RU2563541C1 - Способ стимуляции восстановления иннервации поврежденной ткани - Google Patents
Способ стимуляции восстановления иннервации поврежденной ткани Download PDFInfo
- Publication number
- RU2563541C1 RU2563541C1 RU2014112167/10A RU2014112167A RU2563541C1 RU 2563541 C1 RU2563541 C1 RU 2563541C1 RU 2014112167/10 A RU2014112167/10 A RU 2014112167/10A RU 2014112167 A RU2014112167 A RU 2014112167A RU 2563541 C1 RU2563541 C1 RU 2563541C1
- Authority
- RU
- Russia
- Prior art keywords
- urokinase
- nerve
- plasmid
- pvax1
- expression
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000030214 innervation Effects 0.000 title claims abstract description 22
- 230000004936 stimulating effect Effects 0.000 title claims description 7
- 238000011084 recovery Methods 0.000 title abstract description 12
- 239000013612 plasmid Substances 0.000 claims abstract description 77
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 claims abstract description 70
- 210000005036 nerve Anatomy 0.000 claims abstract description 51
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 claims abstract description 47
- 229960005356 urokinase Drugs 0.000 claims abstract description 46
- 210000000578 peripheral nerve Anatomy 0.000 claims abstract description 25
- 230000000302 ischemic effect Effects 0.000 claims abstract description 24
- 230000008929 regeneration Effects 0.000 claims abstract description 23
- 238000011069 regeneration method Methods 0.000 claims abstract description 23
- 210000003205 muscle Anatomy 0.000 claims abstract description 19
- 208000014674 injury Diseases 0.000 claims abstract description 18
- 210000004962 mammalian cell Anatomy 0.000 claims abstract description 17
- 210000001519 tissue Anatomy 0.000 claims abstract description 10
- 230000008733 trauma Effects 0.000 claims abstract description 7
- 241000124008 Mammalia Species 0.000 claims abstract 2
- 230000006378 damage Effects 0.000 claims description 35
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 239000012634 fragment Substances 0.000 claims description 10
- 239000013600 plasmid vector Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 14
- 208000028867 ischemia Diseases 0.000 abstract description 9
- 230000000638 stimulation Effects 0.000 abstract description 8
- 238000001890 transfection Methods 0.000 abstract description 5
- 238000010353 genetic engineering Methods 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract description 3
- 230000002068 genetic effect Effects 0.000 abstract description 3
- 108010051456 Plasminogen Proteins 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 102000013566 Plasminogen Human genes 0.000 abstract 1
- 239000012190 activator Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000002560 therapeutic procedure Methods 0.000 abstract 1
- 239000002299 complementary DNA Substances 0.000 description 22
- 241001465754 Metazoa Species 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 13
- 108091035707 Consensus sequence Proteins 0.000 description 11
- 208000027418 Wounds and injury Diseases 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 210000004126 nerve fiber Anatomy 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000028600 axonogenesis Effects 0.000 description 9
- 210000004345 peroneal nerve Anatomy 0.000 description 9
- 210000003050 axon Anatomy 0.000 description 8
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 7
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 7
- 208000028389 Nerve injury Diseases 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000000763 evoking effect Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000008764 nerve damage Effects 0.000 description 7
- 210000002683 foot Anatomy 0.000 description 6
- 230000035876 healing Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 210000000130 stem cell Anatomy 0.000 description 6
- 108700019146 Transgenes Proteins 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 210000003371 toe Anatomy 0.000 description 5
- 108010025020 Nerve Growth Factor Proteins 0.000 description 4
- 102100031358 Urokinase-type plasminogen activator Human genes 0.000 description 4
- 230000036982 action potential Effects 0.000 description 4
- 210000002027 skeletal muscle Anatomy 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 3
- 230000007850 degeneration Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 210000001640 nerve ending Anatomy 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003666 myelinated nerve fiber Anatomy 0.000 description 2
- 230000008035 nerve activity Effects 0.000 description 2
- 230000007830 nerve conduction Effects 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- 239000003900 neurotrophic factor Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 210000003497 sciatic nerve Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 108010013216 GATATC-specific type II deoxyribonucleases Proteins 0.000 description 1
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 1
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 1
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000005786 degenerative changes Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000058223 human VEGFA Human genes 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007491 morphometric analysis Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 230000007383 nerve stimulation Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000000508 neurotrophic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 210000001698 popliteal fossa Anatomy 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Изобретение относится к области генной инженерии и генной терапии и может быть использовано для стимуляции роста и регенерации нервов и восстановления иннервации ишемизированных тканей. Изобретение представляет собой способ стимуляции восстановления иннервации поврежденной ткани у млекопитающих с использованием оптимизированного для экспрессии в клетках млекопитающих гена, кодирующиего активатор плазминогена урокиназного типа (урокиназу, uPA). Изобретение также касается плазмидной конструкции, содержащей указанный оптимизированный ген урокиназы и последовательность Козак. Изобретение позволяет ускорить восстановление структуры и проводимости периферических нервов после травм и ишемии путем трансфекции мышц, иннервируемых поврежденным нервом. 3 н. и 2 з.п. ф-лы, 7 ил., 1 табл., 4 пр.
