RU2567487C1 - Способ получения сжиженного метана высокой чистоты - Google Patents

Способ получения сжиженного метана высокой чистоты Download PDF

Info

Publication number
RU2567487C1
RU2567487C1 RU2014143370/06A RU2014143370A RU2567487C1 RU 2567487 C1 RU2567487 C1 RU 2567487C1 RU 2014143370/06 A RU2014143370/06 A RU 2014143370/06A RU 2014143370 A RU2014143370 A RU 2014143370A RU 2567487 C1 RU2567487 C1 RU 2567487C1
Authority
RU
Russia
Prior art keywords
gas
product
methane
high purity
heated
Prior art date
Application number
RU2014143370/06A
Other languages
English (en)
Inventor
Андрей Владиславович Курочкин
Original Assignee
Андрей Владиславович Курочкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Владиславович Курочкин filed Critical Андрей Владиславович Курочкин
Priority to RU2014143370/06A priority Critical patent/RU2567487C1/ru
Application granted granted Critical
Publication of RU2567487C1 publication Critical patent/RU2567487C1/ru

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к криогенной технике. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации. Природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата. Риформат смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования. Перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора. Техническим результатом является повышение выхода жидкого метана высокой чистоты. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к криогенной технике и может быть использовано в газовой промышленности для получения сжиженного метана высокой чистоты, например, в качестве топлива для ракетных двигателей.
Известен способ частичного сжижения природного газа и установка для его реализации [RU 2280826, опубл. 27.07.2006 г., МПК F25J 1/00], при этом способ включает предварительное охлаждение, очистку от масла и капельной влаги, адсорбционную осушку и очистку от углекислого газа прямого потока газа высокого давления, полученного сжатием смеси природного газа и обратного потока газа, его охлаждение до полной конденсации, очистку от твердых примесей фильтрованием, дросселирование, переохлаждение сжиженным природным газом и разделение на технологический поток, который используют для охлаждения и предварительного охлаждения компрессата и далее направляют на смешение с природным газом, и продуктовый поток, который дросселируют и сепарируют на сжиженный газ и паровую фазу, которой охлаждают компрессат, а затем используют в качестве регенерирующего потока для десорбции и топлива для привода компрессора и/или выводят с установки.
Недостатком данного способа является низкое содержание метана в сжиженном газе из-за отсутствия стадий очистки природного газа от тяжелых углеводородов.
Наиболее близок по технической сущности к предлагаемому изобретению способ частичного сжижения природного газа (варианты), позволяющий получить метан высокой чистоты [RU 2525759, опубл. 20.08.2014 г., МПК F25J 1/00], включающий предварительное охлаждение прямого потока газа высокого давления (компрессата) обратным потоком газа, его дросселирование (редуцирование) и разделение на продукционный (продуктовый) и технологический потоки, при этом технологический поток охлаждают, дросселируют, последовательно нагревают реконденсируемым продукционным потоком, продукционным и технологическим потоками и затем после повторного дросселирования направляют в обратный поток, кроме того, продукционный поток охлаждают, дросселируют, разделяют в ректификационной колонне на жидкую фракцию и паровую фракцию, которую реконденсируют с последующим направлением части реконденсированного продукционного потока в ректификационную колонну в качестве флегмового орошения, а также дросселированием и разделением (сепарацией) другой его части на жидкую фазу (сжиженный метан), являющуюся готовым продуктом, и паровую фазу (газ сепарации), направляемую в обратный поток.
Недостатком устройства является низкий выход сжиженного метана высокой чистоты (7,5-8,2%) из-за отсутствия рециркуляции технологического потока газа.
Задачей предлагаемого изобретения является повышение выхода жидкого метана высокой чистоты.
Техническим результатом, получаемым при использовании изобретения, является повышение выхода жидкого метана высокой чистоты за счет предварительного каталитического превращения тяжелых углеводородов природного газа в метан путем мягкого парового риформинга, а также за счет рециркуляции технологического потока газа.
Указанный технический результат достигается тем, что в известном способе, включающем предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации, особенность заключается в том, что природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата, который смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования, а перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора.
Для увеличения выхода сжиженного метана высокой чистоты целесообразно дополнительно охлаждать продуктовый поток газом сепарации. При необходимости после предварительного охлаждения сторонним хладоагентом компрессат может быть дополнительно охлажден технологическим потоком и топливным газом.
Мягкий паровой каталитический риформинг природного газа совместно с водным конденсатом и деминерализованной водой, например, в соответствии с [RU 2443764, МПК C10L 3/10, опубл. 27.02.2012] позволяет получить риформат, не содержащий тяжелых углеводородов, за счет чего обеспечить высокую чистоту сжиженного метана.
Сжатие риформата в смеси с нагретым технологическим потоком компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, позволяет в составе топлива, получаемого путем смешения газа сепарации с отходящим газом, содержащим CO2, утилизировать примеси (азот, углекислый газ, водород, инертные газы), содержащиеся в компрессате. Примеси ртути и сернистых соединений удаляют на стадии мягкого парового риформинга.
При реализации предлагаемого способа природный газ (I) совместно с деминерализованной водой (II) и водным конденсатом (III) в блоке 1 подвергают мягкому паровому каталитическому риформингу с получением риформата (IV), который смешивают с технологическим потоком (V), сжимают компрессором 2, охлаждают до температуры не ниже температуры гидратообразования сторонним хладоагентом (например, воздухом) в теплообменнике 3 и подвергают осушке и очистке от углекислого газа в блоке 4 с получением отходящего газа, содержащего CO2 (VI), и водного конденсата (III). Очищенный газ - метан высокой чистоты (VII) - разделяют на технологический поток (VIII), который охлаждают в теплообменнике 5, редуцируют в устройстве 6 (например, дроссельном вентиле или детандере), нагревают в теплообменнике 5 и смешивают с риформатом (IV), и продуктовый поток (IX), который охлаждают в теплообменнике 5, редуцируют в устройстве 7 (например, дроссельном вентиле или детандере), и сепарируют в устройстве 8 (например, емкостном сепараторе) с получением сжиженного высокой чистоты метана (X), выводимого с установки, и газа сепарации (XI), который нагревают в теплообменнике 5, смешивают с отходящим газом, содержащим CO2 (VI), а полученный при этом топливный газ (XII) подают в качестве топлива в привод компрессора 9, например двигатель внутреннего сгорания.
При необходимости, после предварительного охлаждения в теплообменнике 3, компрессат может быть дополнительно охлажден технологическим потоком топливным газом (XII) и технологическим потоком (V) в теплообменнике 10 (показано пунктиром). Для достижения максимальной степени сжижения осуществляют дополнительное охлаждение продуктового потока (IX) газом сепарации (XI) в теплообменнике 11 (показано пунктиром).
Сущность изобретения иллюстрируется следующим примером. Природный газ состава (% об.): метан 94,5%, этан 2,5%, пропан 0,4%, бутаны 0,3%, С5+ 0,1%, углекислый газ 0,2%, азот 2,0% в количестве 1000 нм3/час подвергают мягкому каталитическому паровому риформингу совместно с 20 кг/час деминерализованной воды и 9,8 кг/час конденсата водяного пара, при давлении 5,5 МПа и 20°C смешивают с 6190 нм3/час технологического потока и сжимают до 20 МПа, охлаждают воздухом до 40°C, затем в рекуперационном теплообменнике до 20°C, сепарируют и осушают композитным адсорбентом и очищают от углекислого газа цеолитом NaX с получением 7201 нм3/час осушенного газа, 52 нм3/час газа регенерации и конденсата водяного пара. Очищенный газ разделяют на 6190 нм3/час технологического потока и 1011 нм/час продуктового газа, потоки охлаждают до -146,1°C и редуцируют на детандерах: технологический поток - до 5,5 МПа, а продуктовый поток - до 0,15 МПа. Редуцированный технологический поток нагревают в рекуперационных теплообменниках до 20°C и направляют на смешение с природным газом. Редуцированный продуктовый поток сепарируют с получением 75 нм3/час газа сепарации, который смешивают с газами регенерации, нагревают в рекуперационных теплообменниках до 20°C, а полученный топливный газ используют в качестве топлива для привода компрессора. Выход сжиженного метана с чистотой более 99% составил 99% в расчете на исходный метан.
В аналогичных условиях при использовании способа по прототипу выход сжиженного метана высокой чистоты не превышал 8,2%.
Таким образом, предлагаемый способ позволяет повысить выход сжиженного метана высокой чистоты и может найти применение в газовой промышленности.

