RU2562178C1 - Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения - Google Patents
Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения Download PDFInfo
- Publication number
- RU2562178C1 RU2562178C1 RU2014119462/07A RU2014119462A RU2562178C1 RU 2562178 C1 RU2562178 C1 RU 2562178C1 RU 2014119462/07 A RU2014119462/07 A RU 2014119462/07A RU 2014119462 A RU2014119462 A RU 2014119462A RU 2562178 C1 RU2562178 C1 RU 2562178C1
- Authority
- RU
- Russia
- Prior art keywords
- hydrogen
- electron beam
- sample membrane
- vacuum chamber
- sample
- Prior art date
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для управления электронным пучком в вакуумной камере расположены отклоняющие пластины, проходя которые, электронный пучок облучает с определенной частотой различные места поверхности металлической мембраны-образца. одна сторона которого, находящаяся в электролитической ячейке, насыщается водородом, диффундирующим к противоположной стороне образца-мембраны, встроенной герметично в торец вакуумной камеры и одновременно облучаемой отклоняемым пучком электронов от электронной пушки. Технический результат - повышение точности измерения. 2 н.п. ф-лы, 3 ил.
Description
Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации.
Известны следующие устройства и способы измерения коэффициентов диффузии водорода в металлах.
Для исследования диффузионных процессов готовят образцы, содержащие водород, либо прессованием, либо напылением на подложку исследуемого материала в вакууме. По прошествии определенного времени проводят послойный анализ образца. Слои образца распыляют пучком ионов, а состав распыленных слоев образца анализируют на содержание водорода на масс-спектрометре, измеряя количество водорода (вещества) в каждом слое. Затем по формуле зависимости концентрации измеряемого вещества от времени вычисляют коэффициент диффузии (Клоцман С.М. Диффузия в нанокристаллических материалах // ФММ. 1993. - Т.75. - №5. - С.5-18.). Коэффициенты диффузии измеряют тайм-лаг-методом по установлению стационарного потока через металлическую мембрану после прекращения доступа водорода к ее входной поверхности по формуле Бэррера (1) D=h2/6t3, где t3 - время установления стационарного потока водорода через металлическую мембрану, h - толщина металлической мембраны, D - коэффициент диффузии (Гельд П.В., Рябов Р.А., Кодес Е.С. Водород и несовершенства структуры металла. - М., Металлургия, 1979. - С.85-88; Баранов В.П. Определение эффективных коэффициентов диффузии водорода в деформированных высокопрочных сталях // Современные проблемы науки и образования. - 2007. - №1. - С.37-39).
Коэффициент диффузии водорода определяют при его распространении в металлической пластине, которая поворачивается вокруг своей оси. По мере распространения по пластине водорода происходит смещение центра тяжести пластины, в которой водород диффундирует. Пластина поворачивается и по измерению угла ее поворота судят о коэффициенте диффузии водорода в образце-пластине (Авторское свидетельство СССР №1636729).
Эти устройства и способы не позволяют проводить измерения коэффициента диффузии водорода в металлах, подвергаемых внешнему воздействию заряженными частицами, γ- квантами и рентгеновскими лучами.
В качестве прототипа выбраны устройство и способ, описанные в работе (Тюрин Ю.И., Чернов И.П. Аккумулирующие свойства водорода в твердом теле. - М.: Энергоатомиздат, 2000. - С.41 88 (рис.5.1).
Устройство состоит из вакуумной камеры, соединенной с масс-спектрометром. В вакуумной камере расположена электронная пушка и образец, предварительно насыщенный водородом. Образец имеет форму прямоугольной мембраны.
Узкий пучок электронов из электронной пушки направляют на образец. Под действием пучка электронов водород выходит из образца и попадает в масс-спектрометр. С помощью масс-спектрометра определяют количество водорода, вышедшего из образца за время облучения, и по нему судят о процессе диффузии водорода в образце.
Недостатком прототипа-устройства является невозможность направить пучок электронов в разные места по всей поверхности металлического образца-мембраны.
