RU2572475C1 - Термоядерный боеприпас без атомного взрывателя - Google Patents

Термоядерный боеприпас без атомного взрывателя Download PDF

Info

Publication number
RU2572475C1
RU2572475C1 RU2014136313/11A RU2014136313A RU2572475C1 RU 2572475 C1 RU2572475 C1 RU 2572475C1 RU 2014136313/11 A RU2014136313/11 A RU 2014136313/11A RU 2014136313 A RU2014136313 A RU 2014136313A RU 2572475 C1 RU2572475 C1 RU 2572475C1
Authority
RU
Russia
Prior art keywords
cylindrical
thermonuclear
lithium
conical
spherical
Prior art date
Application number
RU2014136313/11A
Other languages
English (en)
Inventor
Валерий Михайлович Антропов
Original Assignee
Валерий Михайлович Антропов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Михайлович Антропов filed Critical Валерий Михайлович Антропов
Priority to RU2014136313/11A priority Critical patent/RU2572475C1/ru
Application granted granted Critical
Publication of RU2572475C1 publication Critical patent/RU2572475C1/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к боеприпасам, в частности к термоядерным боеприпасам без атомного взрывателя. Термоядерный боеприпас без атомного взрывателя состоит из цилиндрического корпуса. Цилиндрический корпус соединен с конусным корпусом, который соединен со сферическим корпусом. С одной стороны цилиндрического корпуса расположен триггер из взрывчатого вещества, с другой стороны корпуса расположен термоядерный заряд, внутри которого расположено термоядерное горючее. Вдоль продольной оси заряда расположен стержень из плутония. Триггер отделен от термоядерного заряда крышкой из урана. Все оставшееся свободное пространство внутри цилиндрического корпуса заполнено пенополистиролом. Вдоль продольной оси корпусов, аксиально, расположен стержень из металлического лития. Участок литиевого стержня, находящийся в центре сферического корпуса, содержит шар, состоящий из дейтерида лития. Центр шара совпадает с центром сферического корпуса. Внутренний объем конусного и цилиндрического корпусов заполнен дейтеридом лития. Сферический корпус выполнен из металла. Конусный и цилиндрический корпуса изготовлены из электротехнической керамики. Достигается упрощение конструкции боеприпаса. 1 з.п. ф-лы, 1 ил.