Description
Область техники
Настоящее изобретение относится к области генной инженерии и генной терапии и может быть использовано в регенеративной медицине, в частности в травматологии, трансплантологии и нейробиологии для стимуляции роста и регенерации нервов и восстановления периферической иннервации тканей. Предлагается оптимизированный для экспрессии в клетках млекопитающих ген, кодирующий активатор плазминогена урокиназного типа (урокиназу, uPA), новая плазмидная конструкция, содержащая оптимизированный ген урокиназы и последовательность Козак, а также способ, позволяющий ускорить восстановление структуры и проводимости периферических нервов после травм и ишемии путем трансфекции мышц, иннервируемых поврежденным нервом, новой плазмидной конструкцией.
Уровень техники
Нарушения периферической иннервации, вызванные травмами, ишемией и нейродегенеративными заболеваниями являются важнейшей причиной временной и стойкой инвалидности населения России трудоспособного возраста [Одинак М.М., Живолупов С.А. Заболевания и травмы периферической нервной системы. Санкт-Петербург, СпецЛит., 2009].
Стимуляция роста и восстановления периферического нерва - результат сложнейшего процесса, включающего множество физиологических и биохимических реакций. Необходимым условием для нормального протекания процесса регенерации нервов являются поддержка выживания поврежденных нейронов, обеспечение проходимости эндоневральных каналов, стимуляция направленного роста новых нервных окончаний к клеткам-мишеням, а также восстановление синаптических контактов. В стимуляции направленного роста нервных окончаний и восстановлении иннервации ключевую роль играют протеолитические ферменты и, прежде всего, урокиназа. Этот фермент способствует росту и регенерации нервных волокон благодаря очищению соединительнотканного чехла нерва от фибрина и матриксных белков, ингибирующих рост нервных волокон. Также урокиназа способствует высвобождению из окружающего матрикса и последующей активации нейротрофных факторов роста. Таким образом, уже на основе теоретического анализа вопроса можно заключить, что на процесс регенерации нерва и восстановления периферической иннервации стимулирующее воздействие может оказать локальное повышение в участке повреждения продукции такого протеолитического фермента как урокиназа.
Одним из наиболее разработанных подходов к решению вопроса локального обеспечения органов и тканей необходимыми полипептидными продуктами (гормонами, ферментами и факторами роста) является применение векторных конструкций, которые кодируют нужные белки, в данном случае ключевые факторы, стимулирующие рост нервов и восстановление периферической иннервации.
В отношении урокиназы известно, что она необходима для восстановления поврежденного периферического нерва [Siconolfi LB, Seeds NW. Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci. 2001 Jun 15; 21 (12): 4348-55], а астроциты, трансфицированные плазмидой, кодирующей урокиназу, стимулируют рост аксонов in vitro [Muir Е, Du JS, Fok-Seang J, Smith-Thomas LC, Housden ES, Rogers J, Fawcett JW. Increased axon growth through astrocyte cell lines transfected with urokinase. Glia. 1998 Мау; 23 (1): 24-34]. Однако влияние плазмидных конструкций, экспрессирующих урокиназу, на регенерацию периферического нерва до настоящего времени не исследовалось.
Наиболее близкими аналогами предлагаемого способа являются способы регенерации периферического нерва после травмы, описанные в патенте РФ №2486918 (дата публикации: 10.07.2013), а также в статье Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6(3): e17899.
В отношении способа, описанного в патенте РФ №2486918 необходимо отметить, что несмотря на то, что продемонстрировано положительное влияние разработанной невирусной конструкции на восстановление периферической иннервации, эффект выражен недостаточно.
В связи с этим, авторами настоящего изобретения была предпринята попытка усовершенствовать способ стимуляции восстановления периферической иннервации с помощью метода рекомбинантных ДНК в направлении повышения его эффективности и разработки эффективной плазмидной конструкции.
Раскрытие изобретения
При разработке настоящего изобретения во внимание были приняты следующие факты.
Первое. Для успешной регенерации периферического нерва необходимо обеспечить своевременное удаление фибринового сгустка и проходимость эндоневральных каналов. Кроме того, для поддержки выживания и стимуляции роста аксонов необходимо активизировать такие нейротрофические факторы как мозговой нейротрофический фактор (BDNF), глиальный фактор роста (GDNF) и фактор роста нервов (NGF), которые депонированы во внеклеточном матриксе. Данную функцию выполняет система активаторов плазминогена, в том числе урокиназа (uPA). Соответственно, можно заключить, что стимуляции роста нервных окончаний и восстановления нервов с высокой степенью вероятности можно достичь, обеспечив долговременную продукцию урокиназы в участке повреждения.
Второе. Признанным является тот факт, что долговременную продукцию факторов роста можно обеспечить путем введения в поврежденную ткань генно-инженерных конструкций, содержащих кДНК этих белков. Для нативной последовательности кДНК урокиназы характерно значительное содержание т.н. «редких триплетов», что может негативно влиять на эффективность ее экспрессии. Поэтому повышения эффективности экспрессии можно добиться путем анализа частоты встречаемости каждого триплета и замены тех триплетов, частота встречаемости которых в нативной кДНК различается с расчетным значением более чем на 2, сохранив при этом аминокислотную последовательность белка.
