RU2570865C1 - Система для повышения эффективности эрлифта при откачке из недр пластового флюида - Google Patents
Система для повышения эффективности эрлифта при откачке из недр пластового флюида Download PDFInfo
- Publication number
- RU2570865C1 RU2570865C1 RU2014134276/03A RU2014134276A RU2570865C1 RU 2570865 C1 RU2570865 C1 RU 2570865C1 RU 2014134276/03 A RU2014134276/03 A RU 2014134276/03A RU 2014134276 A RU2014134276 A RU 2014134276A RU 2570865 C1 RU2570865 C1 RU 2570865C1
- Authority
- RU
- Russia
- Prior art keywords
- well
- airlift
- tubing
- wells
- channels
- Prior art date
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяных залежей. Технический результат - повышение эффективности эрлифта и обеспечение возможности контроля давления и температур. Система для откачки пластового флюида содержит не менее двух скважин. Каждая из этих скважин оборудована двумя насосно-компрессорными трубами - НКТ, соединенными каналами гидродинамической связи. Нагнетательная скважина предназначена для закачивания по одному ее каналу раствора селитры, а по другому ее каналу - инициатора разложения селитры с возможностью прогрева продуктами экзотермической реакции каналов гидродинамической связи и окисления нефти в пласте. Добывающая скважина предназначена для контроля окисления нефти в пласте по выходу углекислого газа. Кроме того, нагнетательная скважина обеспечена возможностью прекращения экзотермической реакции и прокачки воздуха по каналам гидродинамической связи с обеспечением эрлифта и фонтанирования пластового флюида в добывающей скважине и возможности контроля гидродинамической связи между скважинами, температуры, мощности эрлифта и безопасности работ. Для этого в нагнетательной скважине на внешней НКТ установлен пакер, а по внутренней НКТ проложен кабель, соединяющий датчики давления и температуры, установленные около пакера и ниже него. В добывающей скважине установлены упомянутые датчики на выходе из НКТ и обеспечена возможность контроля состава выходящих газов. 1 ил.
Description
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяных залежей. Эрлифт применяют как инструмент для откачки жидкости из скважин методом «отдува». Для этого в скважину опускают двухрядный лифт, состоящий из двух насосно-компрессорных труб НКТ, располагаемых, как правило, соосно. В одну из них закачивают под воздух, «отдувая» уровень жидкости вниз. По другой трубе жидкость поднимается и фонтанирует.
Известно устройство, содержащее несколько труб, одна из которых - основная, причем все трубы связаны между собой, образуя внутри пространство для прокачки горюче-окислительного состава по скважине (RU 2224103, E21B 43/24, 20.02.2004).
Недостатком известного решения является сложность конструкции, в которой реагенты движутся по вертикальным соосным НКТ трубам, а реакция происходит в горизонтальных трубках, что ведет к неполному перемешиванию реагентов и низкому КПД реакции.
Наиболее близким техническим решением является устройство для откачки жидкости с помощью эрлифта, содержащее трубу, которая сообщается с резервуаром и герметичным баком, соединенным с насосами (RU 2440515, F04F 1/20, 20.01.2012).
Однако в устройстве-прототипе нижняя часть имеет управляющее устройство и не обеспечена приборами для контроля и оптимизации режима откачки жидкости. Поэтому откачиваемые жидкости с разными исходными или меняющимися в процессе реакции химическими составами имеют разную вязкость, в результате чего применение прототипа не гарантирует ламинарный режим потока и равномерную откачку без пульсаций и потерь мощности. При этом ценным признаком устройства, работа которого регулируется вручную или с помощью автоматики, является увеличение мощности эрлифта за счет подключения внешнего источника энергии.
Техническим результатом заявленного решения является повышение эффективности эрлифта путем увеличения его мощности за счет тепла, выделившегося при окислении части пластовой нефти кислородом воздуха при прокачке его через нагреваемый участок пласта от нагнетательной к добывающей скважине.
