RU2567747C1 - Трехфазное симметрирующее устройство и способ управления им - Google Patents
Трехфазное симметрирующее устройство и способ управления им Download PDFInfo
- Publication number
- RU2567747C1 RU2567747C1 RU2014120796/07A RU2014120796A RU2567747C1 RU 2567747 C1 RU2567747 C1 RU 2567747C1 RU 2014120796/07 A RU2014120796/07 A RU 2014120796/07A RU 2014120796 A RU2014120796 A RU 2014120796A RU 2567747 C1 RU2567747 C1 RU 2567747C1
- Authority
- RU
- Russia
- Prior art keywords
- phase
- currents
- rectifiers
- current
- block
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Изобретение относится к области электротехники и может быть использовано для устранения несимметрии токов и напряжений в трехфазных сетях. Технический результат - повышение быстродействия и энергетических показателей, улучшение электромагнитной совместимости. Трехфазное симметрирующее устройство содержит блок силовых вентилей, дроссель с зазором, LC-фильтр высоких частот, блок управления вентилями, включающий в себя блок анализа сети и блок управления переключением вентилей. Согласно способу сигналы с блока анализа сети подаются на блок управления переключениями вентилей, который выделяет составляющие обратной последовательности и делает квантованные по уровню синусоидальные сигналы полностью соответствующими по фазе синусоидам токов обратной последовательности и необходимые для дальнейшей их компенсации. После этого выявляется и включается фаза с максимальным током обратной последовательности, одновременно с этим производится постоянное переключение работы двух оставшихся фаз, пропорциональное токам этих фаз с высокой частотой, и осуществляется соответствующее включение вентилей, чтобы ток через вентили и дроссель с зазором протекал в одном направлении. 2 н.п. ф-лы, 9 ил., 1 табл.
Description
Изобретение относится к электротехнике и может быть использовано для устранения несимметрии токов, а следовательно, и напряжений в трехфазных сетях.
Известно устройство для стабилизации симметрии напряжений трехфазного источника переменного тока [патент РФ №21119, H02J 3/26, от 24.07.2001], которое устраняет несимметрию за счет создания несимметричной системы токов, компенсирующих влияние несимметричной системы токов, созданных нагрузкой. Устройство содержит три исполнительных реактивных элемента подгрузочного типа, три усилительных устройства, элементы сравнения и три фазочувствительных выпрямителя.
Однако в данном устройстве в качестве исполнительных элементов используются реактивные элементы подгрузочного типа, что на сегодняшний день является нерациональным решением и дополнительно нагружает сеть.
Известен способ автоматического симметрирования токов многофазной системы по заданной фазе [патент РФ №2393610, H02J 3/26, от 29.12.2008], при реализации которого осуществляется симметрирование многофазной системы относительно заданной фазы. Способ-аналог обладает недостатками, заключающимися в необходимости n-фазного источника мощности, который должен выбрать опорную фазу, что усложняет схему управления, так как в каждой фазе должен быть модуль, который активируется в зависимости от того, какая из фаз выбирается в качестве опорной. При этом n-фазный источник мощности включает ШИМ-выпрямитель и ШИМ-инвертор и содержит промежуточное звено постоянного тока, что усложняет и удорожает конструкцию.
Наиболее близким к заявляемому изобретению по технической сущности и достигаемому результату является устройство для подключения однофазных нагрузок к электрической сети [авторское свидетельство СССР №1125701, H02J 3/26 от 1984.11.23], которое симметрирует повторно-кратковременные, ударные и резкопеременные нагрузки, компенсирует реактивную мощность в сети, а также преобразует число и порядок следования фаз, регулирования и стабилизации частоты тока и переменного напряжения различных потребителей электрической энергии. Устройство содержит преобразователь переменного тока, выполненный на двух тиристорных мостах, два коммутирующих дросселя и конденсатора, три вентильных пары, а также блок управления вентилями, куда входит блок анализа трехфазной сети и блок управления переключением вентилей.
Однако в данном устройстве преобразователь переменного тока выполнен на двух силовых тиристорных мостах, что усложняет и удорожает устройство. Также однофазная нагрузка, подключенная к данному устройству, переключается с одного линейного напряжения на другое линейное напряжение, и кривая напряжения формируется с помощью трех напряжений питающей сети. Но в каждый данный момент в сети имеется однофазная нагрузка, которая подключена к отдельному линейному напряжению.
