RU2567470C1 - Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя - Google Patents

Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя Download PDF

Info

Publication number
RU2567470C1
RU2567470C1 RU2014122444/28A RU2014122444A RU2567470C1 RU 2567470 C1 RU2567470 C1 RU 2567470C1 RU 2014122444/28 A RU2014122444/28 A RU 2014122444/28A RU 2014122444 A RU2014122444 A RU 2014122444A RU 2567470 C1 RU2567470 C1 RU 2567470C1
Authority
RU
Russia
Prior art keywords
fiber
membrane
pressure
housing
temperature
Prior art date
Application number
RU2014122444/28A
Other languages
English (en)
Inventor
Любовь Николаевна Давыдова
Дмитрий Юрьевич Еричев
Алексей Николаевич Замышляев
Владимир Михайлович Самсонов
Original Assignee
Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" filed Critical Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО"
Priority to RU2014122444/28A priority Critical patent/RU2567470C1/ru
Application granted granted Critical
Publication of RU2567470C1 publication Critical patent/RU2567470C1/ru

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Изобретение относится к оптоволоконным технологиям, в частности к оптическим датчикам давления и температуры, в конструкции которых использованы оптические волокна. Устройство для измерения давления и температуры в потоке газа и/или жидкости содержит корпус датчика, мембрану, жестко прикрепленную к торцу корпуса, волоконно-оптический световод с защитным покрытием, расположенный в корпусе, по меньшей мере, одну дифракционную решетку Брэгга, нанесенную на волоконно-оптический световод, и волоконно-оптический кабель, закрепленный в корпусе и соединенный с системой обработки сигнала. Устройство снабжено, выполненным на торце корпуса со стороны мембраны, средством соединения с напорным устройством, по меньшей мере, одной структурой с поверхностным рельефом в соответствии с геометрией дифракции Брэгга, выполненной на поверхности мембраны внутри корпуса датчика. Волоконно-оптический световод соединен с волоконно-оптическим кабелем и прикреплен к корпусу и к мембране с образованием подмембранной полости. При этом, по меньшей мере, одна дифракционная решетка Брэгга, нанесенная на волоконно-оптический световод, расположена вне зоны крепления световода к корпусу. Система обработки сигнала содержит соединенные волоконно-оптическим кабелем оптический разветвитель, полупроводниковый источник света, оптический анализатор спектра и соединенный с ним регистратор. 2 н. и 6 з.п.ф-лы, 5 ил.