Система включает не менее двух скважин: нагнетательную и добывающую, соединенных гидродинамической (ГД)* связью, далее - «ГД каналом», проходящим по продуктивному пласту. На рисунке представлено внутрискважинное оборудование нагнетательной скважины, где 1 - продуктивный пласт, 2 - обсадная труба, 3 - внешняя насосно-компрессорная труба, НКТ, 4 - внутренняя насосно-компрессорная труба, НКТ; 5 - вход во внутреннюю НКТ; 6 - вход в кольцевой зазор между внутренней и внешней НКТ; 7 - вход в кольцевой зазор между внешней НКТ и обсадной трубой; 8 - пакер; 9 - кабель для передачи сигналов от датчиков температуры и давления в мобильную геофизическую лабораторию (МБЛ); 10 - прибор D=28 мм, датчик Р, Т, установленный около пакера; 11 - датчик температуры, установленный в зоне реакции; 12 - мобильная геофизическая лаборатория, в которой помещены приборы для регистрации и визуализации сигналов на экране компьютера, а также хроматограф для анализа проб жидкости и газа, откачиваемых из скважины, при этом на одном из трех (5-7) выходов устанавливается пробоотборник (не показан). Околоскважинное оборудование нагнетательной скважины включает МБЛ и компрессор, необходимый для прокачки воздуха по скважине и ГД каналу. Околоскважинное оборудование добывающей скважины - МБЛ, необходимая для контроля режима работы эрлифта. Внутрискважинное оборудование добывающей скважины отличается от такового нагнетательной скважины лишь отсутствием пакера.
Система функционирует следующим образом.
1. Контролирует операции приготовления и закачки в нагнетательную скважину водных растворов селитры и инициатора реакции (ИР) ее разложения с целью проведения реакции в скважине и ГД-канале.
2. Контролирует процесс реакции разложения селитры напротив продуктивного пласта и нагрев породы («коллектора») с нефтью до температуры, достаточной для окисления нефти в пласте воздухом (в среднем, до Т=200-250°C). При этом, по мере необходимости, через вход 7 подают воду под давлением с целью предотвратить смещение пакера при повышении давления в зоне реакции.
3. Определяет момент прекращения закачки жидких реагентов в нагнетательную скважину и начала закачки воздуха в ГД канал с целью формирования и повышения мощности эрлифта за счет тепла, выделившегося при окислении кислородом из воздуха нефти в пласте.
4. Контролирует режим работы эрлифта по динамике роста концентрации углекислого газа и по скорости откачки пластового флюида из добывающей скважины.
5. Контролирует температуру на выходе из ГД канала в добывающей скважине с целью ее понижения путем закачки воды в случае нагрева до температур (450-500°C), характерных для фронта устойчивого внутрипластового горения, что необходимо для предотвращения неконтролируемого выгорания нефти.
Система отличается от устройства-прототипа, в котором увеличение мощности эрлифта происходит за счет подключения внешнего источника энергии, не меняющего состав откачиваемой жидкости, тем, что предлагаемая система повышения эффективности эрлифта меняет состав откачиваемой жидкости путем насыщения ее газом, что существенно облегчает выход пластового флюида из пласта в скважину и движение его по стволу скважины на поверхность.
Участки надежной ГД-связи между пластом и скважиной геофизики определяют стандартным методом по понижению температуры в зоне выхода из пласта жидкости и газа (эффект Джоуля - Томпсона). Наличие ГД-связи по продуктивному пласту между двумя скважинами - это наличие измеряемого указанным методом (с некоторой задержкой) отклика изменения скорости потока (массопереноса), выходящего из пласта в одной скважине, на изменение давления в другой скважине.
На фигуре схематически представлена схема компоновки внутрискважинного (подземного) и устьевого оборудования нагнетательной скважины, в которой: 1 - продуктивный пласт, 2 - обсадная труба, 3 - внешняя насосно-компрессорная труба НКТ, 4 - внутренняя насосно-компрессорная труба; 5 - вход во внутреннюю НКТ; 6 - вход в кольцевой зазор между внутренней и внешней НКТ; 7 - вход в кольцевой зазор между внешней НКТ и обсадной трубой; 8 - пакер; 9 - кабель от датчиков температуры и давления к приборам мобильной геофизической лаборатории МГЛ; 10 - датчик температуры и давления около пакера; 11 - датчик температуры в зоне реакции; 12 - геофизическая лаборатория, в которой помещены приборы, в том числе, хроматограф для анализа проб жидкости и газа, откачиваемых из скважины. На входах 5 или 6 устанавливают пробоотборник (не показан). Сигналы от датчиков давления и температуры по кабелю 9, проложенному по НКТ 4, в МГЛ фиксируются на экране компьютера.