Наиболее близким к заявляемому способу по технической сущности и достигаемому результату является способ автоматического симметрирования напряжений и компенсации реактивной мощности в электроэнергетической трехфазной системе [авторское свидетельство СССР №1651340, H02J 3/26 от 1988.08.04], при реализации которого формируются токи прямой и обратной последовательности симметрирующего устройства и вырабатываются управляющие воздействия на реактивные сопротивления.
Известный способ-прототип обладает недостатками, заключающимися в том, что при его реализации необходимо три управляемых реактивных элемента, включающих в себя как индуктивность, так и емкость, что делает схему громоздкой и удорожает конструкцию.
Задачей изобретения является постоянное подключение нагрузки к одному из напряжений питающей сети, уменьшение числа силовых реактивных элементов, причем силовые коммутирующие трансформаторы отсутствуют.
Технический результат - повышение быстродействия и энергетических показателей, улучшение электромагнитной совместимости.
Поставленная задача решается, а технический результат достигается тем, что в трехфазном симметрирующем устройстве, содержащем соединенный с трехфазной сетью блок анализа трехфазной сети, связанный с блоком управления переключением вентилей, связанный с преобразователем переменного тока и дросселем с зазором, согласно изобретению преобразователь переменного тока выполнен в виде трехфазного моста с вентилями, имеющими одностороннюю проводимость, к выходу постоянного тока которого подключен дроссель с зазором, а вход которого через LC-фильтр высоких частот подключен к трехфазной сети.
Поставленная задача решается, а технический результат достигается также способом управления трехфазным симметрирующим устройством путем формирования токов прямой и обратной последовательности симметрирующего устройства и выработки управляющих воздействий на реактивный элемент, отличающимся тем, что синхронизирующие сигналы с блока анализа трехфазной сети подают в блок управления переключением вентилей и делают квантованные по уровню синусоидальные сигналы по форме полностью соответствующими синусоидам токов обратной последовательности, которые необходимы для дальнейшей их компенсации, для чего выявляют и включают фазу с максимальным мгновенным значением тока обратной последовательности, одновременно с этим производят постоянное переключение двух оставшихся фаз с высокой частотой, причем время работы пропорционально мгновенным значениям токов обратной последовательности этих фаз, и осуществляют соответствующее включение вентилей, чтобы ток через вентили и дроссель с зазором протекал в одном направлении.
Существо изобретения поясняется чертежами: на фиг. 1 представлена принципиальная электрическая схема устройства; на фиг. 2 представлена блок-схема, отражающая принципиальную конструкцию устройства; на фиг. 3 представлена функциональная схема блока управления переключением вентилей (11); на фиг. 4 представлены осциллограммы с блока-осциллографа 21 за 0,02 с, показывающие формы сигналов, получаемые с блоков 14-16 (а - 14, б - 15, в - 16); на фиг. 5 представлены осциллограммы с блока-осциллографа 28 за 0,02 с, показывающие формы сигналов, получаемые с блоков 17-20 (а - 17, б - 18, в - 19, г - 20); на фиг. 6 представлены осциллограммы с блока-осциллографа 28 за 5×10-3 с, показывающие формы сигналов, получаемые с блоков 17-20 (а - 17, б - 18, в - 19, г - 20); на фиг. 7 представлены осциллограммы с блока-осциллографа 74 за 0,02 с, показывающие форму выходных сигналов для блоков 62-67 (а - 62, б - 63, в - 64, г - 65, д - 66, е - 67) (эти сигналы поступают на выход блока 11 через блоки 68-73); на фиг. 8 представлены осциллограммы с блока-осциллографа 74 за 5×10-3 с, показывающие формы выходных сигналов для блоков 62-67 (а - 62, б - 63, в - 64, г - 65, д - 66, е - 67) (эти сигналы поступают на выход блока 11 через блоки 68-73); на фиг. 9 представлены осциллограммы с блока-осциллографа, подключенного между блоками 12 и 7 за 0,04 с, показывающие форму токов в сети после симметрирующего устройства.
На фиг. 1 буквами А, В, С обозначена трехфазная сеть промышленной частоты; цифрами 1-6 обозначены вентили, имеющие одностороннюю проводимость, как показано стрелками; буквой Z с индексами а, b, с обозначена несимметричная нагрузка, буквой L обозначен дроссель с зазором. Трехфазный мост служит для распределения потоков мощности между сетью и накопителем энергии - дросселем с зазором. При несимметрии мгновенная мощность трехфазной системы содержит переменную составляющую, значение которой определяется током обратной последовательности. Управляя потоком энергии между дросселем с зазором и сетью, можно обеспечить равенство нулю тока обратной последовательности и таким образом исключить переменную составляющую мгновенной мощности трехфазной сети.