Добиться дальнейшего повышения эффективности продукции трансгена можно благодаря введению в его структуру консенсусной последовательности Козак [Kozak M (October 1987). "An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs". Nucleic Acids Res. 15 (20): 8125-8148.].
Учитывая перечисленные факты, добиться повышения эффективности экспрессии урокиназы в участках повреждения можно путем оптимизации целевой кДНК и путем введения в экспрессионный вектор консенсусной последовательности Козак.
Третье. Для успешной стимуляции восстановления иннервации в ишемизированной ткани необходимо обеспечить высокий уровень продукции урокиназы. Соответственно, эффективным способом стимуляции восстановления иннервации в ишемизированных тканях с высокой вероятностью могло бы быть применение плазмидной конструкции, кодирующей урокиназу, обеспечивающей максимально возможную продукцию трансгена.
С учетом этого, решение поставленной задачи предполагало:
а) создание плазмидной конструкции, содержащей оптимизированную к ДНК uPA, в которую внесена консенсусная последовательность Козак;
б) оценку эффективности экспрессии созданной плазмидной конструкции in vitro; и
в) определение влияния плазмидной конструкции на эффективность восстановления периферического нерва после травмы, а также после ишемии.
При осуществлении изобретения впервые была оптимизирована для экспрессии в клетках млекопитающих последовательность кДНК урокиназы человека и сконструирована рекомбинантная плазмида (пример 1), характеризующаяся последовательностью нуклеотидов, приведенной в SEQ ID NO: 1. Предложенная плазмида содержит модифицированную (оптимизированную для экспрессии в клетках млекопитающих) последовательность кДНК урокиназы человека (называемую согласно настоящему изобретению «модифицированный ген урокиназы», нуклеотиды с 764 по 2063 в SEQ ID NO: 1, выделена серым затенением и полужирным шрифтом на Фигуре 7) и консенсусную последовательность Козак (нуклеотиды с 759 по 764 и 768 в SEQ ID NO: 1, выделена двойным подчеркиванием на Фигуре 7). Полная последовательность фрагмента ДНК, кодирующего оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащую последовательность Козак слитую с модифицированным геном урокиназы, приведена в SEQ ID NO: 2. Для специалиста очевидно, что для клонирования могут быть использованы различные плазмидные векторы, для которых характерна высококопийная репликация в E. coli и высокий уровень экспрессии клонируемого гена в клетках млекопитающих. Наилучшие результаты были получены авторами изобретения при использовании в качестве вектора плазмиды pVax1 (#V260-20, Invitrogen, http://tools.lifetechnologies.com/content/sfs/manuals/pvaxl_man.pdf).
В результате исследования экспрессии полученной плазмидной конструкции, было показано, что через 48 часов после трансфекции клеток наблюдается секреция соответствующего белка в среду культивирования. Трансформация НЕК293 плазмидой, содержащей оптимизированную кДНК урокиназы и консенсусную Козак-последовательность, привела почти к 5-кратному увеличению продукции белка в среду культивирования по сравнению с трансформацией НЕК293 плазмидой, содержащей кДНК нативной урокиназы (пример 2).
На модели травматического повреждения периферического нерва мыши было получено экспериментальное подтверждение того, что сконструированная плазмидная конструкция после введения в мышцу, иннервируемую поврежденным нервом, существенно ускоряет восстановление структуры и проводимости поврежденного нерва. Так, введение плазмиды, содержащей оптимизированную последовательность гена урокиназы слитую с последовательностью Козак, обеспечивает ускорение восстановления структуры и проводимости травмированного нерва, а, следовательно, и иннервации соответствующих скелетных мышц более чем в 1,3 раза (пример 3). Плазмида, кодирующая нативную урокиназу и не содержащая консенсусной Козак-последовательности, достоверного эффекта на восстановление структуры и функции травмированного нерва не оказала.
Впервые на модели ишемии нерва мыши была применена созданная плазмидная конструкция. Введение плазмидной конструкции, содержащей оптимизированную последовательность гена урокиназы слитую с последовательностью Козак, позволило предотвратить дегенерацию и стимулировать регенерацию нервных волокон в ишемизированном нерве. Так восстановление иннервации мышц (PFI) было примерно в 1,5 раза лучше, а восстановление проводимости ишемизированного нерва в 1,4 раз больше, чем у животных в группе контроля. В то же время, плазмида, кодирующая нативную урокиназу и не содержащая консенсусной Козак последовательности, достоверного эффекта на восстановление структуры и функции нерва после ишемического повреждения не оказала.