Description

В настоящее время существует конструкция термоядерного боеприпаса (см. «Ядерная физика» И.М. Бекман, изд МГУ, 2010 г.), который состоит из цилиндрического алюминиевого корпуса внутри которого расположен цилиндрический свинцовый корпус. С одной стороны корпуса расположен «триггер» (пусковой атомный заряд), состоящий из оболочки, выполненной из взрывчатого вещества, внутри которого расположен бериллиевый рефлектор, выполненный в виде сферы, внутри которой размещено плутониевое ядро. В оболочке из взрывчатого вещества равномерно расположены детонаторы для инициирования детонации во взрывчатом веществе. С другой стороны свинцового корпуса (последовательно) расположен термоядерный заряд, состоящий из цилиндрической урановой оболочки, внутри которой расположено термоядерное горючее (дейтерид лития). Вдоль продольной оси заряда аксиально расположен полый стержень из плутония (так называемая запальная свеча). Триггер отделен от термоядерного заряда крышкой из урана или вольфрама. Все оставшееся свободное пространство внутри свинцового корпуса заполнено пенополистиролом. Такая конструкция термоядерного боеприпаса работает следующим образом.
Происходит взрыв пускового атомного заряда. Рентгеновские лучи, испускаемые при этом, распространяются по пенополистироловому наполнителю. Урановая крышка между триггером и термоядерным зарядом и корпус термоядерного заряда предотвращают преждевременный нагрев дейтерида лития. Уставливается тепловое равновесие, и урановая оболочка термоядерного заряда нагревается, расширяется и охлаждается за счет уноса массы (абляции). При этом создается равномерное давление на дейтерид лития со всех сторон. При этом находящийся в центре термоядерного заряда урановый стержень (запальная свеча) под воздействием давления взрывается, тем самым еще больше увеличивая давление на дейтерид лития. Все это приводит к возникновению самоподдерживающейся термоядерной реакции, то есть происходит термоядерный взрыв термоядерного боеприпаса.
Недостатком такой конструкции является то, что без пускового атомного заряда невозможна работа такого термоядерного боеприпаса.
В целях устранения данного недостатка предлагается конструкция термоядерного боеприпаса без атомного взрывателя.
Предлагаемый термоядерный боеприпас без атомного взрывателя (далее по тексту боеприпас) состоит из сферического корпуса, конусного корпуса и цилиндрического корпуса. На внутренней поверхности сферического корпуса размещен тонкий слой (1-5 мм) инициирующего взрывчатого вещества (гремучая ртуть). Кроме того, там же равномерно по всей внутренней поверхности внутри взрывчатого вещества размещены электродетонаторы, необходимые для одновременного инициирования детонации по всей поверхности взрывчатого вещества. Все детонаторы параллельно соединены с пусковым устройством (подрывной машинкой) для обеспечения их одновременного срабатывания. Сферический корпус боеприпаса сопряжен с усеченным конусным корпусом боеприпаса таким образом, чтобы сужающая часть усеченного конуса находилась внутри сферического корпуса, не доходя до центра сферы.
Конический корпус боеприпаса сопряжен с цилиндрическим в основании конуса таким образом, чтобы продольная ось конусного корпуса являлась продолжением продольной оси цилиндрического корпуса. Вдоль продольной оси конического и цилиндрического корпусов, аксиально, расположен стержень из металлического лития, один конец которого расположен в центре сферического корпуса, а другой выступает за пределы торца цилиндрического корпуса. Участок литиевого стержня, находящийся в центре сферического корпуса, содержит шар, состоящий из дейтерида лития. Центр шара совпадает с центром сферического корпуса, участок наружной поверхности шара соединен с дейтеридом лития, находящимся внутри конусного корпуса боеприпаса. Внутренний объем конусного и цилиндрического корпусов заполнен дейтеридом лития. Сферический корпус металлический. Конусный и цилиндрический корпуса изготовлены из электротехнической керамики, имеющей высокое электрическое напряжение пробоя. Сферический, конусный и цилиндрический корпуса должны быть герметичными и герметично соединенными между собой. Внутри объема, образованного этими корпусами, создан глубокий вакуум (уровень вакуума -10-7 мм рт.ст.). Для этого внутри боезаряда предусмотрена трубка для откачки газов. Сферический корпус и литиевый стержень соединены с высоковольтным источником напряжения (не менее 15400000 в), причем корпус является катодом, а литиевый стержень - анодом. Работает предлагаемое устройство следующим образом. Одновременно подается напряжение к сферическому корпусу (1), литиевому стержню (6) и электродетонаторам (7). При этом детонаторы инициируют взрыв инициирующего взрывчатого вещества (гремучей ртути) одновременно по всей внутренней поверхности сферического корпуса боезаряда. Взрыв нагреет взрывчатое вещество до температуры Т=4673 К. При такой температуре данное взрывчатое вещество обеспечит возникновение электрического тока плотностью j = B T 2  e - A k T
Figure 00000001
, где В==0,3×1,6×104 а/м2к, Τ=4673°К А=5×1,6×10-19 дж, к=1,38×10-23 дж/к, е=2,72
Отсюда j = B T 2 e A k T = ( 0,3 × 1,6 × 10 4 ) × ( 4673 2 ) × 2,72 5 × 1,6 × 10 19 1,38 × 4673 × 10 23 = 425977,341 а / м 2
Figure 00000002
Такая плотность электрического тока соответствует прохождению количества электронов через сечение площадью 1 м2, равному N = 425977,341 1,6 × 10 19 = 2.66 × 10 24
Figure 00000003
электронов, где 1,6×10-19 Кл - электрический заряд электрона.
Площадь сечения одного электрона равна S=πR2=3,14×(2.8179×10-15)2=24.93×10-30 м2, тогда суммарная площадь сечения всех электронов, которые одномоментно вылетят из излучающей поверхности, будет равна N×S=(2.66×1024)×24,93×10-30=66.31×10-6 м2. Такую площадь поверхности будет иметь сфера радиусом R = S 4 π = 66.31 × 10 6 4 × 3,14 = 2.3 × 10 3
Figure 00000004
м или 0,23 см. Объем шара такого радиуса будет равен V = 4 3 π R 3 = 4 3 × 3,14 × 0,23 3 = 0,051   с м 3
Figure 00000005
. Таким образом, поместив шар (9) объемом V=0.051 см3 или более с дейтеридом лития в центр сферы (1) с площадью внутренней поверхности, равной или большей чем 1 м2, нагрев эту поверхность до температуры в 4673 K с помощью взрыва гремучей ртути, создав вакуум внутри этой сферы (8), а также приложив разность потенциалов в 15400000 вольт между внутренней поверхностью сферы (1) и шаром с дейтеридом лития (9) с расположенным внутри него литиевым стержнем (6), то в такого объема шаре с дейтеридом лития возникнет термоядерная реакция, так как то количество электронов, которое одномоментно будет излучаться сферической поверхностью взрывчатого вещества, создаст ударную волну, которая обеспечит сжатие всех атомов дейтерида лития, находящихся в объеме V=0,051 см3, а давление, которое электроны с энергией в 15.4 Мэв создадут в указанном объеме (9), будет достаточным для преодоления сил междуядерного отталкивания и возникновения термоядерной реакции. Энергия в 15,4 Мэв электрона, необходимая для термоядерного синтеза, определена следующим образом. Сила отталкивания между электроном и атомом лития, которую должен преодолеть электрон для инициирования термоядерной реакции
F = ε 2 4 π ε 0 r 2
Figure 00000006
,
где ε - заряд электрона, равный 1,6×10-19 Кл, ε0 - диэлектрическая постоянная - 8,85×10-12 ф/м, r - минимальное расстояние между электроном и атомом лития, при преодолении которого возможно их взаимодействие и возникновение термоядерной реакции, равное 10-15 м. Так как заряд ядра атома лития равен +3, то сила отталкивания, которую нужно преодолеть для начала термоядерной реакции F = 3 × ( 1.6 × 10 19 ) 2 4 × 3.14 × 8.85 × 10 12 × ( 10 15 ) 2 = 23 н × 3 = 69 н
Figure 00000007
Так как радиус электрона R=2,8179×10-15 м, то площадь сечения электрона будет равна S=πR2=3,14×(2.8179×10-15)2=24.93×10-30 м2
Отсюда давление, которое будут оказывать силы отталкивания на электрон, равно ρ = F S = 23 н × 3 24.93 × 10 30 = 0.923 × 10 30 н м 2 × 3 = 2.769 × 10 30 н м 2
Figure 00000008
Определим энергию, которую должен иметь электрон для преодоления сил отталкивания.
F=ma=23×3=69 н, зная массу электрона m=9,10953×10-31 кг, определим ускорение а = F m = 23 × 3 9,10953 × 10 31 = 2.525 × 10 31 м / с е к 2 × 3 = 7.575 × 10 31   м / с е к 2
Figure 00000009
, зная, что скорость электрона равна с=3×108 м/сек, определим время набора такой скорости t = 3 × 10 8 7.575 × 10 31 = 0.396 × 10 23   с е к
Figure 00000010
, расстояние, которое пройдет электрон для того, чтобы набрать необходимую энергию, будет равно S=0.396×10-23×(3×108)=1.188×10-15 м
Отсюда энергия, которую необходимо придать электрону, будет равна
W=F×S=69н×(3.564×10-15м)=245.916×10-15н м или 245.916 × 10 15 1.6 × 10 19 = 153.7 × 10 4   э в
Figure 00000011
или 15,4 Мэв
Таким образом, создав вышеуказанные условия в предлагаемой конструкции боеприпаса, термоядерная реакция, возникшая в шаре с дейтеритом лития (9), будет распространяться далее по всей массе дейтерида лития (5), находящегося в конусной (3) и цилиндрической (4) части боезаряда, и обеспечит любую необходимую мощность взрыва.
На рис.1 приведен вид предлагаемого термоядерного боеприпаса. Он состоит из металлического сферического корпуса (1) с расположенным на его внутренней поверхности слоем инициирующего взрывчатого вещества (2), конического корпуса (3) и соединенного с ним цилиндрического корпуса (4), которые изготовлены из электротехнической керамики с высоким электрическим сопротивлением пробоя. Внутренний объем корпусов (3), (4) заполнен дейтеридом лития (5). По центру корпусов (3) и (4) параллельно продольной оси этих корпусов расположен литиевый стержень (6), один конец которого находится в центре сферического корпуса (1). На этом конце расположен шар из дейтерида лития (9), центр которого совпадает с центром сферического корпуса (1), а противоположный конец выходит за пределы корпуса (4) и соединен с клеммой источника высокого напряжения. В слое инициирующего взрывчатого вещества (2) равномерно по поверхности этого вещества расположены электродетонаторы (7), необходимые для обеспечения детонации взрывчатого вещества по всей ее поверхности. Внутри сферического корпуса (1) в его полости (8) поддерживается вакуум с давлением не менее 10-7 мм рт.ст. Для обеспечения такого вакуума внутри корпусов боеприпаса расположена трубка (10), соединенная с вакуумным насосом. Сферический корпус (1) соединен с клеммой источника высокого напряжения. Корпуса (1), (3), (4) соединены между собой герметично для сохранения вакуума. Источники высокого напряжения, электропитания электродетонаторов и вакуумный насос условно не показаны.
Применение предлагаемого боеприпаса позволит существенно снизить расходы на изготовление и содержание термоядерного арсенала нашей страны при сохранении его боевой мощи.

Claims (2)

1. Термоядерный боеприпас без атомного взрывателя состоит из цилиндрического корпуса, внутри которого расположен цилиндрический свинцовый корпус, с одной стороны корпуса расположен триггер (пусковой атомный заряд), состоящий из оболочки, выполненной из взрывчатого вещества, внутри которого расположен бериллиевый рефлектор, выполненный в виде сферы, внутри которой размещено плутониевое ядро, в оболочке из взрывчатого вещества равномерно расположены детонаторы для инициирования детонации во взрывчатом веществе, с другой стороны свинцового корпуса (последовательно) расположен термоядерный заряд, состоящий из цилиндрической урановой оболочки, внутри которой расположено термоядерное горючее (дейтерид лития), вдоль продольной оси заряда аксиально расположен полый стержень из плутония (запальная свеча), триггер отделен от термоядерного заряда крышкой из урана, все оставшееся свободное пространство внутри свинцового корпуса заполнено пенополистиролом, отличающийся тем, что цилиндрический корпус соединен с конусным корпусом, который соединен со сферическим корпусом, на внутренней поверхности сферического корпуса размещен слой взрывчатого вещества, кроме того, там же равномерно по всей внутренней поверхности внутри взрывчатого вещества размещены электродетонаторы, сферический корпус боеприпаса сопряжен с усеченным конусным корпусом боеприпаса таким образом, чтобы сужающая часть усеченного конуса находилась внутри сферического корпуса, не доходя до центра сферы, конический корпус боеприпаса сопряжен с цилиндрическим в основании конуса таким образом, чтобы продольная ось конусного корпуса являлась продолжением продольной оси цилиндрического корпуса, вдоль продольной оси конического и цилиндрического корпусов, аксиально, расположен стержень из металлического лития, один конец которого расположен в центре сферического корпуса, а другой выступает за пределы торца цилиндрического корпуса, участок литиевого стержня, находящийся в центре сферического корпуса, содержит шар, состоящий из дейтерида лития, центр шара совпадает с центром сферического корпуса, участок наружной поверхности шара соединен с дейтеридом лития, находящимся внутри конусного корпуса боеприпаса, внутренний объем конусного и цилиндрического корпусов заполнен дейтеридом лития, сферический корпус выполнен из металла, конусный и цилиндрический корпуса изготовлены из электротехнической керамики, сферический, конусный и цилиндрический корпуса герметичными и герметично соединенными между собой, внутри объема, образованного этими корпусами, создан вакуум, внутри боезаряда предусмотрена трубка для откачки газов, сферический корпус и литиевый стержень соединены с высоковольтным источником напряжения.
2. Термоядерный боеприпас без атомного взрывателя по п.1, отличающийся тем, что в конструкции боеприпаса пусковым устройством для запуска термоядерной реакции в боеприпасе служит сферический корпус, на внутренней поверхности которого размещен слой взрывчатого вещества, равномерно размещенные по всей внутренней поверхности внутри взрывчатого вещества электродетонаторы и литиевый стержень, причем сферический корпус и литиевый стержень соединены с высоковольтным источником напряжения.
RU2014136313/11A 2014-09-05 2014-09-05 Термоядерный боеприпас без атомного взрывателя RU2572475C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014136313/11A RU2572475C1 (ru) 2014-09-05 2014-09-05 Термоядерный боеприпас без атомного взрывателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014136313/11A RU2572475C1 (ru) 2014-09-05 2014-09-05 Термоядерный боеприпас без атомного взрывателя