Description

Изобретение относится к оптоволоконным технологиям, в частности к оптическим датчикам давления и температуры, в конструкции которых использованы оптические волокна, к созданию несущих средств, для передачи и защиты отводимого сигнала на большие расстояния и к конструкции стендов, использующих эти датчики для измерения характеристик работы газотурбинного двигателя.
Наиболее близким по технической сущности и назначению, является устройство для измерения давления и температуры в потоке газа и/или жидкости, содержащее корпус датчика, мембрану, жестко прикрепленную к торцу корпуса, волоконно-оптический световод с защитным покрытием, расположенный в корпусе, по меньшей мере, одну дифракционную решетку Брэгга, нанесенную на волоконно-оптическом световоде и волоконно-оптический кабель, закрепленный в корпусе и соединенный с системой обработки сигнала /RU Заявка 2012125667, МПК G01L 11/02. Опубликовано 27.12.2013/1/.
Недостатками известного решения являются: высокая чуствительность к случайной широкополосной вибрации (СШП), поскольку в известном решении воздействие на решетку Брэгга осуществляется не непосредственно, а через некоторую длину световода, что подразумевает некоторую свободу перемещения участков световода как в осевом (сжатие-растяжение) направлении, так и в радиальном (изгиб). При воздействии на данную конструкцию СШП к полезному сигналу измеряемой физической величины (давление, осевое усилие) подмешивается помеха, создаваемая виброперегрузкой, которую испытывает световод. Через кольцевое сечение очень малой толщины выравнивание давления газа и/или жидкости происходит очень медленно, что делает невозможным наблюдать процессы в динамике.
Наиболее близким по технической сущности и назначению является стенд для испытания и измерения, в частности, характеристик работы газотурбинного двигателя, содержащий конструкцию для фиксирования двигателя, входную и выходную газовые магистрали, системы подачи энергии, топлива и масла, системы измерения параметров работы, состоящие из таких блоков и агрегатов, как приемники воздушных давлений с приемными отверстиями, снабженные электронагревательной противообледенительной системой и соединенные с датчиками давления, а также датчики температуры наружного воздуха и вычислитель параметров работы, причем все блоки и агрегаты системы размещены в едином аэродинамически обтекаемом корпусе /RU 132555 U1, МПК, G01M 15/02, G01M 15/14. Опубликовано: 20.09.2013 /2/.
Известный стенд не может применяться для преобразования, регистрации и обработки информации от типовых датчиков давления и температуры, в случае их установки на стойках ВНА и в ГВТ газотурбинного двигателя, при выборе представительного места установки штатных датчиков давления и температуры на входе в объект и в ГВТ. Типовые датчики обладают значительными размерами и электрической системой передачи сигнала, что вызывает нарушение в измерениях параметров движущегося потока и вызывает значительные погрешности в виде электрических наводок из-за вибрации кабеля при работе с объектом, находящимся на значительном удалении стенда от вычислителя параметров работы.
Задача изобретения разработка волоконно-оптического устройства для одновременного измерения давления и температуры с минимальными габаритно-установочными размерами и повышенной защищенностью от наводок.
Другой задачей изобретения является разработка стенда, в составе которого применяется устройство для сбора информации о динамике изменения давления и температуры среды, воздействующей на входной направляющий аппарат авиационного ГТД и генерируемых самим авиационным ГТД.
Ожидаемый технический результат - повышение точности устройства при измерении давления и получение количественной информации о температуре, уменьшение длины пневматической линии, сокращение проводных линий за счет пространственного мультиплексирования датчиков.
Другим техническим результатом является применение одного и того же универсального оборудования на стенде для преобразования и обработки информации о давлении и температуре в точке замера в условиях плотной компоновки авиационного ГТД, удаление стенда от объекта контроля на значительное расстояние, снижение электромагнитных помех и излучений, расширение возможностей и повышение точности выбора представительного места для установки штатного датчика системы контроля.
