RU2560642C2 - Ветроэнергетическая установка - Google Patents

Ветроэнергетическая установка Download PDF

Info

Publication number
RU2560642C2
RU2560642C2 RU2013152803/06A RU2013152803A RU2560642C2 RU 2560642 C2 RU2560642 C2 RU 2560642C2 RU 2013152803/06 A RU2013152803/06 A RU 2013152803/06A RU 2013152803 A RU2013152803 A RU 2013152803A RU 2560642 C2 RU2560642 C2 RU 2560642C2
Authority
RU
Russia
Prior art keywords
rotor
generator
stator
hydraulic cylinder
wind power
Prior art date
Application number
RU2013152803/06A
Other languages
English (en)
Other versions
RU2013152803A (ru
Inventor
Альбрехт БРЕННЕР
Франк КНООП
Маттиас УББЕН
Original Assignee
Воббен Пропертиз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Воббен Пропертиз Гмбх filed Critical Воббен Пропертиз Гмбх
Publication of RU2013152803A publication Critical patent/RU2013152803A/ru
Application granted granted Critical
Publication of RU2560642C2 publication Critical patent/RU2560642C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

Изобретение относится к ветроэнергетической установке. Задачей изобретения является возможность монтажа роторных лопастей при высоких ветроэнергетических установках. Ветроэнергетическая установка содержит ротор (70). На роторе (70) предусмотрена возможность монтажа роторных лопастей (30), и электрический генератор (60). Электрический генератор (60) имеет статор (100) и ротор (200), несколько сдвигающих блоков (300). Первый конец сдвигающего блока разъемно закрепляется на статоре (100) генератора. Второй конец сдвигающего блока разъемно закрепляется на роторе (200). Сдвигающие блоки (300) имеют, каждый, гидравлический цилиндр (320), выдвигание которого является управляемым. При приведении в действие сдвигающих блоков ротор (200) сдвигается относительно статора (100). 3 н. и 2 з.п. ф-лы, 8 ил.