Система функционирует следующим образом.
На месторождении выбирают по крайней мере две скважины: нагнетательную и добывающую с гидродинамической связью. В нагнетательной скважине на первой стадии в обрабатываемую зону пласта 1 через вход 5 в НКТ по каналу закачивают раствор селитры, а через вход 6 закачивают инициатор ее разложения, при этом продукты экзотермической реакции прогревают ГД-канал. На второй стадии через вход 5 или 6, прекратив реакцию в нагнетательной скважине, прокачивают воздух по ГД-каналу. В добывающей скважине на любом из входов 5-7 регистрируют появление углекислого газа и газированного пластового флюида в режиме эрлифта и фонтанирования. В добывающей скважине, мощность эрлифта увеличивается за счет энергии, выделившейся в реакции окисления кислородом воздуха части пластовой нефти.
На всех стадиях контролируют давление и температуру датчиками 10 и 11, а в добывающей скважине также состав выходящих газов.
В целях безопасности работ контролируют процесс реакции разложения селитры напротив продуктивного пласта, приводящий к нагреву породы («коллектора») с нефтью до температуры, достаточной для последующего окисления нефти в пласте воздухом (в среднем до Т=200-250°C). При этом, по мере необходимости, через вход 7 в большой затруб закачивают воду под давлением с целью понижения температуры ниже предвзрывной, для применяемых реагентов.
В добывающей скважине контролирует по появлению углекислого газа процесс окисления кислородом воздуха части нефти в пласте, а также - расширение канала ГД-связи и повышение мощности эрлифта, который откачивает жидкость из добывающей скважины. Анализ газов осуществляется в МГЛ12.
В добывающей скважине контролируют также повышение температуры до характерной для фронта пластового горения (450-500°C) и ее понижение при закачке воды в зону реакции (до Т<400°C) с целью предотвращения бесполезного (не контролируемого) выгорания нефти.
Таким образом, заявляемая система позволяет усилить гидродинамические связи с добывающей скважиной (или скважинами), что оптимизирует процесс реакции в нагнетательной скважине, создавая условия для повышения мощности эрлифта в добывающей скважине в сочетании с обеспечением безопасности работ.
Claims (1)
- Система для откачки пластового флюида, содержащая не менее двух скважин, каждая из которых оборудована двумя насосно-компрессорными трубами - НКТ, соединенных каналами гидродинамической связи, при этом нагнетательная скважина предназначена для закачивания по одному ее каналу раствора селитры, а по другому ее каналу - инициатора разложения селитры с возможностью прогрева продуктами экзотермической реакции каналов гидродинамической связи и окисления нефти в пласте, добывающая скважина предназначена для контроля окисления нефти в пласте по выходу углекислого газа, кроме того, нагнетательная скважина обеспечена возможностью прекращения экзотермической реакции и прокачки воздуха по каналам гидродинамической связи с обеспечением эрлифта и фонтанирования пластового флюида в добывающей скважине и возможности контроля гидродинамической связи между скважинами, температуры, мощности эрлифта и безопасности работ, для чего в нагнетательной скважине на внешней НКТ установлен пакер, а по внутренней НКТ проложен кабель, соединяющий датчики давления и температуры, установленные около пакера и ниже него, а в добывающей скважине установлены упомянутые датчики на выходе из НКТ и обеспечена возможность контроля состава выходящих газов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014134276/03A RU2570865C1 (ru) | 2014-08-21 | 2014-08-21 | Система для повышения эффективности эрлифта при откачке из недр пластового флюида |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014134276/03A RU2570865C1 (ru) | 2014-08-21 | 2014-08-21 | Система для повышения эффективности эрлифта при откачке из недр пластового флюида |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2570865C1 true RU2570865C1 (ru) | 2015-12-10 |
Family