Ожидаемый технический результат достигается тем, что известное устройство для измерения давления и температуры в потоке газа и/или жидкости, содержащее корпус датчика, мембрану, жестко прикрепленную к торцу корпуса, волоконно-оптический световод с защитным покрытием, расположенный в корпусе, по меньшей мере, одну дифракционную решетку Брэгга, нанесенную на волоконно-оптический световод и волоконно-оптический кабель, закрепленный в корпусе и соединенный с системой обработки сигнала, по предложению, снабжено выполненным на торце корпуса со стороны мембраны средством соединения с напорным устройством, по меньшей мере, одной структурой с поверхностным рельефом в соответствии с геометрией дифракции Брэгга, выполненной на поверхности мембраны внутри корпуса датчика, волоконно-оптический световод соединен с волоконно-оптическим кабелем и прикреплен к корпусу и к мембране с образованием подмембранной полости, при этом, по меньшей мере, одна дифракционная решетка Брэгга, нанесенная на волоконно-оптический световод, расположена вне зоны крепления световода к корпусу, а система обработки сигнала содержит соединенные волоконно-оптическим кабелем оптический разветвитесь, полупроводниковый источник света, оптический анализатор спектра и соединенный с ним регистратор. На оптическом световоде по меньшей последовательно сформированы две решетки Брегга, одна из которых жестко прикреплена к корпусу и выполняет роль термокомпенсатора. Поперечный размер мембраны может быть больше, чем диаметр волоконно-оптического световода. Внутреннее пространство между волоконно-оптическим световодом с защитным покрытием и корпусом может быть заполнено жидкостью из группы раствор солей или гель, защитное покрытие выполнено из материалов, выбранных из группы металл, или углерод, или керамика, или пластик, или полиамид, а подмембранная полость вакуумирована.
Другой технический результат достигается на известном стенде для испытания и измерения характеристик работы газотурбинного двигателя, содержащем конструкцию для фиксирования двигателя, входную и выходную газовые магистрали, системы подачи энергии, топлива и масла, системы измерения параметров работы, состоящие из таких блоков и агрегатов, как приемники воздушных давлений с приемными отверстиями, снабженные электронагревательной противообледенительной системой и соединенные с датчиками давления, а также датчики температуры наружного воздуха и вычислитель параметров работы, причем все блоки и агрегаты системы размещены в едином аэродинамически обтекаемом корпусе, по предложению, для двигателя с входным направляющим аппаратом, он снабжен, по меньшей мере, двумя напорными устройствами со средством соединения с устройствами для измерения давления и температуры в потоке газа и/или жидкости по п. 1 в каждом из них, напорные устройства расположены в разных окружных положениях на расстоянии друг от друга в радиальном направлении на стойках входного направляющего аппарата и закрепленных с возможностью измерения полного давления и температуры. В качестве напорного устройства оно может содержать трубку Пито-Прандля.
В предложенном устройстве использованы следующие конструкивные особенности.
Интегрирование на поверхность мембраны структуры в соответствии с геометрией дифракции Брэгга позволяет устранить механические нагрузки на световод и упрощает сборку датчика, так как нет необходимости ее организации на длине световода (в районе сформированных внутри световода структур) участков, воспринимающих механические нагрузки. Практически любой материал обладает свойственным ему коэффициентом температурного расширения (в данном случае - мембрана), при изменении температуры световода изменяется оптический показатель преломления световода. Таким образом, при использовании световода со сформированной в его сердцевине решеткой Брэгга, жестко закрепленного внутри датчика, имеется возможность (после соответствующей калибровки датчика) учитывать погрешность, возникающую от воздействия температуры на мембрану датчика. Данная процедура (компенсации погрешности от температуры) выполняется программно, в устройстве обработки сигнала.
Устройство обладает возможностями взаимозаменяемости и использования в конструкции мембран с периодической структурой (различного периода) в соответствии с геометрией Брэгга, под напорное устройство, фиксируемое накидной гайкой, могут устанавливаться мембраны с различными структурами, работающими на различных длинах волны используемого частотного диапазона.
Оптический световод, снабженный защитным покрытием, идентичным защитному покрытию волоконно-оптического кабеля, позволяет упростить технологию сборки датчика, а в варианте защитного покрытия из материала с низким коэффициентом температурного расширения - устранить опасность растрескивания кварцевого световода и волоконно-оптического кабеля при воздействии высоких температур.
Защитное покрытие световода внутри корпуса датчика обеспечивает невосприимчивость решеток Брэгга к механическим деформациям типа «удар», «линейная перегрузка». Жидкость либо гель, заполняющие объем между волоконным световодом в защитном покрытии и внутренней поверхностью корпуса датчика, обеспечивают демпфирование внешних вибрационных воздействий.
Защитное покрытие световода (волоконно-оптического кабеля) из пластика либо полиамида в сочетании с электроизоляционными материалами корпуса датчика может применяться в условиях, когда необходимо обеспечить полную электрическую нейтральность конструкции.