Publications (1)

Publication Number Publication Date
RU2572475C1 true RU2572475C1 (ru) 2016-01-10

Family

ID=55072178

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014136313/11A RU2572475C1 (ru) 2014-09-05 2014-09-05 Термоядерный боеприпас без атомного взрывателя

Country Status (1)

Country Link
RU (1) RU2572475C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037831B2 (en) * 2003-06-12 2011-10-18 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Super compressed detonation method and device to effect such detonation
RU2466347C2 (ru) * 2011-01-11 2012-11-10 Александр Иванович Голодяев Взрывное устройство - снаряд
US20140227548A1 (en) * 2012-06-27 2014-08-14 James J. Myrick Nanoparticles, Compositions, Manufacture and Applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037831B2 (en) * 2003-06-12 2011-10-18 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Super compressed detonation method and device to effect such detonation
RU2466347C2 (ru) * 2011-01-11 2012-11-10 Александр Иванович Голодяев Взрывное устройство - снаряд
US20140227548A1 (en) * 2012-06-27 2014-08-14 James J. Myrick Nanoparticles, Compositions, Manufacture and Applications

Similar Documents

Publication Publication Date Title
US9273942B1 (en) Disposable, miniature internal optical ignition source for ammunition application
US10197372B2 (en) Ignition generator for insensitive and tailorable effects, as a warhead initiator
EP2138802A9 (en) Launchable unit
ES2714354T3 (es) Carga hueca y aplicación para la separación de dos cuerpos de un artefacto aeronáutico o su neutralización
US9658026B1 (en) Explosive device utilizing flux compression generator
RU2631518C2 (ru) Модуль модульного метательного заряда к артиллерийским орудиям безгильзового заряжания (варианты)
RU2572475C1 (ru) Термоядерный боеприпас без атомного взрывателя
US10578413B1 (en) Bullet projectile with internal electro-mechanical action producing combustion for warfare
US3379178A (en) Fast startup device for torpedo power plant
US11293730B1 (en) Bullet projectile with enhanced mechanical shock wave delivery for warfare
RU2554018C2 (ru) Боевая часть авиабомбы, ракеты, морской мины, фугаса
CN113686213B (zh) 一种微小型引信化学电源快速激活机构及其方法
US10883808B2 (en) Battery augmented munition
US3473472A (en) Photoflash cartridge
ES2682968T3 (es) Cartucho con elemento de seguridad fusible en el sistema de propulsión y procedimiento para su fabricación
US10890420B1 (en) Bullet for an electrically ignited firearm
RU2461790C1 (ru) Взрывной заряд староверова - 7 (варианты)
RU179760U1 (ru) Боевая часть на основе взрывомагнитного кумулятивного генератора
RU2554021C2 (ru) Боевая часть ракеты, авиабомбы, морской мины, фугаса
US571909A (en) Charles e
US3247796A (en) High pressure sparking device
US1317608A (en) Lester i
RU223787U1 (ru) Боевая часть комбинированного действия
RU180685U1 (ru) Газопароимпульсная корректирующая двигательная установка для космических аппаратов
RU2584405C1 (ru) Способ стрельбы из орудия унитарным выстрелом и унитарный выстрел, реализующий его

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160906