттрия, вводимого в количестве 0,5-5,0 об.% (патент US №4647304, B22F, 03.03.1987). Для получения равномерного распределения твердого компонента в металлической матрице обработку проводят в аттриторах в среде N2, СН4, Ar, Kr при криогенных температурах от -240°C до -150°C.
Недостатком известного способа является получение композиционного порошка, имеющего дисперсность не менее ~50 мкм, низкий уровень значений и стабильности механических свойств из-за неоднородности структуры. Это существенно ограничивает технологические возможности таких порошков при получении функциональных покрытий. Кроме того, данный способ весьма энергоемкий и продолжительный во времени.
Известен способ получения композиционного порошкового материала системы металл-керамика износостойкого класса (патент РФ №2460815, С22С 1/04, B22F 9/04, B22F 1/02, 22.09.2010). В предлагаемом способе получения композиционного порошкового материала, содержащего металлическую матрицу и керамический упрочнитель, включающем смешивание порошков металлической матрицы с керамическим упрочнителем и механосинтез, согласно изобретению сначала получают порошок металлической матрицы путем измельчения предварительно отобранного порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала твердостью ниже твердости обрабатываемого порошка, для получения плакирующего слоя. Затем полученный плакированный порошок металлической матрицы и порошок керамического упрочнителя подвергают совместной обработке в высокоскоростном дезинтеграторе с помощью двух роторов, изготовленных из материала твердостью выше твердости обрабатываемой порошковой смеси, для получения дисперсно-упрочненных частиц системы металл - керамика износостойкого класса.
Недостатком известного способа является наличие стадии плакирования с помощью двух роторов с рядами измельчающих ударных элементов, которые являются расходуемыми в процессе обработки порошка и могут быть изготовлены только из пластичных металлов, алюминия, меди, цинка или их сплавов. Это вносит существенные ограничения по плакирующему материалу, а также значительно удорожает технологию за счет высокой стоимости производства расходуемых элементов. К тому же присутствует трудоемкая операция замены измельчающих элементов, что увеличивает время ведения технологического процесса. Степень армирования таким способом не превышает 60%, что не позволяет значительно повысить твердость и износостойкость наносимого покрытия. Самым главным недостатком использования дезинтеграторной установки является ограничение по твердости армирующей компоненты - она должна быть меньше твердости роторов и ее размеру - не менее 5 мкм, иначе происходит снижение адгезии наносимого на основе получаемого порошкового материала покрытия к подложке и увеличение пористости и соответственно снижение износостойкости.
Наиболее близким по технической сущности к изобретению является способ получения однородных смесей нано- и микропорошков (патент US №7758784, B22F 1/00, B32B 15/02, B22F 1/00, 20.07.2010), выбранный в качестве прототипа. В известном патенте предусмотрен способ равномерного диспергирования наноразмерного порошка по всей поверхности порошка микронного размера.
В одном из вариантов изобретения предусмотрен способ добавления армирующего нанопорошка, либо тонкодисперсного порошка в количестве 50% по массе к навеске микронного порошка и обработки порошковой смеси в шаровой или струйной мельнице. Обработка производится не менее 2 ч при комнатной температуре в сухом состоянии, в результате чего происходит равномерное распределение армирующего порошка по поверхности порошка микронного размера и механическое закрепление армирующего порошка на поверхности матричного, в качестве которого используют порошки меди, алюминия, магния, железа, различных сталей, кобальта, никеля, цинка, циркония, ниобия, молибдена, палладия, серебра, вольфрама, гафния, титана, рения, платины, неодима, самария, гадолиния и тербия. В известном способе описывается использование в качестве армирующей компоненты нанопорошков, размером менее 100 нм, полученных методами газоконденсации, золь-гель, плазменным и любым другим, позволяющим получить агломераты нанопорошков, либо тонкодисперсных порошков, размером менее 10 мкм, полученных любым способом, на основе металлов, сплавов и керамики.
Недостатком известного способа является отсутствие объемного армирования материалов, так как механическая обработка в шаровой или струйной мельнице не является высокоэнергетической и не позволяет внедрить армирующую компоненту более, чем на половину диаметра частицы, вследствие чего получаемые порошковые материалы имеют твердую поверхность и преобладающее по объему частицы мягкое ядро. Причем диаметр более мягкого ядра в 10-2000 раз больше толщины армированного поверхностного слоя, что отрицательно сказывается на свойствах покрытий, напыляемых на основе этих материалов. В покрытиях имеются обширные зоны (до 200 мкм) с пониженной микротвердостью, что уменьшает интегральную твердость, а, следовательно, и износостойкость. Разброс микротвердости в покрытии достигает от 1,2 до 13 ГПа, а интегральная твердость таких покрытий не превышает 530 HV.
Техническим результатом является создание порошкового материала для нанесения покрытий методом газодинамического напыления, позволяющего получать покрытия с высокими механическими характеристиками, в частности твердостью выше 550 HV, без наличия обширных зон с пониженной микротвердостью.