Таким образом, в результате создания настоящего изобретения были разработаны следующие технические решения:
- фрагмент ДНК, кодирующий оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащий последовательность Козак слитую с модифицированным геном урокиназы и характеризующийся последовательностью, приведенной в SEQ ID NO: 2;
- рекомбинантная плазмида, предназначенная для экспрессии гена урокиназы в клетках млекопитающих, содержащая плазмидный вектор pVax1 со встроенным фрагментом ДНК, кодирующим оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащим последовательность Козак слитую с модифицированным геном урокиназы, характеризующаяся нуклеотидной последовательностью, приведенной в SEQ ID NO: 1;
- способ стимулирования регенерации периферического нерва после травмы и ишемии, сущность которого состоит в том, что в мышцу, иннервируемую поврежденным нервом, вводят терапевтически эффективное количество упомянутой выше рекомбинантной плазмиды, содержащей плазмидный вектор pVax1 со встроенным фрагментом ДНК, кодирующим оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащим последовательность Козак слитую с модифицированным геном урокиназы, характеризующейся нуклеотидной последовательностью, приведенной в SEQ ID NO: 1.
При этом основным техническим результатом является разработка модифицированной последовательности гена урокиназы и плазмиды для эффективной экспрессии урокиназы в клетках млекопитающих, а также повышение эффективности способа стимулирования регенерации периферического нерва после травмы и ишемии. При использовании по существу одной и той же модели травматизации периферического нерва значения основных показателей иннервации ткани увеличились в сравнении с прототипом примерно в полтора раза. Дополнительными результатами данного способа следует считать возможность применения разработанной конструкции для стимуляции регенерации нерва после ишемического повреждения и отказ от применения небезопасных аденовирусных конструкций.
Краткое описание Фигур (чертежей)
Фиг. 1. Анализ эффективности продукции урокиназы, клетками траснфицированными плазмидными конструкциями. Данные представлены в виде среднее ± стандартное отклонение (*-p<0,01; n=3).
Фиг. 2. Восстановление функции мышц-разгибателей стопы после травмы нерва. По оси ординат - значение PFI, усл.ед.; по оси абсцисс - время после повреждения, дни. Данные представлены в виде среднее ± стандартное отклонение (*-p<0,05; n=84).
Фиг. 3. Восстановление количества аксонов в поврежденном нерве. А. - нерв мыши, которой вводили плазмиду, не содержащую трансген. Б. - нерв мыши, которой вводили плазмидную конструкцию pVax1-muPA-native. В. - нерв мыши, которой вводили плазмидную конструкцию pVax1-K-muPA-opt. Количество аксонов оценивали с помощью окрашивания кроличьими антителами к цитоскелету аксонов, белку NF200. Г. - результаты морфометрического анализа количества аксонов на срезе поврежденного нерва. По оси ординат - количество аксонов, шт.Данные представлены в виде медиана (25 процентилей; 75 процентилей) (*-p<0,05; n>10).
Фиг. 4. Восстановление проводимости травмированного нерва. А. - восстановление латентного периода СПДН, по оси ординат - длительность латентного периода, мс. Б. - восстановление амплитуды СПДН, по оси ординат - амплитуда СПДН, мВ. Данные представлены в виде медиана (25 процентилей; 75 процентилей) (*-p<0,05; n>5).
Фиг. 5. Восстановление функции мышц-разгибателей стопы после ишемического повреждения нерва. По оси ординат - значение PFI, усл.ед.; по оси абсцисс - время после повреждения, дни. Данные представлены в виде среднее ± стандартное отклонение (*-p<0,05; n=84).
Фиг. 6. Восстановление амплитуды СПДН после ишемического повреждения. По оси ординат - амплитуда СПДН, мВ. Данные представлены в виде медиана (25 процентилей; 75 процентилей) (*-p<0,05; n>5).
Фиг. 7. Нуклеотидная последовательность рекомбинантной плазмиды pVax1-K-uPA-opt (соответствует последовательности SEQ ID NO: 1). Серым затенением и полужирным шрифтом выделена оптимизированная (модифицированная) последовательность кДНК урокиназы человека, двойным подчеркиванием выделена консенсусная последовательность Козак, полужирным шрифтом и курсивом выделены сайты рестрикции EcoRI и EcoRV. Осуществление изобретения
При осуществлении изобретения, помимо методов, подробно раскрытых в нижеследующих примерах, были использованы стандартные технологии генной инженерии, культивирования клеток млекопитающих и описанные ранее методы анализа регенерации нерва после травмы.
Пример 1. Создание плазмидной конструкции, кодирующей урокиназу
Дизайн оптимизированной плазмидной конструкции, кодирующей кДНК урокиназы, производили следующим образом. Анализ нуклеотидной последовательности кДНК урокиназы человека (NM_002658, https://www.ncbi.nlm.nih.gov/nuccore/NM_002658) выявил значительное содержание т.н. «редких триплетов», что может негативно влиять на эффективность ее экспрессии (таблица 1). На основании этих данных с помощью программы Sequence Optimizer (http://easyprot.org/programs/sequence_optimization.htm) авторами изобретения была проведена оптимизация кДНК урокиназы, в результате которой соотношение кодонов в кДНК урокиназы было максимально приближено к расчетному оптимальному, т.е. кодон, который встречался чаще или реже, чем в рассчитанных значениях, заменяли на аналогичный с сохранением аминокислотной последовательности.