Фиг. 2 отображает общую схему симметрирующего устройства, где 7 - трехфазная сеть, 8 - блок силовых вентилей, 9 - дроссель с зазором, 10 - блок анализа трехфазной сети, предназначенный для определения моментов переключения вентилей, 11 - блок управления переключением вентилей; 12 - LC-фильтр высоких частот. Блоки 10 и 11 могут быть объединены в один блок управления вентилями 13, при реализации этих функций на микроконтроллере. Блок силовых вентилей 8 входом подключен через LC-фильтр высоких частот 12 к трехфазной сети 7, к выходу блока 8 (сторона постоянного тока) подключен дроссель с зазором 9. Блок 10 проводит анализ трехфазной сети, т.е. блока 7, после чего данные с блока 10 поступают в блок 11, который выделяет составляющие обратной последовательности и осуществляет управление блоком 8.
На фиг. 3 представлена функциональная блок-схема управления переключением вентилей, где 14-16 - входные блоки, подающие сигналы управления на блоки 17-19 с блока анализа сети 10; блоки 17-19 - источники квантованных по уровню синусоидальных сигналов, полностью соответствующие по фазе синусоидам токов обратной последовательности, блок 20 - источник пилообразного сигнала, причем период пилообразного сигнала равен периоду дискретизации квантованного по уровню синусоидального сигнала; 21 - осциллограф, измерения которого представлены на фиг. 4; 22-24 - блоки сравнения с нулем; 25-27 - блоки, выдающие модуль исходного сигнала; 28 - осциллограф, измерения которого представлены на фиг. 6 и 7. На выходных блоках сигнал «1» соответствует состоянию «включено», а сигнал «0» - «выключено».
Представленная схема работает следующим образом: блоки 17-19 через блоки 14-16 синхронизируются с сетью и вычисляют токи обратной последовательности для каждой из фаз согласно выражениям:
где IA, IB, IC - токи трехфазной сети,
j - мнимая единица.
Далее рассмотрим несколько цепочек взаимодействия - остальные подобны рассматриваемым. Квантованный по уровню синусоидальный сигнал, полностью соответствующий по фазе синусоиде тока обратной последовательности в фазе А, с блока 17 поступает в блок 25, на выходе которого получается модуль квантованного по уровню синусоидального сигнала, который поступает в блок 32 совместно с сигналом с блока 20. Сигнал с блока 25 также поступает в блок 43. В блоке 32 происходит перемножение двух сигналов, на выходе получается пилообразный сигнал, вписанный в модуль квантованного по уровню синусоидального сигнала, или же пилообразный сигнал, промодулированный квантованным по уровню синусоидальным сигналом. Последний сигнал сравнивается в блоке 41 с выходным сигналом блока 26 - модулем квантованного по уровню синусоидального сигнала с блока 18. Сигнал с блока 41 поступает в блоки 46, 49, 53, 59. Сигналы с блоков 46, 49 после логического отрицания поступают в блоки 53, 59 соответственно. Сигналы в блоках 53, 54, 59, 60 подвергаются логической операции «и» совместно с другими соответствующими сигналами, после чего поступают в блоки 63, 64, 66, 67 соответственно, где они подвергаются логической операции «или» совместно с другими соответствующими сигналами, после чего поступают на выход блока 11 - в блоки 69, 70, 72, 73 соответственно. Этой цепочке преобразования сигналов аналогичны цепочки: 15 (18-26) - 68, 70, 71, 73 (62, 64, 65, 67) и 16 (19-27) - 68, 69, 71, 72 (62, 63, 65, 66). Одновременно с этой цепочкой преобразования происходит следующее: сигнал с блока 17 поступает в блок 22, где сравнивается с нулем, после чего поступает в блоки 29, 39, 40. Сигнал с блока 29 после логического отрицания поступает в блоки 36, 37 соответственно. Сигналы в блоках 36, 37, 39, 40 подвергаются логической операции «и» совместно с другими соответствующими сигналами, после чего поступают в блоки 59, 60, 62 (с блока 36), 56, 61, 63 (с блока 37), 50, 55, 66 (с блока 39), 51, 52, 67 (с блока 40). Сигналы в блоках 50-52, 55, 56, 59-61 подвергаются логической операции «и» совместно с другими соответствующими сигналами и поступают в блоки 62-67, где они подвергаются логической операции «или» совместно с другими соответствующими сигналами, после чего поступают на выход блока 11 - в блоки 68-73. Этой цепочке преобразования сигналов аналогичны цепочки: 15 (18-23)-62-67 и 16 (19-24)-62-67.