Технический результат достигается за счет совместного введения армирующих компонентов микронного и наноразмерного диапазона и последующей обработке порошковой смеси в высокоэнергетической истирательной установке ИВЧ-3 в течение 30 мин при скоростях вращения 1400-2000 об/мин. В качестве исходного матричного материала используются микронные порошки меди, алюминия, магния, железа, различных сталей, кобальта, никеля, цинка, циркония, ниобия, молибдена, палладия, серебра, вольфрама, гафния, титана, рения, платины, неодима, самария, гадолиния, тербия и сплавов на их основе, с эквивалентным диаметром частиц, находящимся в пределах 20-35 мкм, и твердостью не выше 235 HV. Применение порошков более твердых материалов невозможно, данные ограничения вносит способ газодинамического напыления, для которого разрабатывается данный армированный материал. В качестве армирующих материалов используются тонкодисперсные порошки оксидов алюминия, кремния, титана с эквивалентным диаметром частиц, находящимся в пределах 20-40 мкм; наноразмерные порошки карбидов, нитридов и карбонитридов с эквивалентным диаметром частиц меньшим 100 нм. При использовании нанопорошков с эквивалентным диаметром частиц больше 100 нм объемная энергия будет преобладать над поверхностной, что приведет к образованию агломератов и уменьшению степени армирования материала, что повлечет за собой уменьшение твердости и увеличение пористости покрытия, получаемого на основе предлагаемого материала. Причем соотношение размеров матричного и армирующего компонентов микронного диапазона должны находиться в пределах 1:(1÷2) соответственно, только такое соотношение может обеспечить образование прочных механических связей внедрения между матричным и армирующим тонкодисперсным материалом, а, следовательно, объемно армированного ядра порошкового материала. При изменении соотношения размеров частиц в сторону уменьшения размеров армирующего тонкодисперсного порошка (в частности уже при соотношении 1:0,9) наблюдается заметное уменьшение твердости покрытия, напыляемого на основе получаемого порошкового материала, связанное с низкой степенью объемного армирования и появлением зон диаметром порядка 50 мкм с пониженной микротвердостью, что уменьшает интегральную твердость покрытия, напыляемого на основе армированного материала. При изменении соотношения размеров частиц в сторону увеличения размеров армирующего тонкодисперсного порошка (в частности уже при соотношении 1:2,1) не происходит прочного механического скрепления армирующего материала матричным, что не позволяет сформировать объемно армированное ядро порошкового материала. Тонкодисперсный армирующий материал добавляется в количестве 5-10 мас.%. При добавлении материала менее 5% не достигается необходимого значения твердости напыляемого покрытия, при добавлении более 10% не обеспечивается прочная механическая связь между частицами матричного и армирующего компонента, что приводит к охрупчиванию напыляемого покрытия. Нанопорошок карбидов, нитридов и карбонитридов добавляют в количестве 50 мас.%. При добавлении меньшего количества степень поверхностного армирования не достигает 100%, что не позволяет получить высоких механических характеристик в покрытии, напыляемом на основе армированного порошка. При добавлении большего количества нанопорошка появляются свободные агломераты нанопорошков, не связанных механическими связями, при напылении такого материала повышается пористость и уменьшается твердость покрытия.
В процессе высокоэнергетической истирательной обработки при заявленных скоростях формируются плотные армированные гранулы, имеющие твердое ядро, состоящее из прочно связанных матричного и равномерно распределенного в нем тонкодисперсного наполнителя, поверхностно армированное нанопорошком материала с повышенной твердостью. При скоростях обработки менее 1400 об/мин на материал не передается достаточного количества механической энергии для внедрения твердых компонентов в матричные частицы и образования плотных агломерированных гранул не происходит. При скоростях обработки более 2000 об/мин происходит значительный нагрев и последующее окисление матричного материала, вследствие чего становится невозможным равномерное распределение тонкодисперсной компоненты и образование прочного беспористого ядра. Также в образованную на поверхности матричного материала твердую оксидную пленку не происходит внедрения армирующих наночастиц и, как следствие, не происходит формирование твердого поверхностного слоя. Для образования армированного порошкового материала из всего объема исходного материала, загружаемого в истиратель, достаточно 30-минутной обработки. При менее длительной обработке не весь исходный материал переходит в армированный порошковый материал, что ведет к потерям материала на стадии рассева, а более длительная обработка заметно удорожает получаемый материал в связи с заметным повышением энергоемкости процесса.
Практическая реализация предлагаемого технического решения выполнялась по следующей разработанной схеме:
- механическое смешение порошковых компонентов матричного и армирующих (тонкодисперсного и наноразмерного) материалов в смесителе типа «пьяная бочка» MIXER-0,5 в течение 0,5 ч для гомогенизации порошковой смеси;