Для того чтобы повысить эффективность трансляции мРНК урокиназы, в кДНК встраивали консенсусную последовательность Козак [Kozak М (October 1987). "An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs". Nucleic Acids Res. 15 (20): 8125-8148.]. А именно, внесли 2 триплета, до старт-кодона 5′-GCC АСС-3′ Для получения «сильной» последовательности Козак также необходимо было внести G непосредственно после старт-кодона. Для этого в последовательность был введен триплет GTG, кодирующий аминокислоту валин. Данный подход позволил достичь внедрения «сильной» последовательности Козак в кДНК урокиназы, избежав при этом сдвига рамки считывания. Полученная последовательность нуклеотидов, кодирующая урокиназу человека, представлена на SEQ ID NO: 2. Эту последовательность получали с помощью прямого химического синтеза фрагментов и последующей их сборки. Идентичность полученной последовательности ожидаемой определяли с помощью секвенирования.
Для клонирования оптимизированной кДНК в экспрессионный вектор к ее 5′- и 3′-концам добавляли последовательности, распознаваемые эндонуклеазами EcoRI и EcoRV (5′-GAATTC-3′ и 5′-САТАТС-3′ соответственно). В данном примере в качестве вектора использовали плазмиду pVax1 (#V260-20, Invitrogen), однако, для клонирования могли быть использованы и другие плазмидные векторы, для которых характерна высококопийная репликация в E. coli и высокий уровень экспрессии клонируемого гена в клетках млекопитающих.
Пример 2.
Анализ эффективности полученной плазмидной конструкции
Эффективность экспрессии разработанной плазмиды определяли по продукции целевого белка клетками линии НЕК293, трансфицированными данной плазмидой. Клетки НЕК293, высеянные в лунки 24-луночной плашки (50000 клеток на лунку) в среде DMEM, содержащей 2% эмбриональной телячьей сыворотки, трансфицировали плазмидами pVax1, pVax1-uPA-native (несущей ген урокиназы дикого типа, конструирование плазмиды описано в патенте РФ №2486918, пример 1) или pVax1-K-uPA-opt (несущей фрагмент ДНК, содержащий последовательность Козак слитую с модифицированным геном урокиназы - SEQ ID NO: 2, полная последовательность плазмиды приведена в SEQ ID NO: 1). Трансфекцию проводили с использованием по 1 мкг одной из плазмидных ДНК и по 1 мкл реагента Липофектамин 2000 (Invitrogen) в соответствии с протоколом производителя. Через 24 ч после трансфекции культуральную среду заменяли на свежую. Концентрацию урокиназы в среде анализировали через следующие 48 часов культивирования.
Концентрацию урокиназы в культуральной среде измеряли при помощи набора для иммуноферментного анализа (CSI19849A, Cell Sciences, США) в соответствии с протоколом производителя. Согласно этим измерениям, концентрация урокиназы в культуральной среде от НЕК293, трансформированных pVax1-uPA-native, составляла примерно 0,8 нг/мл. При использовании плазмиды с оптимизированной кДНК и последовательностью Козак, продукция целевого белка увеличивается примерно в 5 раз по сравнению с использованием плазмиды pVax1-uPA-native, что свидетельствует о высокой эффективности плазмиды pVax1-K-uPA-opt, содержащей оптимизированную последовательность кДНК и консенсусную последовательность Козак (фиг. 1).
Пример 3.
Влияние плазмиды pVax1-K-uPA-opt на восстановление периферического нерва после травмы
Для оценки эффективности влияния разработанной плазмиды на восстановление периферического нерва с использованием мышиной модели были дополнительно сконструированы плазмиды pVax1-muPA-native (несущая мышиный ген урокиназы дикого типа, в качестве которого в плазмиду встраивали кДНК, характеризующуюся последовательностью, доступной по ссылке http://www.ncbi.nlm.nih.gov/nuccore/NM_008873.3) и pVax1-K-muPA-opt (несущая фрагмент ДНК, содержащий последовательность Козак слитую с модифицированным геном урокиназы мыши).
Конструирование плазмиды pVax1-K-muPA-opt и оптимизацию кДНК урокиназы мыши, осуществляли по алгоритму, описанному в Примере 1. Полная нуклеотидная последовательность плазмиды pVaxl-K-muPA-opt приведена в SEQ ID NO: 3.
Анализ эффективности полученных плазмид pVax1-muPA-native и pVax1-K-muPA-opt осуществляли согласно методике, описанной в статье Makarevich P, Tsokolaeva Z, Shevelev A, Rybalkin I, Shevchenko E, Beloglazova I, Vlasik T, Tkachuk V, Parfyonova Y. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One. 2012; 7 (6): e38776. doi: 10.1371/journal.pone.0038776, с модификациями.
При использовании плазмиды с оптимизированной кДНК и последовательностью Козак, продукция целевого белка увеличивается примерно в 4 раз по сравнению с использованием плазмиды pVax1-muPA-native, что как и в случае плазмиды pVax1-K-uPA-opt, свидетельствует о высокой эффективности плазмиды содержащей оптимизированную последовательность кДНК и консенсусную последовательность Козак.