Использование для нужд стенда малогабаритных волоконно-оптических датчиков давления и температуры позволяет, в частности: оборудовать максимально возможным количеством замеров давления и температуры каждую стойку входного направляющего аппарата газотурбинного двигателя, позволяет разместить датчики в непосредственной близости от напорных устройств, что позволяет устранить влияние пневматических капиллярных линий и снизить искажения газодинамических процессов во входном устройстве от вставных приборов. Малогабаритность волоконно-оптических датчиков обеспечивает доступ к ним для их обслуживания на испытаниях и в эксплуатации и обеспечивает работу с объектом (ГТД) на удалении на значительное (до нескольких десятков километров) расстояние от системы обработки сигналов стенда при условии связи объекта с системой обработки сигналов одномодовой волоконно-оптической линией.
При использовании волоконно-оптических кабелей с проводящим покрытием, по проводящей оболочке возможна передача электрических сигналов любой мощности (зависит от конструкции защитного покрытия).
Использование в стенде комплекта трубок Пито-Прандля в качестве напорных устройств позволяет проводить измерения требуемых для анализа видов давления (полного, динамического, статического) путем установки заглушек в соответствующие отверстия.
Фиг. 1 - датчик давления и температуры в корпусе;
Фиг. 2 - стенд для испытаний и измерения характеристик работы газотурбинного двигателя;
Фиг. 3 - полая стойка входного направляющего аппарата компрессора низкого давления;
Фиг. 4 - схема расчета напорного устройства;
Фиг. 5 - датчик защитный, материал световода ограничен корпусом датчика;
Устройство для измерения давления и температуры содержит корпус 1, мембрану 2, световод 3 с сформированными на нем, по крайней мере одной решеткой Брэгга 4. Световод 3 расположен в корпусе и интегрирован с волоконно-оптическим приемно-передающим кабелем 5. С помощью накидной гайки 6 на корпусе 1 закреплено напорное устройство 7, которое одновременно прижимает к корпусу мембрану 2. На поверхности мембраны 2 внутри корпуса выполнена по меньшей мере, одна структура 8, с поверхностным рельефом в соответствии с геометрией дифракции Брэгга. Световод 3 на торце напротив структуры 8 имеет выемку 9, внутри корпуса окружен защитным покрытием 10, а полость между корпусом 1 и покрытием 10 заполнена жидкостью или гелем 11. Полость выемки 9 может быть вакуумирована. Волоконно-оптический кабель 5 технологически соединяет со световодом 3 оптический разветвитель 12, источник света 13, оптический анализатор спектра (интеррогатор) 14, регистратор 15, систему обработки сигналов 16.
Стенд для испытания и измерения характеристик работы газотурбинного двигателя 17 содержит опоры 18, входную 19 и выходную 20 газовые магистрали, стойку 21 входного направляющего аппарата компрессора низкого давления с расположенными на ней напорными устройствами 7 и жалюзи 22 системы противообледенения. Испытываемый двигатель 17 оснащен штатными датчиками и соединен системой обработки сигналов 16.
Устройство для измерения давления и температуры в потоке газа и/или жидкости работает следующим образом.
Свет от источника 13 поступает через волоконно-оптический кабель 5 в световод 3. Датчик откалиброван так, что при отсутствии давления на мембрану 2 на вход системы обработки сигналов 16 через разветвитель 12, оптический анализатор спектра (интеррогатор) 14, регистратор 15, поступает информация об отсутствии избыточного давления и об окружающей температуре. При подаче давления мембрана 2 со структурой 8 с поверхностным рельефом в соответствии с геометрией дифракции Брэгга 6 деформируется, происходят локальные изменения периода структуры поверхностного рельефа, спектр отраженного сигнала трансформируется в зависимости от деформации мембраны и передается по световоду 3 со встроенной решеткой показателя преломления решеткой Брэгга (термокомпенсатор), в тракт волоконно-оптического кабеля 5. Информация о деформации мембраны и температуре световода передается, в соответствии с правилом взаимодействия мод в одномодовом оптоволокне, по волоконно-оптическому приемно-излучающему кабелю в оптический разветвитель 12, где полезный сигнал направляется к оптическому анализатору спектра 4 и далее в регистратор 15 и при этом функциональный тракт источника света 13 искажениям не подвергается.
Аналогично работает каждый датчик на испытываемом двигателе 17 на стенде. Информация от всех датчиков поступает в систему обработки сигнала 16. С учетом информации от штатных датчиков она обрабатывается и делается вывод о состоянии газодинамических процессов во входном устройстве, в том числе о представительном месте для установки штатного датчика.
Применение устройства и стенда для испытания и измерения характеристик работы газотурбинного двигателя позволяет повысить точность устройства при измерении давления и получение количественной информации о температуре, уменьшение длины пневматической линии, сокращение проводных линий за счет пространственного мультиплексирования датчиков, позволяет применить одно и то же универсальное оборудование на стенде для преобразования и обработки информации о давлении и температуре в точке замера в условиях плотной компоновки авиационного ГТД, позволяет удалять стенд от объекта контроля на значительное расстояние, снизить электромагнитные помехи и излучения, расширить возможности и повышение точности выбора представительного места для установки штатного датчика системы контроля.

