RU2570596C1 - Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий - Google Patents

Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий Download PDF

Info

Publication number
RU2570596C1
RU2570596C1 RU2014136312/28A RU2014136312A RU2570596C1 RU 2570596 C1 RU2570596 C1 RU 2570596C1 RU 2014136312/28 A RU2014136312/28 A RU 2014136312/28A RU 2014136312 A RU2014136312 A RU 2014136312A RU 2570596 C1 RU2570596 C1 RU 2570596C1
Authority
RU
Russia
Prior art keywords
studied
heat
line
points
pulse
Prior art date
Application number
RU2014136312/28A
Other languages
English (en)
Inventor
Мария Валерьевна Жарикова
Алексей Владимирович Чернышов
Владимир Николаевич Чернышов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ
Priority to RU2014136312/28A priority Critical patent/RU2570596C1/ru
Application granted granted Critical
Publication of RU2570596C1 publication Critical patent/RU2570596C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу осуществляют нагрев исследуемого объекта воздействием импульса СВЧ-излучения, измерение в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях Х1 и Х2 от плоскости электромагнитного воздействия. Определяют зависимость затухания мощности теплового воздействия от глубины исследуемого тела. Затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающим на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 избыточной температуры. Измеряют угол α между аппроксимирующей прямой и поверхностью исследуемого тела. Устанавливают рупорную антенну СВЧ-излучения под углом α к поверхности исследуемого тела и осуществляют импульсное тепловое воздействие. Имея информацию о мощности теплового воздействия на исследуемое изделие и измеренных избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат - повышение точности получаемых данных. 5 ил., 3 табл.