Для исследования процесса регенерации периферического нерва после травмы использовали модель повреждения общего малоберцового нерва, описанную ранее [патент РФ №2486918, пример 4; Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6 (3): e17899]. Сразу после повреждения нерва в переднюю большеберцовую мышцу вводили от 200 мкг плазмидной ДНК pVax1, pVax1-muPA-native или pVax1-K-muPA-opt. Данная терапевтически эффективная концентрация была подобрана по результатам предварительных экспериментов.
Восстановление иннервации мышц оценивали через 1, 2, 4 и 7 суток по восстановлению функции мышц-разгибателей пальцев стопы. Восстановление функции мышц-разгибателей стопы анализировали с помощью измерения функционального индекса малоберцового нерва (PFI) как описано ранее [Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6 (3): e17899]. Было обнаружено, что уже через 2 суток у животных, которым была инъецирована pVax1-K-muPA-opt, значение PFI было примерно в 1,3 раза выше, чем у животных в группе контроля (фиг. 2). Плазмида pVax1-muPA-native не оказала достоверного эффекта на восстановление иннервации мышц-разгибателей пальцев стопы после травмы нерва.
Восстановление структурной целостности нерва оценивали с помощью иммуннофлуоресцентного окрашивания замороженных срезов поврежденных нервов через 4 суток после повреждения как описано ранее [патент РФ №2486918, пример 4; Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina К, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6(3): е17899]. Уже через 4 дня после повреждения у животных, которым была инъецирована pVax1-K-muPA-opt наблюдали примерно в 1,3 раза больше аксонов, содержащих белок NF200, на 1 срез нерва по сравнению с нервами животных, которым вводили плазмиду pVax1, не содержащую трансгена (p<0,05; n=18). Плазмида pVax1-muPA-native достоверного эффекта на восстановление структуры травмированного нерва не оказала (фиг. 3).
Эти данные свидетельствуют о более быстром росте и лучшей выживаемости аксонов в поврежденных нервах животных, которым была инъецирована pVax1-K-muPA-opt.
Восстановление проводимости регенерировавших нервных волокон оценивали с помощью вызванных потенциалов действия, регистрируемых с поверхностной веточки общего малоберцового нерва, как описано ранее [патент РФ №2486918, пример 4; Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6 (3): e17899]. Полученные данные анализировали следующим образом. Регистрируемый СПДН содержит два параметра, позволяющие судить о степени восстановления нерва: латентный период и амплитуду.
Латентный период - промежуток времени от момента стимуляции нерва до момента регистрации вызванного потенциала действия, измеряется в миллисекундах (мс). Исходя из определения понятно, что латентный период характеризует скорость проведения возбуждения по нерву, причем величина латентного периода обратно пропорциональна скорости проведения возбуждения по нерву. Таким образом, укорочение латентного периода свидетельствует о большей скорости проведения вызванных потенциалов, что в свою очередь говорит о степени миелинизации для миелинизированных нервных волокон или об увеличении толщины безмиелиновых нервных волокон.
Амплитуда характеризует количество нервных волокон, участвующих в проведении возбуждения; измеряется в милливольтах (мВ) Чем больше амплитуда - тем больше количество восстановившихся нервных волокон.
При помощи регистрации вызванных потенциалов действия нерва через 7 суток после повреждения нам удалось показать, что инъекция генетической конструкции pVax1-K-muPA-opt стимулирует восстановление нерва. Хотя инъекция данной плазмиды не вызывала достоверного уменьшения латентного периода, она привела к увеличению амплитуды СПДН примерно в 1,3 раза по сравнению с соответствующими значениями СПДН мышей, получивших плазмиду pVax1, не содержащую трансгена (фиг. 4). Плазмида pVax1-muPA-native достоверного эффекта на восстановление проводимости травмированного нерва не оказала.
Таким образом, инъекция плазмиды pVax1-K-muPA-opt приводила к более выраженному восстановлению проводимости нерва по сравнению с разработанной ранее плазмидой pVax1-muPA-native.
Пример 4.
Влияние плазмиды pVax1-K-muPA-opt на восстановление периферического нерва после ишемического повреждения
Впервые на модели ишемии нерва мыши была применена созданная плазмидная конструкция. Введение плазмидной конструкции pVax1-K-muPA-opt позволило замедлить развитие дегенеративных изменений в нерве после его ишемического повреждения. Для исследования процесса регенерации периферического нерва после ишемического повреждения использовали модель ишемического повреждения общего малоберцового нерва. В данной модели повреждения артерии, питающие седалищный и общий малоберцовый нервы, перевязывали стерильной нейлоновой нитью (8-0) и иссекали [Adams WE - The Blood Supply of Nerves. The effects of exclusion of its regional sources of supply on the sciatic nerve of the rabbit (1943) Journal of Anatomy, 77(3): 243-250; Kadiyala RK et al. - The blood supply of the common peroneal nerve in the popliteal fossa (2005) J. Bone Joint Surg Br, 87-B (3): 337-342]. Седалищный и общий малоберцовый нервы аккуратно с помощью стеклянного крючка отделяли от окружающих тканей, при этом тщательно избегали травмирования нерва.