Недостаток прототипа-способа - невозможность измерить коэффициент диффузии водорода в условиях одновременного наводороживания и облучения электронами изделий, находящихся в промышленных условиях. При этом в изделиях из металла образуются дефекты, в которых скапливается водород, который диффундирует по образцу. В прототипе диффузию водорода исследуют при облучении электронами уже наводороженного образца. Это уменьшает точность и искажает процесс диффузии водорода в конструкционных материалах.
Задача - создать устройство и способ измерения коэффициента диффузии в металлах при одновременном облучении образца металла пучком электронов и наводороживании образца металла.
Устройство для измерения коэффициентов диффузии водорода в металлах содержит вакуумную камеру, соединенную с масс-спектрометром, электронную пушку, микроамперметр, измеряющий ток пучка, образец-мембрану. На пути электронного пучка по оси вакуумной камеры расположены металлические пластины. Они соединены с генератором развертки электронного пучка для отклонения его на поверхность образца-мембраны - катода, расположенного совместно с анодом в электролитической ячейке.
Способ измерения коэффициентов диффузии водорода в металлах, содержащих водород и облучаемых электронным пучком, состоит в том, что на поверхности образца-мембраны, находящегося в электролитической ячейке, при электролизе скапливается водород. Он диффундирует через образец-мембрану на поверхность образца-мембраны, находящуюся в вакуумной камере и одновременно облучаемую электронным пучком, отклоняемым от прямолинейной траектории с помощью генератора его развертки. Сканируют электронным лучом поверхность образца-мембраны, выбирая частоту генератора развертки электронного луча. Измеряют время начала выхода водорода из образца-мембраны под облучением. Фиксируют время выхода водорода из мембраны на максимальный режим, находят разность этих величин и по формуле Бэррера рассчитывают коэффициент диффузии водорода через образец-мембрану в условиях ее облучения электронами.
На фиг.1 приведена схема устройства.
Устройство содержит вакуумную камеру 1, соединенную с масс-спектрометром 2. В левом торце по оси вакуумной камеры 1 расположена электронная пушка 3. Металлические пластины 4 соединены с генератором развертки 7 электронного пучка и расположены по оси вакуумной камеры 1 между электронной пушкой и правым торцом вакуумной камеры 1. Образец-мембрана 6 является частью стенки электролитической ячейки 5, герметически пристыкованной к правому торцу вакуумной камеры 1. Электролитическая ячейка 5, находящаяся напротив электронной пушки 3, содержит электролит 8, в котором расположены соединенные с источником питания 9 анод 10 и образец-мембрана 6 - катод, нижняя часть которого соединена с микроамперметром 11.
На фиг.2 показано расположение в вакуумной камере 1 четырех металлических пластин 4, отклоняющих электронный пучок для сканирования всей поверхности образца-мембраны 6, напряжение на которые подают от генератора развертки 7.
На фиг.3 приведено изменение содержания водорода H2 в вакуумной камере 1 в зависимости от времени электролиза и облучения электронами.
Для решения поставленной задачи в вакуумной камере 1 на пути электронного пучка по оси вакуумной камеры закреплены четыре пластины 4 (фиг.2). Для отклонения электронного пучка от прямолинейной траектории на пластины подают напряжение от генератора развертки 7. Благодаря этому электроны пучка попадают в различные места по всей поверхности наводороживаемого металлического образца-мембраны 6. Водород, выходящий из металлического образца-мембраны 6 - катода в вакуумную камеру 1, попадает из нее в масс-спектрометр 2 для измерения концентрации водорода.