Description

Предлагаемое изобретение относится к теплофизическим измерениям и может быть использовано при определении таких теплофизических характеристик строительных материалов и изделий, как коэффициенты тепло- и температуропроводности.
Известен способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов [см., например, патент РФ №2263901, кл. G01N 25/18, 2004 г.], состоящий в нагреве исследуемого образца в виде призмы прямоугольного сечения путем подвода тепла к ее поверхности, измерении температуры и плотности теплового потока на этой же поверхности, определении искомых теплофизических характеристик по соответствующим зависимостям.
Недостатками данного способа являются ограниченность функциональных возможностей, обусловленная необходимостью изготовления из строительных материалов и изделий образцов в виде призмы квадратного сечения (параллелепипеда), это возможно только при нарушении целостности и эксплуатационных характеристик исследуемых изделий, малая точность измерения теплопроводности из-за влияния собственной теплоемкости нагревателя и неучтенных тепловых потерь с поверхности исследуемого изделия в окружающую среду, значительное время проведения теплофизического эксперимента, обусловленное необходимостью вывода тепловой системы в квазистационарный (упорядоченный) режим.
Известен способ определения теплофизических характеристик строительных материалов [см., например, патент РФ №2399911, G01N 25/18, 2010 г.], состоящий в нагреве исследуемого образца в виде призмы квадратного сечения (параллелепипеда) через неизолированную торцевую грань воздействием высокочастотного электромагнитного поля (СВЧ-излучением) от переменно-фазовой многощелевой антенны, при этом одну из торцевых и все боковые грани исследуемого образца теплоизолируют от окружающей среды, постепенно увеличивают мощность электромагнитного СВЧ-излучения и контролируют изменение температуры на свободной от теплоизоляции грани и противоположной относительно нее торцевой грани исследуемого образца, определяют значение мощности СВЧ-излучения, при котором прекращается изменение температуры в контролируемых точках, измеряют установившиеся значения температур в контролируемых точках образца, а также температуру окружающей среды и мощность отраженного от поверхности грани СВЧ-излучения и по измеренным данным на основе полученных математических соотношений определяют искомые теплофизические характеристики. Во втором варианте данного способа осуществляют симметричный нагрев образца в виде призмы через торцевые противоположные грани с теплоизолированными боковыми гранями призмы воздействием СВЧ-излучения от двух переменно-фазовых многощелевых антенн, постепенно увеличивают мощность электромагнитного СВЧ-излучения, контролируют изменение температуры на свободных от теплоизоляции гранях и в среднем сечении исследуемого образца в виде призмы и определяют значение мощности СВЧ-излучения, при котором прекращается изменение температуры в контролируемых точках, измеряют установившиеся значения температур в контролируемых точках образца, а также температуру окружающей среды и мощность отраженного от поверхностей граней СВЧ-излучения и по измеренным данным на основе полученных математических соотношений определяют искомые теплофизические характеристики.
Недостатками данного способа также являются необходимость в разрушении исследуемых изделий с целью изготовления образцов в виде призмы квадратного сечения (параллелепипеда) для контроля искомых теплофизических характеристик, большое время теплофизических экспериментов, обусловленное необходимостью вывода исследуемой системы в квазистационарный упорядоченный режим, а также низкая точность измерения теплофизических характеристик из-за влияния на результаты неучтенных тепловых потерь с поверхности исследуемых образцов в окружающую среду, величина которых пропорциональна времени эксперимента.
За прототип взят способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий [пат. 2399911 РФ, МПК G01N 25/18], состоящий в воздействии на исследуемый объект импульсом высокочастотного электромагнитного поля (СВЧ-излучения) по линии, нагреве исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной внешней поверхности тела и уходящей внутрь этого тела. Для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ генератора фокусируют линзой из диэлектрического материала в линию заданных параметров. Величина длины линии микроволнового воздействия задается на порядок больше, чем расстояния от этой линии до точек контроля температур, чтобы концевые эффекты, обусловленные ограниченностью длины линии теплового воздействия, не влияли на контролируемое температурное поле, а величина ширины линии определяется минимально возможной разрешающей способностью фокусировки СВЧ-излучения в линию, которая зависит от длины волны излучения, расстояния от линзы до поверхности исследуемого изделия и ряда других параметров.
Основным недостатком способа-прототипа является то, что в нем не учитывается затухание выделяемого тепла по глубине, что порождает двумерность распространения тепла в исследуемом объекте, т.е. тепловой поток q распространяется как вдоль оси z (qz), так и вдоль оси x (qx) (Фиг. 1). А это является источником дополнительной методической погрешности в результатах измерения.
Техническая задача предлагаемого изобретения - повышение точности определения искомых ТФХ строительных материалов и изделий.
Поставленная техническая задача достигается тем, что в способе неразрушающего контроля теплофизических характеристик строительных материалов и изделий, состоящем в нагреве исследуемого объекта воздействием импульса СВЧ-излучения, сфокусированного в линию заданных размеров линзой из радиопрозрачного диэлектрического материала, измерении в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях x1 и х2 от плоскости электромагнитного воздействия, причем длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний х1 и х2 до точек контроля температуры, определяют зависимость затухания мощности теплового воздействия от глубины исследуемого тела, затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающему на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 избыточной температуры, измеряют угол α между аппроксимирующей прямой и поверхностью исследуемого тела, устанавливают рупорную антенну СВЧ-излучения под углом α к поверхности исследуемого тела и осуществляют импульсное тепловое воздействие. Имея информацию о мощности теплового воздействия на исследуемое изделие и измеренных избыточных температурах в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений.
Сущность предлагаемого способа заключается в следующем.