Пример конкретной реализации способа
Способ управления основан на том факте, что в любой момент времени сумма токов в трехфазной системе равна нулю (справедливо как для прямой, так и для обратной последовательности токов) или IA2+IB2+IC2=0, следовательно, один из них равен сумме двух других не только векторно, но и по модулю мгновенного значения ввиду равенства знаков последних токов. Из этих соображений можно получить 6 случаев, которые иллюстрирует таблица 1. Границами случаев являются переходы токов через ноль.
В данной таблице «случаи» расположены определенным образом: такое чередование знаков фаз характерно для обратной последовательности тока.
Квантованные по уровню синусоидальные сигналы блоков 17-19 (фиг. 3) по форме полностью соответствуют синусоидам токов обратной последовательности (блок 17 - току обратной последовательности фазы А, блок 18 - току обратной последовательности фазы В, блок 19 - току обратной последовательности фазы С). По существу все оставшиеся блоки нужны для преобразования квантованных по уровню синусоидальных сигналов полностью соответствующими по фазе синусоидам токов обратной последовательности блоков 17-19 в фазные токи симметрирующего устройства посредством соответствующего переключения вентилей.
Вышеописанное поясняют чертежи: фиг. 4 с осциллограммами блока 21 (фиг. 3), иллюстрирующими входные синусоидальные сигналы с блоков 14-16, соответствующие синусоидам токов в трехфазной сети 7 (а - сигнал с блока 14, ток IA, б - 15, ток IB, в - 16 ток IC); фиг. 5 и 6 с осциллограммами с блока 28 (фиг. 3), иллюстрирующие все три квантованные по уровню синусоидальных сигнала, соответствующие синусоидам токов обратной последовательности, и пилообразный сигнал (а - сигнал с блока 17, ток IA2, б - 18, ток IB2, в - 19, ток IC2, г - 20 пилообразный сигнал).
За выявление, какой случай имеет место в данный момент, ответственны блоки: 22-24, 29-31, 35-40 (фиг. 3), где блоки 35-40 соответствуют столбцам таблицы (единица на выходе одного из блоков 35-40 для соответствующего случая).
Подробно рассмотрим первый случай (остальные случаи аналогичны первому). В этом случае происходит потребление тока обратной последовательности из фазы В и отдача в фазы А и С. Модуль тока обратной последовательности фазы В равен сумме модулей токов обратных последовательностей фаз А и С. Во время этого промежутка времени вентиль в «положительной» ветви моста фазы В (вентиль 2 на фиг. 1) открыт и ток из фазы В течет в дроссель с зазором. Чтобы цепь была замкнута (протекал ток), необходимо открыть вентили в «отрицательной» ветви моста фаз А и С (вентили 4 и 6 на фиг. 1). Но одновременно открыть вентили фаз А и С нельзя - произойдет короткое замыкание. Следовательно, надо открыть сначала один, а потом другой. Поэтому необходимо правильно определить время открытия и закрытия этих вентилей.
Для того чтобы осуществить правильное переключение, необходимо:
1) вписать пилообразный сигнал в модуль квантованного по уровню синусоидального сигнала, соответствующий по фазе синусоиде тока обратной последовательности (промодулировать пилообразный сигнал квантованным по уровню синусоидальным сигналом), эквивалентного искомому току обратной последовательности фазы В для первого случая таблицы 1; 2) фаза А будет работать, пока ее амплитуда будет больше значения сигнала, полученного в предыдущем пункте, т.е.: фаза А работает, пока
(пилообразный сигнал), иначе работает фаза С, причем время работы этих фаз пропорционально токам обратной последовательности этих фаз или
, что осуществляется с помощью блоков: 25-27, 32-34, 41-43 и 20 (фиг. 3).
Для осуществления совместной работы блоков 22-24, 29-31, 35-40 и 25-27, 32-34, 41-43 и обеспечения протекания токов в одном направлении через вентили и дроссель с зазором применяются блоки 44-67 (фиг. 3).