- высокоэнергетическая истирательная обработка порошка в течение 30 мин при скорости вращения чашек в пределах 1400-2000 об/мин;
- рассев порошка на "Анализаторе частиц А-20" с выделением подходящей для напыления фракции 60-80 мкм;
- нанесение функциональных покрытий на основе полученного композиционного армированного порошкового материала сверхзвуковым «холодным» газодинамическим напылением.
Сущность изобретения поясняется чертежами, где изображено:
на фиг. 1 - характерная структура частицы армированного порошкового материала, полученного предлагаемым способом;
на фиг. 2 - СЭМ изображение внешнего вида армированной частицы порошкового материала, полученного предлагаемым способом;
на фиг. 3 - СЭМ изображение поперечного шлифа покрытия, полученного на основе армированного порошкового материала, полученного предлагаемым способом.
На фиг. 1 схематично представлена структура получаемого армированного материала. Форма частиц приближенна к сфере. Собою являют беспористое ядро, состоящее из матричного материала и равномерно распределенного в нем тонкодисперсного армирующего компонента, поверхностно армированное наноразмерным твердым порошком.
При детальном рассмотрении фиг. 2 видно, что поверхность материала имеет 100% степень армирования наноразмерным порошком. СЕМ изображение поперечного шлифа покрытия представлено на фиг. 3. Покрытие получается плотным, беспористым. Темные крупные вкрапления соотвествуют оксидным частицам тонкодисперсного армирующего компонента. В покрытии отсутствуют обширные зоны (более 50 мкм) пониженной твердости, соответствующей твердости матричного материала, также характерно равномерное распределение в нем армирующих компонентов, что дает безградиентную твердость в продольном и поперечном направлениях.
Пример 1
К коммерчески продаваемому порошковому материалу из сплава меди, алюминия, никеля и железа с эквивалентным диаметром частиц равным 25 мкм, который используется в качестве матричного количеством 40 мас.%, добавлялся тонкодисперсный порошок электрокорунда белого торговой марки 25А с эквивалентным диаметром частиц, равным 25 мкм, в количестве 10 мас.% и наноразмерный порошок карбида вольфрама, полученный плазмохимическим синтезом, с эквивалентным диаметром частиц, равным 72 нм, в количестве 50 мас.%. Порошковая смесь подвергалась получасовой гомогенизации в смесители типа «пьяная бочка» MIXER-0,5. Порошковая композиция подвергалась высокоэнергетической истирательной обработке в установке ИВЧ-3 в течение 30 мин при скорости вращения чашек в пределах 1400-2000 об/мин. После обработки порошковый материал подвергался рассеиванию с выделением фракции для напыления 60-80 мкм.
Напыление покрытий из предлагаемого армированного порошкового материала размерностью от 60 до 80 мкм производилась на установке ХГДН типа Димет-3. Рентгенофазовый состав, определенный на рентгеновском дифрактометре Bruker D8 Advance, в мас.% приведен в таблице под №1.
Толщина покрытий, формируемых этим способом, составляет 100-5000 мкм, что обеспечивает требуемые эксплуатационные характеристики. Пористость такого рода покрытий, измеренная с помощью компьютеризированного анализа изображения поперечного шлифа на микроскопе Leica DM-2500, составила 0,5%. Результаты исследований твердости, производимые на твердомере Zwick/Roell ZHV, показали, что покрытия имеют твердость 570 HV.
Пример 2
К коммерчески продаваемому порошковому материалу из сплава, алюминия, цинка и олова с эквивалентным диаметром частиц, равным 20 мкм, который используется в качестве матричного количеством 45 мас.%, добавлялся тонкодисперсный порошок оксида кремния с эквивалентным диаметром частиц равным 40 мкм в количестве 5% (масс.) и наноразмерный порошок карбонитрида титатана, полученный плазмохимическим синтезом, с эквивалентным диаметром частиц, равным 68 нм, в количестве 50 мас.%. Порошковая смесь подвергалась получасовой гомогенизации в смесители типа «пьяная бочка» MIXER-0,5. Порошковая композиция подвергалась высокоэнергетической истирательной обработке в установке ИВЧ-3 в течение 30 мин при скорости вращения чашек в пределах 1400-2000 об/мин. После обработки порошковый материал подвергался рассеиванию с выделением фракции для напыления 60-80 мкм.
Напыление покрытий из предлагаемого армированного порошкового материала размерностью от 60 до 80 мкм производилась на установке ХГДН типа Димет-3. Рентгенофазовый состав, определенный на рентгеновском дифрактометре Bruker D8 Advance, в мас.% приведен в таблице под №2.
Толщина покрытий, формируемых этим способом, составляет 100-5000 мкм, что обеспечивает требуемые эксплуатационные характеристики. Пористость такого рода покрытий, измеренная с помощью компьютеризированного анализа изображения поперечного шлифа на микроскопе LeicaDM-2500, составила 0,8%. Результаты исследований твердости, производимые на твердомере Zwick/Roell ZHV, показали, что покрытия имеют твердость 602 HV.
Figure 00000001
Применение предлагаемого способа получения композиционного армированного порошкового материала для нанесения покрытий методом газодинамического напыления позволяет повысить твердость покрытий по сравнению с прототипом, а также понизить пористость и избежать образования обширных зон в покрытии (до 200 мкм) с пониженной твердостью.

Claims (1)

  1. Способ получения композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым напылением, включающий смешивание матричного порошка металлов или их сплавов и армирующего нанопорошка с размером частиц от 1 нм до 100 нм с получением порошковой смеси и последующую ее механическую обработку, отличающийся тем, что в порошковую смесь дополнительно вводят тонкодисперсный порошок оксидов алюминия или оксидов кремния, или оксидов титана с размером частиц 20-40 мкм в количестве 5-10 мас.%, а в качестве армирующего нанопорошка используют карбиды, нитриды и карбонитриды в количестве 50 мас.%, при этом в качестве матричного порошка используют порошки металлов или их сплавов с твердостью не выше 235 HV и с размером частиц, выбранным из соотношения:
    D1=(0,5-1,0) D2,
    где D1 - размер частиц матричного порошка;
    D2 - размер частиц тонкодисперсного порошка,
    при этом механическую обработку порошковой смеси проводят в высокоэнергетической истирательной установке в течение 30 мин при скоростях вращения 1400-2000 об/мин.
RU2014127725/02A 2014-07-08 2014-07-08 Способ получения композиционного армированного порошкового материала RU2573309C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014127725/02A RU2573309C1 (ru) 2014-07-08 2014-07-08 Способ получения композиционного армированного порошкового материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014127725/02A RU2573309C1 (ru) 2014-07-08 2014-07-08 Способ получения композиционного армированного порошкового материала