Измерение коэффициента диффузии осуществляют по следующему алгоритму: включают масс-спектрометр 2 и измеряют возможное (после откачки вакуумной камеры 1) количество остаточных газов в вакуумной камере 1. Включают электронную пушку 3 и генератор развертки 7 электронного пучка. По показаниям микроамперметра 11 устанавливают напряжение на отклоняющих пластинах 4 с помощью генератора развертки 7, отклоняя электронный пучок по осям на величину y и x, и не выходя пучком за пределы металлического образца-мембраны 6. Напряжение на пластинах 4 для отклонения пучка на величину y или x определяют по формуле
где d - расстояние между отклоняющими пластинами 4, l - длина пластин 4, L - расстояние от пластин 4 до образца-мембраны 6, E0 - энергия пучка электронов, e - заряд электрона. Далее в электролитическую ячейку 5 заливают раствор 0.1 М серной кислоты, включают источник питания электролитической ячейки 9. Устанавливают плотность тока электролиза, равную 1A·см-2. В металлический образец-мембрану 6, являющийся катодом, в результате электролиза входит водород, который диффундирует через образец-мембрану 6 и попадает в вакуумную камеру 1, соединенную с масс-спектрометром 2. Постоянно измеряют во времени изменение интенсивности линий водорода на масс-спектрометре 2. Фиксируют момент времени t1, когда масс-спектрометр 2 показывает постоянную интенсивность линии водорода H2 в вакуумной камере 1 устройства. В этот момент времени t1 включают электронную пушку 3 и генератор развертки 7, на котором заранее установлено напряжение на пластинах 4. Частоту генератора развертки 7 выбирают такой, чтобы пучок электронов облучал поверхность мембраны в одной и той же точке в течение 0.5-1.0 мин. Записывают время t2 выхода в процессе облучения интенсивности линий H2 на максимальный режим (фиг.3).
На фиг. 3 представлена зависимость содержания водорода в относительных единицах в вакуумной камере 1 от времени электролиза и черточками указаны моменты времени. Находят разность t2-t1=t3 и рассчитывают коэффициент диффузии D водорода по формуле Бэррера (1) D=h2/6t3, где t3 - время установления стационарного потока водорода через металлический образец-мембрану 6, h - толщина металлического образца-мембраны 4.
Конкретный пример выполнения устройства для определения коэффициента диффузии водорода в металлах и способ его применения.
Устройство содержит вакуумную камеру 1, соединенную с масс-спектрометром 2. В торце вакуумной камеры 1 расположена электронная пушка 3. Вакуумная камера 1 представляет собой металлическую цилиндрическую трубку с внутренним диаметром от 25 мм до 35 мм и длиной примерно 40 см, в торец которой по оси вакуумной камеры 1 вмонтирована электронная пушка 3, электронный пучок которой, проходя через металлические пластины 4, попадает на поверхность образца-мембраны 6, являющейся частью стенки электролитической ячейки 5. Электролитическая ячейка 5 расположена напротив электронной пушки 3, содержит электролит 8, в котором находятся соединенные с источником питания 9 анод 10 и образец-мембрана 6 - катод, нижняя часть которого соединена с микроамперметром 11.
Образец-мембрана 6 - катод выполнен из нержавеющей стали 12Х18Н12Т толщиной 50 мкм, диаметром 25 мм.
В электролитическую ячейку 5 заливают 0,1 М раствор серной кислоты. По формуле (2) строят градуировочный график зависимости величины напряжения U на отклоняющих пластинах 4 от величины y и x отклонения электронного пучка от центра образца-мембраны 6. Для построения графика используют следующие размеры устройства. Расстояние от края отклоняющих пучок пластин L=20 мм; длина пластин l=200 мм, расстояние между пластинами d=10 мм; диаметр мембраны 25 мм; энергия пучка электронов E0=30 кэВ; заряд электрона e=1.6·10-19 Кл. Например, для отклонения электронного пучка на величину y=2 см подают напряжение U=150 В. Чтобы пучок не попал за пределы образца-мембраны, наблюдают за показаниями микроамперметра 11. При отклонении пучка за границу образца-мембраны 6, микроамперметр 11 показывает нулевое значение. Включают масс-спектрометр 2 в режиме анализа линии водорода (H2) и фиксируют спектр масс остаточных газов в вакуумной камере 1. На анод 10 и образец-мембрану 6 подают постоянное напряжение от источника питания 9 DC SUPPLY HY 3002 и устанавливают плотность тока 1A·см-2. На поверхности образца-мембраны, находящегося в электролитической ячейке, при электролизе скапливается водород, который диффундирует через образец-мембрану на его поверхность, находящуюся в вакуумной камере.