Пилообразный сигнал блока 20 нужен (в первом «случае») для разбиения величины |IB2| на части, равные |IA2| и |IC2|, т.е. |IB2|=|IA2|+|IC2|, а также для разделения во времени работы фаз A и C и для увеличения частоты работы системы.
Все шесть случаев реализуются за период 0,02 секунды для частоты в 50 Гц, но производить переключения с частотой 1/(0,02/6)=300 Гц нецелесообразно, так как в этом случае энергообмен будет нарушен и высшие гармоники будут недопустимо велики. В идеале все три фазы должны работать непрерывно и, чтоб приблизиться к этому, необходимо, например, для первого случая быстро переключать фазы A и C, что существенно улучшает характеристики преобразователя. Например, для частоты переключений 12600 Гц (период в 49,4 мкс) переключения за «случай» происходят 12600/300=42 раза, что дает намного более высокие энергетические показатели.
На выходе блока управления переключением вентилей получаются сигналы, показанные на фиг. 7 и 8 (а - сигнал с блока 61, б - 62, в - 63, г - 64, д - 65, е - 66). Из фиг. 8 видно, что до момента времени 3,2 мс длится «случай» 1, а после происходит переключение на «случай» 6 и т.д. Можно сказать, что способ переключения детерминирован во времени и имеет множество повторяющихся последовательных комбинаций. Надо также отметить, что квантованные по уровню синусоидальные сигналы блоков 17-19 (фиг. 3) должны квантоваться на основе равенства площадей под исходной и дискретной синусоидами, т.е. для времени от t1 до t2 и k от n1 до n2. Период дискретизации синусоид должен быть равным периоду пилообразного сигнала. Чем выше дискретизация, тем выше частота переключения, тем легче отфильтровать высшие гармоники тока.
На фиг. 4 представлены временные характеристики сетевых токов несимметричной нагрузки до симметрирующего устройства и после такого устройства, приведенные на фиг. 9. Как видно из осциллограмм на фиг. 9, что до момента времени 0,015 с длится переходный процесс, после чего амплитуды фазных токов выравниваются - токи сети симметрируются.
Через дроссель с зазором протекает ток, имеющий постоянную и переменную составляющие. Чем больше индуктивность, тем меньше переменная составляющая и наоборот. LC-фильтр высоких частот является маломощным и обеспечивает коэффициент высших гармоник в пределах, предусмотренных ГОСТ 1309-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».
Предложенный способ позволяет эффективно симметрировать токи и соответственно напряжения при несимметричной нагрузке с помощью трехфазного моста на основе IGBT-транзисторов и дросселя с зазором.
Claims (2)
1. Трехфазное симметрирующее устройство, содержащее соединенный с трехфазной сетью блок анализа трехфазной сети, связанный с блоком управления переключением вентилей, связанный с преобразователем переменного тока и дросселем с зазором, отличающееся тем, что преобразователь переменного тока выполнен в виде трехфазного моста с вентилями, имеющими одностороннюю проводимость, к выходу постоянного тока которого подключен дроссель с зазором, а вход которого через LC-фильтр высоких частот подключен к трехфазной сети.
2. Способ управления трехфазным симметрирующим устройством путем формирования токов прямой и обратной последовательности симметрирующего устройства и выработки управляющих воздействий на реактивный элемент, отличающийся тем, что синхронизирующие сигналы с блока анализа трехфазной сети подают в блок управления переключением вентилей и делают квантованные по уровню синусоидальные сигналы по форме полностью соответствующими синусоидам токов обратной последовательности, которые необходимы для дальнейшей их компенсации, для чего выявляют и включают фазу с максимальным мгновенным значением тока обратной последовательности, одновременно с этим производят постоянное переключение двух оставшихся фаз с высокой частотой, причем время работы пропорционально мгновенным значениям токов обратной последовательности этих фаз, и осуществляют соответствующее включение вентилей, чтобы ток через вентили и дроссель с зазором протекал в одном направлении.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014120796/07A RU2567747C1 (ru) | 2014-05-22 | 2014-05-22 | Трехфазное симметрирующее устройство и способ управления им |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014120796/07A RU2567747C1 (ru) | 2014-05-22 | 2014-05-22 | Трехфазное симметрирующее устройство и способ управления им |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2567747C1 true RU2567747C1 (ru) | 2015-11-10 |
Family