ID=54846762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014134276/03A RU2570865C1 (ru) | 2014-08-21 | 2014-08-21 | Система для повышения эффективности эрлифта при откачке из недр пластового флюида |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2570865C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626191A (en) * | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
RU2360105C2 (ru) * | 2004-06-07 | 2009-06-27 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородных продуктов из подземного месторождения (варианты) |
RU2406819C2 (ru) * | 2006-02-27 | 2010-12-20 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородов из подземного пласта (варианты) |
RU2415260C2 (ru) * | 2006-02-27 | 2011-03-27 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородов из подземного пласта (варианты) |
WO2012095473A2 (en) * | 2011-01-13 | 2012-07-19 | Statoil Canada Limited | Process for the recovery of heavy oil and bitumen using in-situ combustion |
-
2014
- 2014-08-21 RU RU2014134276/03A patent/RU2570865C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626191A (en) * | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
RU2360105C2 (ru) * | 2004-06-07 | 2009-06-27 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородных продуктов из подземного месторождения (варианты) |
RU2406819C2 (ru) * | 2006-02-27 | 2010-12-20 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородов из подземного пласта (варианты) |
RU2415260C2 (ru) * | 2006-02-27 | 2011-03-27 | Арчон Текнолоджиз Лтд. | Способ извлечения жидких углеводородов из подземного пласта (варианты) |
WO2012095473A2 (en) * | 2011-01-13 | 2012-07-19 | Statoil Canada Limited | Process for the recovery of heavy oil and bitumen using in-situ combustion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2287095C1 (ru) | Скважинная струйная установка эмпи-угис-(31-40)г и способ ее работы | |
RU2578078C2 (ru) | Программно-управляемая нагнетательная скважина | |
CN103821470B (zh) | 油井注热氮气洗井工艺方法 | |
RU2303172C1 (ru) | Скважинная струйная установка эмпи-угис-(21-30)к и способ ее работы | |
RU2017124154A (ru) | Способ одновременного введения двух или более химических веществ и/или воды в подземный пласт углеводородов и/или контроля скорости химических реакций данных веществ и устройство для осуществления данного способа | |
CA2692663C (en) | Well jet device | |
US3107728A (en) | Down-hole heater | |
RU2345214C2 (ru) | Способ освоения, интенсификации нефтегазовых притоков, проведения водоизоляционных работ и устройство для его осуществления | |
RU2570865C1 (ru) | Система для повышения эффективности эрлифта при откачке из недр пластового флюида | |
RU2473821C1 (ru) | Скважинная струйная установка для гидроразрыва пластов и освоения скважин | |
RU131075U1 (ru) | Установка для одновременно раздельной добычи и закачки в одной скважине | |
RU2190779C1 (ru) | Скважинная струйная установка для испытания и освоения скважин и способ работы скважинной струйной установки | |
RU2239729C1 (ru) | Скважинная струйная установка и способ ее работы при каротаже горизонтальных скважин | |
US7806174B2 (en) | Well jet device | |
RU2014119600A (ru) | Способ добычи флюида из двух пластов одной скважины и насосно-эжекторная установка для его осуществления | |
RU2329409C1 (ru) | Скважинная струйная установка для гидроразрыва пласта и исследования скважин | |
RU135709U1 (ru) | Погружная насосная установка | |
RU2565613C1 (ru) | Способ разработки нефтяной залежи горизонтальной и вертикальной скважинами с использованием внутрипластового горения | |
RU2179631C1 (ru) | Способ освоения, исследования скважин, интенсификации нефтегазовых притоков, осуществления водоизоляционных работ и устройство для его осуществления | |
RU2581071C1 (ru) | Способ разработки залежи углеводородных флюидов | |
RU2618170C1 (ru) | Способ работы скважинного струйного аппарата | |
RU2743119C1 (ru) | Регулируемая газлифтная установка | |
RU2014119062A (ru) | Способ добычи однопластового скважинного флюида и насосно-эжекторная установка для его осуществления | |
RU2650158C1 (ru) | Устройство для освоения, обработки и исследования скважин | |
RU2485299C1 (ru) | Способ обработки призабойной зоны пласта и скважинная установка для его осуществления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170822 |