Масс-спектрометром 2 продолжают измерение интенсивности линий водорода в вакуумной камере 1, и когда интенсивность линий водорода в масс-спектрометре становится постоянной (не изменяется со временем), включают электронную пушку 3 и генератор развертки 7, фиксируют момент времени их включения t1=120 мин и записывают в таблицу. Пучок электронов диаметром d=2 мм с помощью генератора развертки 7 С1-49 электронного луча направляют последовательно в различные места поверхности облучаемого образца-мембраны 6 (режим сканирования) и измеряют зависимость интенсивности выхода водорода от времени. Фиксируют момент времени, когда поток выходящего из металла водорода становится постоянным t2=140 мин, и вновь записывают в таблицу изменения интенсивности линий водорода I о.е. в зависимости от времени t. Как правило, если продолжать облучение, то интенсивность линий водорода в камере несколько уменьшается. Это свидетельствует о том, что увеличение диффузионного потока прекращается, например, за счет изменения плотности дефектов структуры металла или других факторов. Разность значений t2-t1=t3 подставляют в формулу (1). t3=t2-t1=20 мин.
м2с-1. Для сравнения коэффициент диффузии без облучения электронами равен D=3.81·10-14 м2с-1. Погрешность определения коэффициента диффузии зависит от точности фиксации времени выхода интенсивности линий водорода на стационарный режим.
Без отклоняющих пластин в условиях расширенного с помощью магнитной системы пушки электронного пучка до d=20 мм, который стационарно облучает всю поверхность образца-мембраны 6, максимальное значение интенсивности линий водорода меньше на 40%, а время t3 увеличивается до 25 мин и более. Применение узкого пучка электронов в стационарном режиме, т.е. без сканирования поверхности мембраны, также увеличивает время выхода t3. При этом максимум линий интенсивности снижается на 10-12%. Физической причиной этого является перераспределение зарядовой плотности в наводороживаемом металле под действием электронного пучка.
Измерение коэффициентов диффузии водорода в металлах при одновременном облучении и наводороживании приобретает особое значение для технологий вновь создаваемых материалов для атомной и аэрокосмической промышленности.
Claims (2)
1. Устройство для измерения коэффициентов диффузии водорода в металлах, содержащее вакуумную камеру, соединенную с масс-спектрометром, электронную пушку, микроамперметр, измеряющий ток пучка, образец-мембрану, отличающееся тем, что на пути электронного пучка по оси вакуумной камеры расположены металлические пластины, соединенные с генератором развертки электронного пучка для отклонения пучка на поверхность образца-мембраны - катода, расположенного совместно с анодом в электролитической ячейке.
2. Способ измерения коэффициентов диффузии водорода в металлах, содержащих водород и облучаемых электронным пучком, отличающийся тем, что на поверхности образца-мембраны, находящегося в электролитической ячейке, при электролизе скапливается водород, который диффундирует через образец-мембрану на его поверхность, находящуюся в вакуумной камере и одновременно облучаемую электронным пучком, отклоняемым от прямолинейной траектории с помощью генератора его развертки, выбирают частоту генератора развертки, сканируя электронным лучом поверхность образца-мембраны, измеряют время начала выхода водорода из образца-мембраны под облучением, фиксируют время выхода водорода из мембраны на максимальный режим, находят разность этих величин и по формуле Бэррера рассчитывают коэффициент диффузии водорода через образец-мембрану в условиях ее облучения электронами.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119462/07A RU2562178C1 (ru) | 2014-05-14 | 2014-05-14 | Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119462/07A RU2562178C1 (ru) | 2014-05-14 | 2014-05-14 | Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2562178C1 true RU2562178C1 (ru) | 2015-09-10 |
Family
ID=54073545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014119462/07A RU2562178C1 (ru) | 2014-05-14 | 2014-05-14 | Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2562178C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106248571A (zh) * | 2016-10-10 | 2016-12-21 | 武汉钢铁股份有限公司 | 氢扩散系数评价管线钢抗氢致开裂腐蚀性能的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1636729A1 (ru) * | 1989-01-26 | 1991-03-23 | Институт металлофизики АН УССР | Способ определени коэффициента диффузии водорода в металлах |
RU82036U1 (ru) * | 2008-07-28 | 2009-04-10 | Автономная некоммерческая организация "Региональный Северо-Западный межотраслевой аттестационный центр" (АНО "РСЗ МАЦ") | Устройство для определения диффузионного водорода |
-
2014
- 2014-05-14 RU RU2014119462/07A patent/RU2562178C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1636729A1 (ru) * | 1989-01-26 | 1991-03-23 | Институт металлофизики АН УССР | Способ определени коэффициента диффузии водорода в металлах |
RU82036U1 (ru) * | 2008-07-28 | 2009-04-10 | Автономная некоммерческая организация "Региональный Северо-Западный межотраслевой аттестационный центр" (АНО "РСЗ МАЦ") | Устройство для определения диффузионного водорода |
Non-Patent Citations (1)
Title |
---|
ТЮРИН Ю.И., Аккумулирующие свойства водорода в твердом теле, Москва, Энергоатомиздат, 2000. с.41 -88 ,рис.5.1. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106248571A (zh) * | 2016-10-10 | 2016-12-21 | 武汉钢铁股份有限公司 | 氢扩散系数评价管线钢抗氢致开裂腐蚀性能的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reichert et al. | Molecular scale structure and dynamics at an ionic liquid/electrode interface | |
Isaacs et al. | In situ X‐Ray microprobe study of salt layers during anodic dissolution of stainless steel in chloride solution | |
JP6760694B2 (ja) | がいし類の汚損の計測方法、計測装置、及び計測プログラム | |
US10705036B2 (en) | Method and system for analysis of objects | |
RU2562178C1 (ru) | Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения | |
CN113125511B (zh) | 基于电导法的汽泡参数和硼酸浓度同步测量双用探针系统 | |
Ararat-Ibarguen et al. | Measurements of diffusion coefficients in solids by means of LIBS combined with direct sectioning | |
Idris et al. | Detection of salt in soil by employing the unique sub-target effect in a pulsed carbon dioxide (CO 2) laser-induced breakdown spectroscopy | |
Leshchev et al. | Sub-nanosecond secondary geminate recombination in mercury halides HgX2 (X= I, Br) investigated by time-resolved x-ray scattering | |
JP4155409B2 (ja) | トレーサー水素による材料劣化性状評価方法および評価装置 | |
US20200200727A1 (en) | Apparatus and method for the non-destructive measurement of hydrogen diffusivity | |
US20180313779A1 (en) | Apparatus and method for the non-destructive measurement of hydrogen diffusivity | |
RU2586960C1 (ru) | Способ измерения коэффициентов диффузии водорода в титане | |
Pikuz et al. | Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments | |
Peng et al. | In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF | |
Larionov et al. | Hydrogen diffusion in steels under electron bombardment | |
TW200413737A (en) | Ion beam distribution detection device and ion beam orientation processing device using the same | |
JP2014157104A (ja) | 水素量測定方法 | |
JP2019100939A (ja) | 水素透過量測定方法、水素透過量測定装置及び水素透過量測定プログラム | |
JP2010223948A (ja) | 金属体中の水素の局所分析方法 | |
SAVADI et al. | Experimental investigations of alpha particle irradiation of natural nickel | |
CN202599836U (zh) | 一种便携式化学物质快速检测仪 | |
Kada et al. | Development of a low-energy PIXE analysis system based on an ion implanter | |
DE102009026883A1 (de) | Verfahren und Vorrichtung zur ortsaufgelösten Aufklärung von Korrosionsmechanismen an Werkstücken | |
WO2019187235A1 (ja) | 非破壊検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170515 |