Электромагнитная волна, попадающая в диэлектрик с потерями, которыми являются традиционные строительные материалы (кирпич, бетон и т.д.), ослабляется в направлении распространения. Поэтому для определения мощности теплового воздействия, участвующего в формировании контролируемого температурного поля, рассчитывают глубину проникновения поля плоской волны в материал с потерями, используя выражение для удельной мощности рассеивания в диэлектрике, приведенной в работе [Пюшнер, Г. Нагрев энергией сверхвысоких частот / Г. Пюшнер. - М.: Энергия, 1968. - 312 с. ]:
Figure 00000001
где Ε - напряженность переменного электрического поля; f - частота излучения; ε - диэлектрическая проницаемость исследуемого материала.
Мощность теплового воздействия по плоскости 0Ζ (см. Фиг. 1) будет убывать по мере углубления по зависимости (1). Зависимость затухания мощности тепловыделения показана в виде кривой q(z)=fпотерь. При этом изотермы Τ(z,τ)…T(zii) также будут иметь нелинейный вид относительно зависимости z1, как показано на фиг. 1, что обуславливает появление температурных градиентов ΔТ1, ΔT2 … ΔTi, например, между точками на глубине z1, z2, …, zi, а это порождает появление тепловых потоков qz1, qz2, …, qzi. Таким образом, в любой точке исследуемого тела, в том числе и точках контроля x1 и х2, температурное поле формируется под воздействием потоков тепла по оси x и по оси z, т.е. qxi и qzi. В прототипе используется математическое соотношение для описания температурного поля в исследуемом теле [Лыков А.В. Теория теплопроводности. - М.: Высшая школа, 1967. - 462 с.] в виде:
Figure 00000002
где x - координата, τ - время, а - температуропроводность, b=Q/cj - тепловая активность исследуемого тела, Q - удельная мощность, выделяемая на единицу площади плоскости, cj - теплоемкость исследуемого тела.
Данное соотношение получено при условии равномерности плотности теплового потока по всей плоскости воздействия, поэтому неучет в прототипе двумерности теплового потока реальных тепловых процессов порождает большую методическую погрешность, что приводит к неточности получаемых результатов. Для устранения этой методической погрешности тепловое воздействие на исследуемое тело, сфокусированное в линию, осуществляют под углом α к плоскости поверхности полуограниченного в тепловом отношении тела (Фиг. 2), значение которого получают следующим образом.
На исследуемый объект воздействуют импульсом СВЧ перпендикулярно плоскости поверхности. Расчетным путем определяют кривую затухания СВЧ-импульса в материале (по глубине). Затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающему на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 (Фиг. 3). Данный выбор участка аппроксимации обусловлен следующим. При аппроксимации всей кривой затухания погрешность конечных результатов будет очень большая, порядка 10-15% (см. Фиг. 3). При аппроксимации участка меньше расстояния до z3 погрешность уменьшается до 1-2%. Однако в этом случае сложно определить, какая часть энергии СВЧ-генератора участвует в формировании температурного поля в точках контроля x1 и х2. На формирование температуры в контролируемых точках поверхности изделия x1 и х2, находящихся на расстоянии не более 2-3 мм от плоскости теплового воздействия, оказывает влияние только часть энергии СВЧ-генератора, выделяемая в плоскости на глубине z3=10х2. В этом случае погрешность аппроксимации не более 5% (см. Фиг. 3). Для этого случая определяют угол между аппроксимирующей прямой и плоскостью поверхности исследуемого образца, т.е. угол α (см. Фиг. 3). Затем разворачивают рупорную антенну так, чтобы угол между подаваемым импульсом СВЧ и поверхностью образца равнялся углу α и осуществляют тепловое воздействие импульсами СВЧ-излучения (см. Фиг. 2). После осуществляют контроль избыточных температур в двух точках контроля x1 и х2. Теплофизические характеристики определяют по формулам, полученным из соотношения (1) для температур, измеренных в точках x1 и х2 в момент времени τ*:
Figure 00000003
Figure 00000004
где x1, x2 - координаты, τ* - время, Т(х1, τ*), Т(х2, τ*) - температурное поле в точках x1 и х2, λ - теплопроводность, Q2 - часть энергии, не участвующая в формировании контролируемых на поверхности изделия избыточных температур Τ(x1, τ*) и Т(х2, τ*) (см. Фиг. 4)
Устройство, реализующее предлагаемый способ, представлено на Фиг. 5.
Для проведения микроволнового воздействия на исследуемый образец электромагнитные излучения рупорной антенны 1 СВЧ-генератора 2 фокусируют линзой 3 из радиопрозрачного диэлектрического материала в линию заданной длины 4. При этом выставляют рупорную антенну 1 под углом α к поверхности исследуемого материала. Нагрев исследуемого объекта 5 осуществляется импульсным воздействием высокочастотного электромагнитного поля (СВЧ-излучением) длительностью 5-10 секунд от излучающей антенны 1, соединенной волноводом с СВЧ-генератором 2. После СВЧ-воздействия осуществляют контроль избыточных температур на теплоизолированной от окружающей среды поверхности исследуемого объекта в двух точках, находящихся соответственно на расстояниях х1 и х2 от линии электромагнитного воздействия, термопарами 6, которые через коммутатор 7, нормирующий прецизионный усилитель 8 и АЦП 9, подключают к микропроцессору 10. В эксперименте расстояния х1 и х2 берутся обычно равными 2 и 3 мм соответственно. Микропроцессор 10 соединен с СВЧ-генератором 2 через цифроаналоговый преобразователь (ЦАП) 11 и порт ввода-вывода 12. Данные эксперимента выводятся на индикатор 13. Используя полученную в ходе теплофизического эксперимента измерительную информацию, в микропроцессоре 10 определяют искомые теплофизические характеристики по алгоритмам, построенным на основании аналитических соотношений (3), (4), описывающих тепловые процессы в исследуемом полуограниченном в тепловом отношении объекте.
В таблицах 1-3 приведены данные экспериментов соответственно для керамзитного бетона, силикатного и красного кирпича.
Figure 00000005
Основным преимуществом заявленного технического решения по сравнению с прототипом является повышение точности в среднем на 2-3% за счет уменьшения методической погрешности, обуславливаемой затуханием выделяемого тепла по глубине исследуемого объекта после воздействия импульса СВЧ-излучения, порождающего двумерность распространения тепла в исследуемом объекте.
Таким образом, разработанный способ определения теплофизических характеристик строительных материалов имеет существенное преимущество в точности определения теплофизических характеристик перед известными способами указанного назначения, что, несомненно, позволит использовать его в практике теплофизических измерений, в строительной теплотехнике и различных отраслях промышленности.