Сразу после нанесения ишемического повреждения в переднюю большеберцовую мышцу вводили 200 мкг плазмидной ДНК pVax1, pVax1-muPA-native или pVax1-K-muPA-opt. Данная терапевтически эффективная концентрация была подобрана по результатам предварительных экспериментов.
Восстановление иннервации мышц оценивали через 1, 2 и 4 суток после ишемического повреждения по восстановлению функции мышц-разгибателей пальцев стопы. Восстановление функции мышц-разгибателей стопы анализировали с помощью измерения функционального индекса малоберцового нерва (PFI) как описано ранее [патент РФ №2486918;]. Было обнаружено, что уже через 2 суток у животных, которым была инъецирована pVax1-K-muPA-opt, значение PFI было примерно в 1,4 раза выше, чем в контроле, и в 1,3 раза выше, чем у животных, которым была инъецирована плазмида pVax1-muPA-native. А через 4 суток у животных, которым была инъецирована pVax1-K-muPA-opt, значение PFI было примерно в 1,5 раза выше, чем в контроле и у животных, которым была инъецирована плазмида pVax1-muPA-native (фиг. 5). Плазмида pVax1-muPA-native достоверного эффекта на восстановление иннервации мышц после ишемического повреждения нерва не оказала.
Восстановление проводимости ишемизированных нервных волокон оценивали с помощью вызванных потенциалов действия, регистрируемых с поверхностной веточки общего малоберцового нерва, как описано ранее [патент РФ №2486918, пример 4; Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011; 6 (3): e17899]. Полученные данные анализировали, как было описано выше (см. пример 3).
При помощи регистрации вызванных потенциалов действия нерва через 7 суток после повреждения нам удалось показать, что инъекция генетической конструкции pVax1-K-muPA-opt препятствует дегенерации нервных волокон после ишемического повреждения и стимулирует их восстановление. Введение плазмиды pVax1-K-muPA-opt способствовало увеличению амплитуды СПДН. Так, у животных, получивших pVax1-K-muPA-opt, амплитуда СПДН была примерно в 1,4 раза больше, чем у животных, которым вводили pVax1 (фиг. 6). Эти данные свидетельствуют о том, что инъекция pVax1-K-muPA-opt препятствует дегенерации и стимулирует восстановление проводимости нервных волокон после ишемического повреждения, поскольку большее количество нервных волокон, чем в группе контроля проводит вызванные потенциалы действия. В то же время, плазмида pVax1-muPA-native достоверного эффекта на восстановление проводимости нерва после его ишемического повреждения не оказала.
Заключение
В результате проведенных исследований, впервые было показано, что инъекция плазмидной конструкции, содержащей оптимизированную последовательность гена урокиназы слитую с последовательностью Козак, в мышцу, иннервируемую травмируемым нервом, с последующей электропорацией стимулирует регенерацию: примерно в 1,3 раза в сравнении с контролем ускоряется восстановление иннервации мышц-разгибателей пальцев стопы (см. кривые на фиг. 2), которое сопровождается увеличением числа аксонов в поврежденном нерве в 1,3 раза (см. столбцы на фиг. 3), а также возрастанием амплитуды СПДН в 1,3 раза (см. столбцы на фиг. 4).
Установлено, что введение плазмиды pVax1-K-muPA-opt после ишемического повреждения нерва сопровождается увеличением амплитуды СПДН примерно в 1,4 раза по сравнению с животными, которым вводили pVax1 и pVax1-muPA-native (см.столбцы на фиг. 6). Также инъекция pVax1-K-muPA-opt сопровождается лучшим восстановлением иннервации мышц: так, через 2 и 4 суток у животных, которым была инъецирована pVax1-K-muPA-opt, значение PFI было примерно в 1,3-1,5 раза выше, чем у животных в группе контроля (см. кривые на фиг. 5).
На основании полученных данных был сделан вывод о том, что стимуляция восстановления структуры и функции нерва после травмы и ишемии может быть достигнута путем введения плазмидной конструкции, содержащей оптимизированную нуклеотидную последовательность урокиназы и консенсусную последовательность Козак. Высокая продукция целевого белка, достигнутая в результате проведенной модификации, обеспечила возможность использования этой плазмиды для стимуляции восстановления нервов как после травмы, так и после ишемического повреждения.
Claims (5)
1. Способ стимуляции восстановления иннервации поврежденной ткани у млекопитающих с помощью введения в область повреждения векторной конструкции, обеспечивающей высокий уровень экспрессии фактора, участвующего в процессе регенерации нерва, отличающийся тем, что в поврежденную мышцу вводят терапевтически эффективное количество рекомбинантной плазмиды, содержащей плазмидный вектор pVax1 со встроенным по сайтам рестрикции EcoRI и EcoRV фрагментом ДНК, кодирующим оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащим последовательность Козак, слитую с модифицированным геном урокиназы, характеризующуюся нуклеотидной последовательностью, приведенной в SEQ ID NO:1.
2. Способ по п. 1, в котором повреждение представляет собой травму периферического нерва.
3. Способ по п. 2, в котором повреждение представляет собой ишемическое повреждение периферического нерва.
4. Рекомбинантная плазмида, предназначенная для экспрессии гена урокиназы в клетках млекопитающих, содержащая плазмидный вектор pVax1 со встроенным по сайтам рестрикции EcoRI и EcoRV фрагментом ДНК, кодирующим оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащим последовательность Козак, слитую с модифицированным геном урокиназы, характеризующаяся нуклеотидной последовательностью, приведенной в SEQ ID NO: 1
5. Фрагмент ДНК, кодирующий оптимизированную для экспрессии в клетках млекопитающих урокиназу, содержащий последовательность Козак, слитую с модифицированным геном урокиназы, и характеризующийся нуклеотидной последовательностью, приведенной в SEQ ID NO: 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014112167/10A RU2563541C1 (ru) | 2014-03-31 | 2014-03-31 | Способ стимуляции восстановления иннервации поврежденной ткани |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014112167/10A RU2563541C1 (ru) | 2014-03-31 | 2014-03-31 | Способ стимуляции восстановления иннервации поврежденной ткани |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2563541C1 true RU2563541C1 (ru) | 2015-09-20 |
Family
ID=54147857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014112167/10A RU2563541C1 (ru) | 2014-03-31 | 2014-03-31 | Способ стимуляции восстановления иннервации поврежденной ткани |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2563541C1 (ru) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2486918C1 (ru) * | 2011-10-25 | 2013-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ стимулирования восстановления периферической иннервации тканей с помощью векторных конструкций |
-
2014
- 2014-03-31 RU RU2014112167/10A patent/RU2563541C1/ru active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2486918C1 (ru) * | 2011-10-25 | 2013-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ стимулирования восстановления периферической иннервации тканей с помощью векторных конструкций |
Non-Patent Citations (1)
Title |
---|
NCBI Reference Sequence: NM_002658.3, 11.01.2014, Найдено в Интернет по адресу https://ncbi.nlm.nih.gov/nuccore/222537757?sat=18&satkey=1502951, найдено 28.04.2015. КАРАГЯУР М.Н. Автореферат "Влияние мезенхимальных стволовых клеток на восстановление периферического нерва после травмы", Москва, 2013. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O'Connor et al. | Identification of maxillary factor, a maxillary process–derived chemoattractant for developing trigeminal sensory axons | |
Karagyaur et al. | Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration | |
Tabuchi et al. | REST4-mediated modulation of REST/NRSF-silencing function during BDNF gene promoter activation | |
NZ538097A (en) | Method and compositions for improving wound healing | |
Ke et al. | Netrin-1 overexpression in bone marrow mesenchymal stem cells promotes functional recovery in a rat model of peripheral nerve injury | |
US6686159B2 (en) | Methods and compositions for modulating telomerase reverse transcriptase (TERT) expression | |
US20210196795A1 (en) | Therapeutic use of vegf-c and ccbe1 | |
US20150240219A1 (en) | Methods for accelerating bone repair | |
US20240279630A1 (en) | Isolated cas13 protein and use thereof | |
RU2486918C1 (ru) | Способ стимулирования восстановления периферической иннервации тканей с помощью векторных конструкций | |
Wang et al. | NGF and TERT co-transfected BMSCs improve the restoration of cognitive impairment in vascular dementia rats | |
Takaoka et al. | Electroacupuncture suppresses myostatin gene expression: cell proliferative reaction in mouse skeletal muscle | |
Povysheva et al. | Post–spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG | |
An et al. | Expressing osteogenic growth peptide in the rabbit bone mesenchymal stem cells increased alkaline phosphatase activity and enhanced the collagen accumulation | |
Mukainaka et al. | Molecular cloning of two glutamate transporter subtypes from mouse brain | |
RU2563541C1 (ru) | Способ стимуляции восстановления иннервации поврежденной ткани | |
WO2007001010A1 (ja) | パーキンソン病の治療のための医薬 | |
US12303614B2 (en) | Compositions and methods for improving mechanical properties of a tissue or for regenerating an injured or diseased tissue | |
Ebihara et al. | Gene structure and alternative splicing of the mouse glycine transporter type-2 | |
JP7650444B2 (ja) | 尿の細胞から作製される内皮および平滑筋様組織およびその使用 | |
KR20190141209A (ko) | 피부 경화증의 치료를 위한 매트릭스 금속단백분해효소를 포함하는 자가 유래 세포의 전달 | |
RU2538621C2 (ru) | Способ стимулирования восстановления иннервации тканей после травм и ишемии с помощью векторной конструкции | |
Ikonomov et al. | Innervation and target tissue interactions induce Rab-GDP dissociation inhibitor (GDI) expression during peripheral synapse formation in developing chick ciliary ganglion neurons in situ | |
Kim et al. | Insulin-like growth factor-1 gene delivery may enhance the proliferation of human corpus cavernosal smooth muscle cells | |
US8748568B2 (en) | Isolated A-type FHF N-terminal domain peptides and methods of use |