Claims (3)

1. Способ получения сжиженного метана высокой чистоты, включающий предварительное охлаждение компрессата, его разделение на технологический поток, который охлаждают, редуцируют и нагревают продуктовым и технологическим потоками, и продуктовый поток, который охлаждают, редуцируют и сепарируют с получением сжиженного метана и газа сепарации, отличающийся тем, что природный газ предварительно подвергают мягкому паровому каталитическому риформингу совместно с водным конденсатом и деминерализованной водой с получением риформата, который смешивают с нагретым технологическим потоком и сжимают компрессором, оснащенным в качестве привода двигателем внутреннего сгорания, с получением компрессата, предварительное охлаждение которого осуществляют сторонним хладоагентом до температуры не ниже температуры гидратообразования, а перед разделением компрессата на технологический и продуктовый потоки его осушают и очищают от углекислого газа с получением метана высокой чистоты, водного конденсата и отходящего газа, содержащего CO2, при этом газ сепарации нагревают продуктовым и технологическим потоками, смешивают с отходящим газом, содержащим CO2, и используют в качестве топлива для привода компрессора.
2. Способ по п. 1, отличающийся тем, что после предварительного охлаждения сторонним хладоагентом компрессат дополнительно охлаждают технологическим потоком и топливным газом.
3. Способ по пп. 1 и 2, отличающийся тем, что продуктовый поток дополнительно охлаждают газом сепарации.
RU2014143370/06A 2014-10-27 2014-10-27 Способ получения сжиженного метана высокой чистоты RU2567487C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014143370/06A RU2567487C1 (ru) 2014-10-27 2014-10-27 Способ получения сжиженного метана высокой чистоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014143370/06A RU2567487C1 (ru) 2014-10-27 2014-10-27 Способ получения сжиженного метана высокой чистоты