Claims (1)

  1. Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий, состоящий в нагреве исследуемого объекта воздействием импульса СВЧ-излучения, сфокусированного в линию заданных размеров линзой из радиопрозрачного диэлектрического материала, измерении в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях x1 и x2 от плоскости электромагнитного воздействия, причем длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие и измеренных избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений, отличающийся тем, что определяют зависимость затухания мощности теплового воздействия от глубины исследуемого тела, затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающему на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 избыточной температуры, измеряют угол α между аппроксимирующей прямой и поверхностью исследуемого тела, устанавливают рупорную антенну СВЧ-излучения под углом α к поверхности исследуемого тела и осуществляют импульсное тепловое воздействие.
RU2014136312/28A 2014-09-05 2014-09-05 Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий RU2570596C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014136312/28A RU2570596C1 (ru) 2014-09-05 2014-09-05 Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014136312/28A RU2570596C1 (ru) 2014-09-05 2014-09-05 Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Publications (1)

Publication Number Publication Date
RU2570596C1 true RU2570596C1 (ru) 2015-12-10

Family

ID=54846657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014136312/28A RU2570596C1 (ru) 2014-09-05 2014-09-05 Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Country Status (1)

Country Link
RU (1) RU2570596C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795064A (en) * 1995-09-29 1998-08-18 Mathis Instruments Ltd. Method for determining thermal properties of a sample
RU2166188C1 (ru) * 2000-01-05 2001-04-27 Тамбовский государственный технический университет Бесконтактный адаптивный способ неразрушающего контроля теплофизических характеристик материалов
RU2263901C1 (ru) * 2004-05-25 2005-11-10 Тамбовский государственный технический университет (ТГТУ) Способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов
RU2399911C2 (ru) * 2008-11-20 2010-09-20 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ГОУ ВПО "ТГТУ") Способ определения теплофизических характеристик строительных материалов (варианты)
RU2497105C1 (ru) * 2012-04-23 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО "ТГТУ") Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795064A (en) * 1995-09-29 1998-08-18 Mathis Instruments Ltd. Method for determining thermal properties of a sample
RU2166188C1 (ru) * 2000-01-05 2001-04-27 Тамбовский государственный технический университет Бесконтактный адаптивный способ неразрушающего контроля теплофизических характеристик материалов
RU2263901C1 (ru) * 2004-05-25 2005-11-10 Тамбовский государственный технический университет (ТГТУ) Способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов
RU2399911C2 (ru) * 2008-11-20 2010-09-20 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ГОУ ВПО "ТГТУ") Способ определения теплофизических характеристик строительных материалов (варианты)
RU2497105C1 (ru) * 2012-04-23 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО "ТГТУ") Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧЕРНЫШОВ В.Н., ОДНОЛЬКО В.Г., ЧЕРНЫШОВ А.В., " МЕТОДЫ И СИСТЕМЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ И ИЗДЕЛИЙ", МОСКВА: ИЗ-ВО "СПЕКТР". 2012 г., с.137-150. *

Similar Documents

Publication Publication Date Title
Fry et al. Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes—Theory
Gultekin et al. Absorption of 5G radiation in brain tissue as a function of frequency, power and time
RU2701775C1 (ru) Способ определения кинетических теплофизических свойств твердых материалов
Vitiello et al. Thermal conductivity of insulating refractory materials: Comparison of steady-state and transient measurement methods
RU2497105C1 (ru) Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий
Rattanadecho et al. Interactions between electromagnetic and thermal fields in microwave heating of hardened type I-cement paste using a rectangular waveguide (influence of frequency and sample size)
RU2399911C2 (ru) Способ определения теплофизических характеристик строительных материалов (варианты)
RU2570596C1 (ru) Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий
Li et al. Modulated photothermal deformation in solids
Ryabushkin et al. Experimental determination and the theoretical model of an equivalent temperature of nonlinear optical crystals interacting with high-power laser radiation
RU2698947C1 (ru) Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий
RU2343465C1 (ru) Способ бесконтактного неразрушающего контроля теплофизических свойств материалов
RU2568983C1 (ru) Способ определения коэффициента теплопроводности жидкой тепловой изоляции в лабораторных условиях
RU2534429C1 (ru) Способ измерения теплофизических свойств твердых материалов методом плоского мгновенного источника тепла
Yang et al. Combination of terahertz radiation method and thermal probe method for non-destructive thermal diagnosis of thick building walls
RU2251098C1 (ru) Способ бесконтактного неразрушающего контроля теплофизических свойств материалов
Hashimoto et al. Temperature wave analysis
Kosugi et al. Application of laser ultrasound to noncontact temperature profiling of a heated hollow cylinder
RU2574229C1 (ru) Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий
McRee Determination of energy absorption of microwave radiation using the cooling curve technique
RU2263901C1 (ru) Способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов
Silva et al. Thermal properties estimation of polymers using only one active surface
RU2287807C1 (ru) Способ определения теплофизических свойств многослойных строительных конструкций и изделий
RU2744606C1 (ru) Микроволновый способ определения теплофизических характеристик многослойных конструкций и изделий
Lima et al. Thermal effusivity estimation of polymers in time domain

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160906