ID=54537162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014120796/07A RU2567747C1 (ru) | 2014-05-22 | 2014-05-22 | Трехфазное симметрирующее устройство и способ управления им |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2567747C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2686114C1 (ru) * | 2018-06-27 | 2019-04-24 | Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" | Способ компенсации несимметрии напряжения в трехфазной сети |
RU2791936C1 (ru) * | 2022-05-06 | 2023-03-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ компенсации несимметрии напряжения в трёхфазной сети |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1651340A1 (ru) * | 1988-08-04 | 1991-05-23 | Иркутский политехнический институт | Способ автоматического симметрировани напр жений и компенсации реактивной мощности в электроэнергетической трехфазной системе |
DE19504690C1 (de) * | 1995-02-13 | 1996-03-21 | Siemens Ag | Verfahren zur Erzeugung zweier dreiphasiger, phasengleicher und zueinander nullpunktverschobener Modulationssignale für einen pulsweitenmodulierenden Steuersatz eines Matrix-Umrichters |
RU2393610C1 (ru) * | 2008-12-29 | 2010-06-27 | Игорь Владимирович Устименко | Способ автоматического симметрирования токов многофазной системы по заданной фазе |
-
2014
- 2014-05-22 RU RU2014120796/07A patent/RU2567747C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1651340A1 (ru) * | 1988-08-04 | 1991-05-23 | Иркутский политехнический институт | Способ автоматического симметрировани напр жений и компенсации реактивной мощности в электроэнергетической трехфазной системе |
DE19504690C1 (de) * | 1995-02-13 | 1996-03-21 | Siemens Ag | Verfahren zur Erzeugung zweier dreiphasiger, phasengleicher und zueinander nullpunktverschobener Modulationssignale für einen pulsweitenmodulierenden Steuersatz eines Matrix-Umrichters |
RU2393610C1 (ru) * | 2008-12-29 | 2010-06-27 | Игорь Владимирович Устименко | Способ автоматического симметрирования токов многофазной системы по заданной фазе |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2686114C1 (ru) * | 2018-06-27 | 2019-04-24 | Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" | Способ компенсации несимметрии напряжения в трехфазной сети |
RU2791936C1 (ru) * | 2022-05-06 | 2023-03-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ компенсации несимметрии напряжения в трёхфазной сети |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016069791A1 (en) | Space vector modulation for matrix converter and current source converter | |
JP4735188B2 (ja) | 電力変換装置 | |
CN105743377B (zh) | 电力变换装置以及其控制方法 | |
Haddad et al. | Real time simulation and experimental validation of active power filter operation and control | |
RU2567747C1 (ru) | Трехфазное симметрирующее устройство и способ управления им | |
JP4815996B2 (ja) | 電力変換装置 | |
Gopalakrishnan et al. | Space vector based modulation scheme for reducing capacitor RMS current in three-level diode-clamped inverter | |
RU2505899C1 (ru) | Комбинированная установка для плавки гололеда и компенсации реактивной мощности | |
CN106253726A (zh) | 一种三电平逆变器直流中点电压平衡控制方法 | |
RU2691635C2 (ru) | Способ двухканального преобразования частоты | |
RU2368992C1 (ru) | Трехфазный компенсатор реактивной мощности и способ управления им | |
Janik et al. | Active voltage balancing control with phase disposition PWM for 4-level flying capacitor converter | |
Anadol et al. | A real-time extraction of active and reactive current using microcontrollers for a multipulse STATCOM | |
RU2279178C1 (ru) | Трехфазный управляемый выпрямитель | |
Podnebennaya et al. | On the problem of providing electromagnetic compatibility of power sources of resistance welding machines with electric mains | |
RU2325752C1 (ru) | Регулятор напряжения переменного тока | |
Nayeripour et al. | Design of a three phase active power filter with sliding mode control and energy feedback | |
RU2566668C1 (ru) | Регулятор переменного напряжения | |
Santos et al. | New configurations of single-phase universal active power filters with reduced number of electric power switches | |
RU156362U1 (ru) | Обратимый преобразователь | |
RU2703984C2 (ru) | Способ двухканального выпрямления | |
RU2609890C2 (ru) | Способ и устройство снижения потерь электроэнергии | |
Holbein et al. | Slim DC-Link Three-Phase Converter with Full Symmetrical Sequence Current Capability for Voltage Rebalancing in Weak LV Networks | |
RU2479102C1 (ru) | Регулятор переменного напряжения | |
Vuchev et al. | Load and Control Characteristics of ZVS Bidirectional Series Resonant DC-DC Converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180523 |