Publications (1)

Publication Number Publication Date
RU2567487C1 true RU2567487C1 (ru) 2015-11-10

Family

ID=54537043

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014143370/06A RU2567487C1 (ru) 2014-10-27 2014-10-27 Способ получения сжиженного метана высокой чистоты

Country Status (1)

Country Link
RU (1) RU2567487C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684232C1 (ru) * 2018-02-12 2019-04-05 Акционерное общество "НИПИгазпереработка" (АО "НИПИГАЗ") Установка и способ сжижения природного газа
RU2805403C1 (ru) * 2023-05-03 2023-10-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ производства сжиженного природного газа на компрессорной станции магистрального газопровода

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2212598C1 (ru) * 2002-02-26 2003-09-20 Горбачев Станислав Прокофьевич Способ частичного сжижения природного газа и установка для его реализации
US7037485B1 (en) * 2004-11-18 2006-05-02 Praxair Technology, Inc. Steam methane reforming method
RU2280826C2 (ru) * 2004-03-31 2006-07-27 Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") Способ частичного сжижения природного газа и установка для его реализации
RU2010141176A (ru) * 2008-04-25 2012-05-27 Технише Верке Лудвигсхафен АГ (DE) Обработка рециркулирующего газа для непосредственного термохимического преобразования высокомолекулярных органических веществ в маловязкое жидкое сырье, горючие материалы и топливо

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2212598C1 (ru) * 2002-02-26 2003-09-20 Горбачев Станислав Прокофьевич Способ частичного сжижения природного газа и установка для его реализации
RU2280826C2 (ru) * 2004-03-31 2006-07-27 Открытое акционерное общество "Научно-производственное объединение "ГЕЛИЙМАШ" (ОАО "НПО "ГЕЛИЙМАШ") Способ частичного сжижения природного газа и установка для его реализации
US7037485B1 (en) * 2004-11-18 2006-05-02 Praxair Technology, Inc. Steam methane reforming method
RU2010141176A (ru) * 2008-04-25 2012-05-27 Технише Верке Лудвигсхафен АГ (DE) Обработка рециркулирующего газа для непосредственного термохимического преобразования высокомолекулярных органических веществ в маловязкое жидкое сырье, горючие материалы и топливо

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684232C1 (ru) * 2018-02-12 2019-04-05 Акционерное общество "НИПИгазпереработка" (АО "НИПИГАЗ") Установка и способ сжижения природного газа
RU2805403C1 (ru) * 2023-05-03 2023-10-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ производства сжиженного природного газа на компрессорной станции магистрального газопровода

Similar Documents

Publication Publication Date Title
CA2285801C (en) Method and apparatus for enhancing carbon dioxide recovery
KR101370783B1 (ko) 이산화탄소 정제 방법
US6128919A (en) Process for separating natural gas and carbon dioxide
JP5349798B2 (ja) ガスから二酸化炭素を回収する方法
KR101106195B1 (ko) 이산화탄소 정제 및 액화 장치 및 그 방법
CN104419464B (zh) 一种炼厂干气回收系统及干气回收方法
AU2011278070B2 (en) Energy efficient production of CO2 using single stage expansion and pumps for elevated evaporation
JP2015132464A (ja) 等圧開放冷凍天然ガス液回収による窒素除去
EP2365265B1 (en) Method and installation for separating carbon dioxide from flue gas of combustion plants
CN115069057B (zh) 一种低温精馏提纯回收二氧化碳的方法
CN111578620B (zh) 车载移动式回收油田放空气中的混烃和液化天然气的系统及工艺方法
DK3129613T3 (en) Process and plant for energy storage and recovery
RU2615092C1 (ru) Способ переработки магистрального природного газа с низкой теплотворной способностью
CN114459204B (zh) 煤化工二氧化碳尾气低温捕集提纯液化与分离系统及方法
RU2567487C1 (ru) Способ получения сжиженного метана высокой чистоты
RU2610625C1 (ru) Способ сжижения природного газа
RU2578246C1 (ru) Способ сжижения природного газа
GB2489197A (en) Carbon dioxide purification
RU2617153C2 (ru) Способ промысловой подготовки газа
GB2489396A (en) Carbon dioxide purification
WO2019083412A1 (ru) Установка и способ получения жидкого диоксида углерода из газовых смесей
RU2595652C1 (ru) Способ подготовки попутного нефтяного газа
RU2814313C1 (ru) Устройство подготовки углеводородного газа к транспорту
GB2490301A (en) Carbon dioxide purification
CN220454075U (zh) 一种高炉煤气解析气co2和cos分离制取系统