Claims (8)

1. Устройство для измерения давления и температуры в потоке газа и/или жидкости, содержащее корпус датчика, мембрану, жестко прикрепленную к торцу корпуса, волоконно-оптический световод с защитным покрытием, расположенный в корпусе, по меньшей мере, одну дифракционную решетку Брэгга, нанесенную на волоконно-оптический световод и волоконно-оптический кабель, закрепленный в корпусе и соединенный с системой обработки сигнала, отличающееся тем, что оно снабжено выполненным на торце корпуса со стороны мембраны средством соединения с напорным устройством, по меньшей мере, одной структурой с поверхностным рельефом в соответствии с геометрией дифракции Брэгга, выполненной на поверхности мембраны внутри корпуса датчика, волоконно-оптический световод соединен с волоконно-оптическим кабелем и прикреплен к корпусу и к мембране с образованием подмембранной полости, при этом, по меньшей мере, одна дифракционная решетка Брэгга, нанесенная на волоконно-оптический световод, расположена вне зоны крепления световода к корпусу, а система обработки сигнала содержит соединенные волоконно-оптическим кабелем оптический разветвитель, полупроводниковый источник света, оптический анализатор спектра и соединенный с ним регистратор.
2. Устройство по п. 1, отличающееся тем, что на оптическом световоде, по меньшей мере, последовательно сформированы две решетки Брэгга, одна из которых жестко прикреплена к корпусу и выполняет роль термокомпенсатора.
3. Устройство по п. 1, отличающееся тем, что поперечный размер мембраны больше, чем диаметр волоконно-оптического световода.
4. Устройство по п. 1, отличающееся тем, что внутреннее пространство между волоконно-оптическим световодом с защитным покрытием и корпусом заполнено жидкостью из группы раствор солей или гель.
5. Устройство по п. 1, отличающееся тем, что защитное покрытие выполнено из материалов, выбранных из группы металл, или углерод, или керамика, или пластик, или полиамид.
6. Устройство по п. 1, отличающееся тем, что подмембранная полость вакуумирована.
7. Стенд для испытания и измерения характеристик работы газотурбинного двигателя, содержащий конструкцию для фиксирования двигателя, входную и выходную газовые магистрали, системы подачи энергии, топлива и масла, системы измерения параметров работы, состоящие из таких блоков и агрегатов, как приемники воздушных давлений с приемными отверстиями, снабженные электронагревательной противообледенительной системой и соединенные с датчиками давления, а также датчики температуры наружного воздуха и вычислитель параметров работы, причем все блоки и агрегаты системы размещены в едином аэродинамически обтекаемом корпусе, отличающийся тем, что для двигателя с входным направляющим аппаратом он снабжен, по меньшей мере, двумя напорными устройствами со средством соединения с устройствами для измерения давления и температуры в потоке газа и/или жидкости по п. 1 в каждом из них, напорные устройства расположены в разных окружных положениях на расстоянии друг от друга в радиальном направлении на стойках входного направляющего аппарата и закрепленных с возможностью измерения полного давления и температуры.
8. Стенд для испытания и измерения по п. 7, отличающийся тем, что в качестве напорного устройства он содержит трубку Пито-Прандля.
RU2014122444/28A 2014-06-03 2014-06-03 Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя RU2567470C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014122444/28A RU2567470C1 (ru) 2014-06-03 2014-06-03 Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014122444/28A RU2567470C1 (ru) 2014-06-03 2014-06-03 Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя

Publications (1)

Publication Number Publication Date
RU2567470C1 true RU2567470C1 (ru) 2015-11-10

Family

ID=54537039

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014122444/28A RU2567470C1 (ru) 2014-06-03 2014-06-03 Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя

Country Status (1)

Country Link
RU (1) RU2567470C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648197C1 (ru) * 2017-06-21 2018-03-22 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ испытания газотурбинного двигателя
RU2693742C1 (ru) * 2018-06-09 2019-07-04 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Устройство измерения давления с модулями преобразователей давления и способ работы устройства

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776045B2 (en) * 1998-12-04 2004-08-17 Cidra Corporation Bragg grating pressure sensor for industrial sensing applications
RU106366U1 (ru) * 2011-01-31 2011-07-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Волоконно-оптический датчик давления
RU132555U1 (ru) * 2012-08-20 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Стенд для испытания турбокомпрессора
RU2012125667A (ru) * 2012-06-20 2013-12-27 Общество с ограниченной ответственностью "Инновационное предприятие "НЦВО-ФОТОНИКА" (ООО "НЦВО-Фотоника") Волоконно-оптический торцевой датчик давления (варианты)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776045B2 (en) * 1998-12-04 2004-08-17 Cidra Corporation Bragg grating pressure sensor for industrial sensing applications
RU106366U1 (ru) * 2011-01-31 2011-07-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Волоконно-оптический датчик давления
RU2012125667A (ru) * 2012-06-20 2013-12-27 Общество с ограниченной ответственностью "Инновационное предприятие "НЦВО-ФОТОНИКА" (ООО "НЦВО-Фотоника") Волоконно-оптический торцевой датчик давления (варианты)
RU132555U1 (ru) * 2012-08-20 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Стенд для испытания турбокомпрессора

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648197C1 (ru) * 2017-06-21 2018-03-22 Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Способ испытания газотурбинного двигателя
RU2693742C1 (ru) * 2018-06-09 2019-07-04 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Устройство измерения давления с модулями преобразователей давления и способ работы устройства

Similar Documents

Publication Publication Date Title
Ma et al. Optical sensors for power transformer monitoring: A review
Chai et al. Review on fiber-optic sensing in health monitoring of power grids
KR101825581B1 (ko) 전기 장치 구성요소 감시 시스템 및 방법
Rosolem et al. Fiber optic bending sensor for water level monitoring: Development and field test: A review
CN101308598B (zh) 光纤光栅感温火灾探测系统
CN103105138A (zh) 一种光纤光栅应变灵敏度的校准装置和方法
CN103148956B (zh) 一种基于涂覆微纳光纤进行温度测量的装置及方法
KR20140031930A (ko) 유체 유동 속도 및 온도 측정
MacPherson et al. Miniature fiber optic pressure sensor for turbomachinery applications
CN103076108A (zh) 一种基于fbg的新型电力电缆导体温度测量传感器
Lomperski et al. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field
US7729567B2 (en) Fiber optic transducer for simultaneous pressure and temperature measurement in fluid flow
RU2567470C1 (ru) Устройство для измерения давления и температуры в потоке газа и/или жидкости и стенд для испытания и измерения характеристик работы газотурбинного двигателя
US20180172536A1 (en) FIBER OPTIC PRESSURE APPARATUS, METHODS, and APPLICATIONS
Zhu et al. Probing changes in pressure with subpascal resolution using an optical fiber Fabry–Perot interferometer
Chiuchiolo et al. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets
JP6324058B2 (ja) ひずみ計測方法及びひずみ計測装置
Latini et al. Fiber optic sensors system for high-temperature monitoring of aerospace structures
Risch et al. Optical fiber cable design for distributed pipeline sensing and data transmission
CN203132737U (zh) 一种基于fbg的新型电力电缆导体温度测量传感器
Oliveira et al. A prototype of fiber bragg grating dendrometric sensor for monitoring the growth of the diameter of trees in the amazon
CN110987946A (zh) 一种用分光器改进裂缝传感器精度的装置及方法
WO2019135841A1 (en) High temperature fiber optic cable with strain relief and protection for harsh environments
ARSLAN et al. Temperature compensation of FBG sensors via sensor packaging approach for harsh environmental applications
CN212807379U (zh) 一种基于fbg的高温传感器

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner