RU2562903C1 - Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка - Google Patents

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка Download PDF

Info

Publication number
RU2562903C1
RU2562903C1 RU2014103986/11A RU2014103986A RU2562903C1 RU 2562903 C1 RU2562903 C1 RU 2562903C1 RU 2014103986/11 A RU2014103986/11 A RU 2014103986/11A RU 2014103986 A RU2014103986 A RU 2014103986A RU 2562903 C1 RU2562903 C1 RU 2562903C1
Authority
RU
Russia
Prior art keywords
spacecraft
orbit
longitudinal axis
orientation
normal
Prior art date
Application number
RU2014103986/11A
Other languages
English (en)
Other versions
RU2014103986A (ru
Inventor
Михаил Иванович Монахов
Дмитрий Николаевич Рулев
Михаил Юрьевич Беляев
Татьяна Владимировна Матвеева
Виктор Васильевич Сазонов
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2014103986/11A priority Critical patent/RU2562903C1/ru
Publication of RU2014103986A publication Critical patent/RU2014103986A/ru
Application granted granted Critical
Publication of RU2562903C1 publication Critical patent/RU2562903C1/ru

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов на орбитах с максимальной длительностью теневого участка включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции. Гравитационная ориентация КА и его закрутка выполняются при значении угла между направлением на Солнце и плоскостью орбиты, не превышающем заданного значения. Дополнительно определяют и фиксируют момент прохождения КА противосолнечной точки витка орбиты. Техническим результатом изобретения является максимизация суммарной освещенности рабочей поверхности СБ за виток. 4 ил.

Description

Изобретение относится к области космической техники и может быть использовано при управлении ориентацией космических аппаратов (КА) при выполнении экспериментов и исследований.
Известен способ управления ориентацией КА, включающий выставку осей КА и поддержание углового положения с помощью двигателей ориентации (Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. М.: Машиностроение, 1974).
Однако для использования данного способа необходимо расходовать рабочее тело, что вызывает, кроме того, непрогнозируемые микроускорения на борту КА.
Известен способ ориентации КА, включающий выставку оси КА, соответствующей минимальному моменту инерции, на центр Земли и орбитальное смещение КА (Беляев М.Ю. Научные эксперименты на космических кораблях и орбитальных станциях. - М.: Машиностроение, 1984). Данный способ используется для КА, имеющих вытянутую форму, т.е. когда момент инерции относительно продольной оси значительно (в разы) меньше момента инерции относительно поперечных осей.
Данный способ позволяет поддерживать одноосную гравитационную ориентацию без дополнительного расхода рабочего тела на ее поддержание и тем самым, например, снизить уровень микроперегрузок, действующих на КА, но не обеспечивает учета освещенности солнечных батарей (СБ) для обеспечения требуемого для экспериментов прихода электроэнергии.
Известен способ управления ориентацией КА с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка (Патент РФ №2457158, приоритет от 22.09.2010, МПК (2006.01) B64G 1/24, 1/44 - прототип), включающий гравитационную ориентацию КА и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, при нахождении Солнца в плоскости орбиты совмещают плоскость СБ с плоскостью орбиты к моменту прохождения утреннего терминатора, измеряют и отслеживают угол между перпендикуляром к активной поверхности СБ и направлением на Солнце, а закрутку КА вокруг продольной оси в направлении, соответствующем уменьшению измеряемого и отслеживаемого угла между перпендикуляром к активной поверхности СБ и направлением на Солнце, осуществляют в момент прохождения утреннего терминатора с угловой скоростью из диапазона значений ω=360°/T÷720°/T, где T - период обращения КА по орбите.
При управлении КА по способу-прототипу солнечное излучение поступает на СБ с направлений, отстоящих от нормали к рабочей поверхности СБ, вследствие чего генерируемый СБ ток отличается от максимального тока, который способны генерировать СБ. В то же время, при выполнении ряда экспериментов, в которых используется энергоемкая аппаратура, желательно обеспечить максимально возможный съем электроэнергии с СБ. Кроме того, предложенный в способе-прототипе диапазон скоростей закрутки КА не охватывает некоторые возможные значения скорости закрутки КА, при которых обеспечивается устойчивость гравитационной ориентации ряда КА.
Задачей, на решение которой направлено настоящее изобретение, является повышение прихода электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА на орбитах с максимальной длительностью теневого участка.
Технический результат предлагаемого изобретения заключается в максимизации суммарной освещенности рабочей поверхности СБ за виток в режиме закрутки КА при поддержании одноосной гравитационной ориентации КА на орбитах с максимальной длительностью теневого участка.
Технический результат достигается тем, что в способе управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка, включающем гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, выполняемые при значении угла между направлением на Солнце и плоскостью орбиты, не превышающем заданного значения, дополнительно определяют и фиксируют момент прохождения космическим аппаратом противосолнечной точки витка орбиты, разворачивают космический аппарат вокруг продольной оси до достижения к моменту закрутки углом между проекцией нормали к активной поверхности солнечных батарей на плоскость местного горизонта и нормалью к плоскости орбиты значения 90°·(1-k)+k·|Δt|·i·360°/T и углом между проекцией нормали к активной поверхности солнечных батарей на плоскость местного горизонта и вектором скорости космического аппарата значения
90 o + ( 1 ) i + 1 2 Δ t i 360 o / T
Figure 00000001
,
где Δt - интервал времени от момента прохождения противосолнечной точки витка орбиты до момента закрутки;
T - период обращения космического аппарата по орбите;
k=±1; i - положительное нечетное целое, значение которого выбирается из условия устойчивости поддержания гравитационной ориентации космического аппарата, а закрутку космического аппарата выполняют в момент достижения вышеупомянутыми углами задаваемых значений с угловой скоростью ( 1 ) i + 1 2 k i 360 o / T
Figure 00000002
при положительном направлении отсчета угловой скорости от центра Земли.
Суть предлагаемого изобретения поясняется на фиг.1÷4, на которых представлены схемы ориентации СБ КА при поддержании гравитационной ориентации КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с предлагаемыми параметрами закрутки. На фиг.1÷4 введены обозначения:
1 - орбита КА;
2 - противосолнечная точка витка орбиты;
3, 4 - точки утреннего и вечернего терминаторов, соответственно;
5 - активная поверхность СБ;
V - вектор скорости КА;
N - нормаль к активной поверхности СБ;
W - вектор угловой скорости закрутки КА вокруг продольной оси;
S - направление на Солнце.
Поясним предложенные в способе действия.
Максимальная длительность теневого участка витка орбиты КА достигается на витках, в течение которых Солнце находится вблизи к плоскости орбиты, т.е. когда значение угла между направлением на Солнце и плоскостью орбиты не превышает некоторого заданного значения, например 10°÷20°.
На таких витках орбиты КА выполняют построение гравитационной ориентации КА, при которой продольная ось КА, соответствующая минимальному моменту инерции, направлена вдоль местной вертикали. Для этого ориентируют КА продольной осью вдоль местной вертикали и придают КА вращение вокруг оси, направленной по нормали к плоскости орбиты КА с угловой скоростью, равной угловой скорости орбитального движения КА.
Определяют и фиксируют момент прохождения КА противосолнечной точки витка орбиты.
Разворачивают КА вокруг продольной оси до достижения к планируемому моменту выдачи импульса закрутки углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и нормалью к плоскости орбиты значения 90°·(1-k)+k·|Δt|·i·360°/T и углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором скорости КА значения 90 o + ( 1 ) i + 1 2 Δ t i 360 o / T
Figure 00000003
где Δt - интервал времени от момента прохождения противосолнечной точки витка орбиты до момента закрутки;
T - период обращения КА по орбите;
k=±1; i - положительное нечетное целое, значение которого выбирается из условия обеспечения необходимой степени устойчивости поддержания гравитационной ориентации КА (область определения i составляет i=1, 3, 5, 7, … или i=2·m-1, где m - натуральное число, m=1, 2, …).
В момент достижения вышеупомянутыми углами задаваемых значений выполняют закрутку КА вокруг продольной оси с угловой скоростью, равной ( 1 ) i + 1 2 k i 360 o / T
Figure 00000002
при положительном направлении отсчета угловой скорости закрутки КА от центра Земли.
При k=+1 реализуется закрутка КА вокруг продольной оси с угловой скоростью i·360°/T, при i=1, 5, … (i=4·m-3), направленной в центр Земли, и при i=3, 7, … (i=4·m-1), направленной от центра Земли, при этом в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет минимальный угол с нормалью к плоскости орбиты КА (для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, нормаль к активной поверхности СБ в противосолнечной точке витка направлена строго по нормали к плоскости орбиты КА).
На фиг.1 и 2 представлены схемы ориентации СБ при такой закрутке для i=1 и i=3.
При k=-1 реализуется закрутка КА вокруг продольной оси с угловой скоростью i·360°/T, при i=1, 5, … (i=4·m-3), направленной от центра Земли, и при i=3, 7, … (i=4·m-1), направленной в центр Земли, при этом в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет максимальный угол с нормалью к плоскости орбиты КА (для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, нормаль к активной поверхности СБ в противосолнечной точке витка направлена строго против нормали к плоскости орбиты КА).
На фиг.3 и 4 представлены схемы ориентации СБ при такой закрутке для i=1 и i=3.
Значение положительного нечетного целого i, которое определяет предложенную величину скорости закрутки КА, выбирается в зависимости от инерционных характеристик КА из условия обеспечения необходимой степени устойчивости поддержания гравитационной ориентации КА. Например, предложенное значение угловой скорости закрутки КА при i=3 удовлетворяет условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации такого типа КА как, например, транспортный грузовой корабль (ТГК) «Прогресс», у которого поперечные главные центральные моменты инерции примерно в 7 раз превышают минимальный главный центральный момент инерции. Необходимая степень устойчивости поддержания гравитационной ориентации КА соответствует такому процессу вращения КА, при котором отклонение продольной оси данного КА от местной вертикали, возникающее за счет компонент угловой скорости вокруг поперечных осей, в необходимой степени компенсируется за счет вращения КА вокруг продольной оси, и, вместе с тем, вращение КА вокруг продольной оси не приводит к гироскопической устойчивости данной оси КА в инерциальном пространстве.
За счет выполнения предлагаемых действий дважды на витке - в моменты прохождения утреннего и вечернего терминаторов - нормаль к активной поверхности СБ будет составлять минимально возможный угол с направлением на Солнце. Например, в случае, если нормаль к активной поверхности СБ перпендикулярна продольной оси КА, то данный угол в моменты прохождения утреннего и вечернего терминаторов будет равен нулю и нормаль к активной поверхности СБ будет совпадать с направлением на Солнце. Поскольку текущая освещенность СБ характеризуется косинусом угла между направлением на Солнце и нормалью к активной поверхности СБ, то в указанные моменты времени будет обеспечиваться максимально возможный для каждого конкретного КА текущий приход электроэнергии. В другие моменты времени на витке за счет вращения КА нормаль к активной поверхности СБ будет отклоняться от направления на Солнце, при этом суммарно за виток будет обеспечиваться максимально возможная освещенность СБ и, следовательно, будет достигаться максимально возможный для каждого конкретного КА приход электроэнергии за виток.
При этом предложенное значение угловой скорости закрутки обеспечивает цикличное повторение ориентации СБ относительно потока солнечного излучения на последующих витках - таким образом достигается постоянство снабжения КА необходимой электроэнергией от СБ на последующих витках полета КА.
Опишем технический эффект предлагаемого изобретения.
Предлагаемое изобретение повышает приход электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА путем обеспечения максимальной суммарной освещенности активной поверхности СБ за виток в режиме закрутки при одноосной гравитационной ориентации КА на орбитах с максимальной длительностью теневого участка.
При этом предложенные параметры закрутки КА, удовлетворяя условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации КА, обеспечивают такое соотношение значений угловой скорости закрутки и периода вращения КА, при котором дважды на витке нормаль к активной поверхности СБ КА составляет минимально возможный угол с направлением на Солнце, и, как следствие, обеспечивается максимальная суммарная освещенность активной поверхности СБ за виток. В том числе, для КА, у которых нормаль к активной поверхности СБ перпендикулярна продольной оси КА, в моменты прохождения утреннего и вечернего терминаторов витка нормаль к активной поверхности СБ будет направлена строго на Солнце, тем самым обеспечивая абсолютный максимум генерации электроэнергии.
В настоящее время технически все готово для реализации предложенного способа на таком КА, как ТГК «Прогресс». Для реализации разворотов, закрутки и вычислений могут использоваться штатные средства системы управления ТГК «Прогресс» - система управления движением и навигацией, включая систему автономной навигации, солнечные датчики, датчики угловой скорости, двигатели ориентации, бортовой вычислитель и т.д. Закрутка корабля может производиться на время, необходимое для проведения экспериментов.

Claims (1)

  1. Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка, включающий гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, выполняемые при значении угла между направлением на Солнце и плоскостью орбиты, не превышающем заданного значения, отличающийся тем, что определяют и фиксируют момент прохождения космическим аппаратом противосолнечной точки витка орбиты, разворачивают космический аппарат вокруг продольной оси до достижения к моменту закрутки углом между проекцией нормали к активной поверхности солнечных батарей на плоскость местного горизонта и нормалью к плоскости орбиты значения 90°·(1-k)+k·|Δt|·i·360°/T и углом между проекцией нормали к активной поверхности солнечных батарей на плоскость местного горизонта и вектором скорости космического аппарата значения
    Figure 00000004
    ,
    где Δt - интервал времени от момента прохождения противосолнечной точки витка орбиты до момента закрутки;
    T - период обращения космического аппарата по орбите;
    k=±1; i - положительное нечетное целое, значение которого выбирается из условия устойчивости поддержания гравитационной ориентации космического аппарата, а закрутку космического аппарата выполняют в момент достижения вышеупомянутыми углами задаваемых значений с угловой скоростью
    Figure 00000002
    при положительном направлении отсчета угловой скорости от центра Земли.
RU2014103986/11A 2014-02-06 2014-02-06 Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка RU2562903C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014103986/11A RU2562903C1 (ru) 2014-02-06 2014-02-06 Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014103986/11A RU2562903C1 (ru) 2014-02-06 2014-02-06 Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Publications (2)

Publication Number Publication Date
RU2014103986A RU2014103986A (ru) 2015-08-20
RU2562903C1 true RU2562903C1 (ru) 2015-09-10

Family

ID=53879887

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014103986/11A RU2562903C1 (ru) 2014-02-06 2014-02-06 Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Country Status (1)

Country Link
RU (1) RU2562903C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669586A (en) * 1994-12-06 1997-09-23 Space Systems/Loral, Inc. Satellite gravity gradient compensation using on-orbit solar array reorientation
RU2457158C2 (ru) * 2010-09-22 2012-07-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка
RU2457159C2 (ru) * 2010-08-30 2012-07-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ одноосной ориентации космического аппарата вытянутой формы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669586A (en) * 1994-12-06 1997-09-23 Space Systems/Loral, Inc. Satellite gravity gradient compensation using on-orbit solar array reorientation
RU2457159C2 (ru) * 2010-08-30 2012-07-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ одноосной ориентации космического аппарата вытянутой формы
RU2457158C2 (ru) * 2010-09-22 2012-07-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Also Published As

Publication number Publication date
RU2014103986A (ru) 2015-08-20

Similar Documents

Publication Publication Date Title
RU2539068C2 (ru) Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения
CN1039301C (zh) 卫星姿态控制的测试设备及其应用
Iorio General relativistic spin-orbit and spin–spin effects on the motion of rotating particles in an external gravitational field
RU2457158C2 (ru) Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка
CN105539881B (zh) 一种仅使用一对斜对称推力器的位置保持优化方法
De Falco et al. Three-dimensional general relativistic Poynting-Robertson effect: Radial radiation field
US11174047B2 (en) Spacecraft control system for determining reaction torque
RU2562904C1 (ru) Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов
RU2535979C2 (ru) Система ориентации навигационного спутника
RU2562903C1 (ru) Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка
Gupta Dynamic Universe Model Predicts the Live Trajectory of New Horizons Satellite Going To Pluto
US20200377240A1 (en) Control system for executing a safing mode sequence in a spacecraft
Pfister Gravitomagnetism: From Einstein’s 1912 paper to the satellites LAGEOS and gravity probe B
RU2539271C2 (ru) Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения
RU2764815C1 (ru) Способ одноосной ориентации космического аппарата вытянутой формы
JPWO2020256024A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
Tartaglia Influence of the angular momentum of astrophysical objects on light and clocks and related measurements
RU2539266C2 (ru) Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения
Ismail et al. Torque free axi-symmetric gyros with changing moments of inertia
RU75635U1 (ru) Устройство для поворота космического аппарата
KR101807431B1 (ko) 위성체의 제어 장치 및 방법
Sukhov et al. Numerical analysis of periodic motions of a dynamically symmetric satellite originated from its hyperboloidal precession
Haranas et al. Detection of the relativistic corrections to the gravitational potential using a Sagnac interferometer
Cascioli et al. The determination of the rotational state and interior structure of Venus using VERITAS radar tie points
RU2594057C1 (ru) Способ одноосной ориентации космического аппарата вытянутой формы