Publications (1)

Publication Number Publication Date
RU2573309C1 true RU2573309C1 (ru) 2016-01-20

Family

ID=55087147

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014127725/02A RU2573309C1 (ru) 2014-07-08 2014-07-08 Способ получения композиционного армированного порошкового материала

Country Status (1)

Country Link
RU (1) RU2573309C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427866A3 (de) * 2017-07-13 2019-01-23 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur herstellung eines kriechbeständigen werkstoffs
RU2791250C1 (ru) * 2022-02-17 2023-03-06 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Композиционное износостойкое покрытие

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647304A (en) * 1983-08-17 1987-03-03 Exxon Research And Engineering Company Method for producing dispersion strengthened metal powders
US7758784B2 (en) * 2006-09-14 2010-07-20 Iap Research, Inc. Method of producing uniform blends of nano and micron powders
RU2439198C2 (ru) * 2008-09-29 2012-01-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения износостойкого композиционного наноструктурированного покрытия
RU2460815C2 (ru) * 2010-09-22 2012-09-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" Фгуп "Цнии Км "Прометей" Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647304A (en) * 1983-08-17 1987-03-03 Exxon Research And Engineering Company Method for producing dispersion strengthened metal powders
US7758784B2 (en) * 2006-09-14 2010-07-20 Iap Research, Inc. Method of producing uniform blends of nano and micron powders
RU2439198C2 (ru) * 2008-09-29 2012-01-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения износостойкого композиционного наноструктурированного покрытия
RU2460815C2 (ru) * 2010-09-22 2012-09-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" Фгуп "Цнии Км "Прометей" Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427866A3 (de) * 2017-07-13 2019-01-23 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur herstellung eines kriechbeständigen werkstoffs
RU2791250C1 (ru) * 2022-02-17 2023-03-06 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Композиционное износостойкое покрытие

Similar Documents

Publication Publication Date Title
Barakat et al. Effect of Al2O3 nanoparticles content and compaction temperature on properties of Al–Al2O3 coated Cu nanocomposites
Sharma et al. Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application
Abd-Elwahed et al. Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite
US7758784B2 (en) Method of producing uniform blends of nano and micron powders
Altınkok et al. Dry Sliding Wear Behavior of Al_2O_3//SiC Particle Reinforced Aluminium Based MMCs Fabricated by Stir Casting Method
Narayanasamy et al. Effect of weight percentage of TiC on their tribological properties of magnesium composites
Luo et al. WC-Co composite coating deposited by cold spraying of a core-shell-structured WC-Co powder
Ming et al. Surface modifying of SiC particles and performance analysis of SiCp/Cu composites
Irhayyim et al. Effect of nano-TiO 2 particles on mechanical performance of Al-CNT matrix composite
Zhao et al. Effect of particle size on ceramic particle content in cold sprayed Al-based metal matrix composite coating
RU2460815C2 (ru) Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса
RU2573309C1 (ru) Способ получения композиционного армированного порошкового материала
Liu et al. High Strength and High Wear‐Resistant Ti Composites Fabricated by Powder Metallurgy Pressureless Sintering
Cheng et al. Influence mechanism of AlCoCrFeNi content on the wide temperature domain tribological properties of WC-based cemented carbides
Abbass et al. Wear characterization of aluminum matrix hybrid composites reinforced with nanoparticles of Al2O3 and TiO2
Kurt et al. Abrasive wear, structure, and mechanical aspects of Al–Al 2 O 3 composites fabricated using various mixing media during P/M routes
KR100935037B1 (ko) 고인성 서멧트 및 그 제조 방법
Gordeev et al. Combined application of composite powders WC-Co and additives of nanoparticles as an effective method of improving the properties of hard metals
KR20190012036A (ko) 교반볼밀을 이용한 카본나노튜브가 코팅된 구리입자 제조방법
Kumar et al. Casting and characterization of Al6063/SiC nano composites produced using stir casting method
Azevêdo et al. Effect of High-Energy Milling and Sintering Temperature on the Properties of Al 2 O 3-WC-Co Composites
Arumugam et al. Effect of process parameters on microstructure and mechanical properties of Al-11.5% Si-1% Mg/bimodal SiC (m–n) composites
Gül et al. Preparation and characterization of bronze/SiCp composites produced via current activated sintering method
Prakash et al. Superior material properties of hybrid filler-reinforced aluminum MMC through double-layer feeding technique adopted in bottom tapping stir casting
Al-Qutub et al. Wear Behavior of Spark Plasma Sintered Al2124 Aluminum Alloy Containing Carbon Nanotubes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160709

NF4A Reinstatement of patent

Effective date: 20190213

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20210310