Description

Данное изобретение относится к ветроэнергетической установке.
В DE 10224439 показана ветроэнергетическая установка с отклоняющим роликом и проходом для троса в зоне головки башни ветроэнергетической установки для прохождения тягового троса с лебедки. С помощью этого тягового троса затем поднимают и, соответственно, закрепляют роторную лопасть на головке башни.
В DE 10305543 показан другой способ монтажа роторных лопастей. При этом ступицу ротора поворачивают в заданное первое положение. Устанавливают роторную лопасть и ступицу ротора с помощью роторной лопасти поворачивают в заданное второе положение. При этом поворот ступицы ротора происходит в направлении действия силы тяжести уже смонтированной роторной лопасти.
В ЕР 1412638 показан другой способ монтажа роторных лопастей. При этом при монтаже используют вместо роторных лопастей уравновешивающие грузы.
Задачей данного изобретения является создание ветроэнергетической установки, которая обеспечивает возможность монтажа роторных лопастей также при очень высоких ветроэнергетических установках.
Эта задача решена с помощью ветроэнергетической установки согласно пункту 1 формулы изобретения, а также способа монтажа, соответственно, демонтажа роторной лопасти ветроэнергетической установки согласно пункту 4 формулы изобретения.
Таким образом, предлагается ветроэнергетическая установка, содержащая ротор, на котором предусмотрена возможность монтажа роторных лопастей, электрический генератор, который имеет статор генератора и ротор генератора, и несколько сдвигающих блоков. Первый конец сдвигающего блока разъемно закрепляется на статоре генератора, а второй конец сдвигающего блока разъемно закрепляется на роторе генератора. Сдвигающие блоки имеют, каждый, гидравлический цилиндр, выдвигание которого является управляемым, так что при приведении в действие сдвигающих блоков ротор генератора сдвигается относительно статора генератора. Тем самым вызывается также поворот ротора.
Согласно одному аспекту данного изобретения, сдвигающий блок имеет на своем первом конце консоль, а на своем втором конце - вилку. Консоль закрепляется на статоре генератора, соответственно, на неподвижном конструктивном элементе статора генератора, а вилка закрепляется на роторе генератора. Гидравлический цилиндр предусмотрен между вилкой и консолью.
Согласно другому аспекту данного изобретения, вилка разъемно закреплена на тормозном диске ротора генератора.
Изобретение относится также к способу монтажа и демонтажа роторных лопастей ветроэнергетической установки. При этом ветроэнергетическая установка имеет ротор и электрический генератор. Генератор имеет статор генератора и ротор генератора. Ротор связан с ротором генератора. Первый конец сдвигающего блока закрепляют на статоре генератора. Второй конец сдвигающего блока разъемно закрепляют на роторе генератора. Сдвигающие блоки имеют гидравлический цилиндр, выдвигание которого является управляемым. Гидравлический цилиндр приводят в действие с целью достижения отклонения. Второй конец некоторых из сдвигающих блоков демонтируют. Гидравлический цилиндр некоторых из сдвигающих блоков приводят в действие для сжимания гидравлического цилиндра. Второй конец сдвигающего блока снова монтируют на роторе генератора. Затем снова приводят в действие гидравлический цилиндр для выдвигания гидравлического цилиндра и тем самым вызывания относительного сдвига между статором генератора и ротором генератора и тем самым также поворота ротора.
Изобретение относится также к применению сдвигающих блоков с гидравлическим цилиндром для вызывания относительного сдвига между ротором генератора и статором генератора ветроэнергетической установки. При этом первый конец сдвигающего блока закрепляют на статоре генератора, а второй конец сдвигающего блока закрепляют на роторе генератора. За счет выдвигания гидравлического цилиндра происходит относительное перемещение между ротором генератора и статором генератора.
За счет того, что ротор ветроэнергетической установки предпочтительно жестко соединен с ротором генератора, поворот ротора генератора приводит также к повороту ротора ветроэнергетической установки. Таким образом, посредством пошагового сдвига ротора генератора относительно статора генератора вызывается поворот ротора генератора и тем самым поворот ротора ветроэнергетической установки.
Изобретение основано на идее предусмотреть между статором и ротором генератора ветроэнергетической установки по меньшей мере одного сдвигающего блока, например, по меньшей мере с одним гидравлическим цилиндром. При этом сдвигающий блок выполнен с возможностью демонтажа, так что он применяется лишь при монтаже или демонтаже роторных лопастей ветроэнергетической установки. Для собственно работы ветроэнергетической установки сдвигающие блоки затем демонтируются. Предпочтительно, вокруг окружности статора, соответственно, ротора генератора расположено несколько сдвигающих блоков. За счет приведения в действие гидравлических цилиндров (выдвигания цилиндров) сдвигающих блоков можно поворачивать ротор на заданный угол относительно статора. Поскольку гидравлические цилиндры сдвигающих блоков имеют лишь ограниченный ход, можно выполнять сдвиг ротора генератора и тем самым закрепленных на обтекателе, соответственно, роторе ветроэнергетической установки роторных лопастей лишь пошагово, соответственно, поэтапно. Для этого может быть необходимо по меньшей мере частично демонтировать сдвигающие блоки и снова монтировать на другом месте, однако при этом один из сдвигающих блоков должен оставаться смонтированным с целью обеспечения определенного тормозного действия.
Другие варианты выполнения являются предметом зависимых пунктов формулы изобретения.
Ниже приводится более подробное пояснение преимуществ и примеров выполнения изобретения со ссылками на прилагаемые чертежи, на которых схематично изображено:
фиг. 1 - генератор ветроэнергетической установки согласно первому примеру выполнения;
фиг. 2 - часть генератора ветроэнергетической установки согласно первому примеру выполнения;
фиг. 3 - другая часть генератора ветроэнергетической установки согласно первому примеру выполнения;
фиг. 4 - другая часть генератора ветроэнергетической установки согласно первому примеру выполнения, в увеличенном масштабе;
фиг. 5 - вилка сдвигающего блока в генераторе ветроэнергетической установки согласно первому примеру выполнения, в изометрической проекции;
фиг. 6А и 6В - сдвигающий блок для генератора ветроэнергетической установки согласно второму примеру выполнения, в двух разных изометрических проекциях; и
фиг. 7 - ветроэнергетическая установка согласно изобретению.
На фиг. 1 схематично показан генератор ветроэнергетической установки согласно первому примеру выполнения.
Ветроэнергетическая установка согласно изобретению имеет башню, гондолу на башне и ротор (см. фиг. 7). Ротор ветроэнергетической установки представляет вращающуюся часть ветроэнергетической установки, т.е., например, роторные лопасти и ступицу ротора. Генератор ветроэнергетической установки предпочтительно предусмотрен внутри (не изображенной) гондолы ветроэнергетической установки. Генератор состоит из статора 100 генератора и ротора 200 генератора. Ротор ветроэнергетической установки соединен с ротором генератора, так что вращение ротора вызывает также вращение ротора 200 генератора и наоборот. Статор 100 генератора имеет несколько опорных плеч 110 статора, которые несут статорное кольцо 120. Внутри статорного кольца предусмотрен ротор 200 генератора. Кроме того, предусмотрено двенадцать сдвигающих блоков 300. Эти сдвигающие блоки 300 могут иметь, каждый, гидравлический цилиндр Z1-Z12. При этом один конец сдвигающего блока закреплен на одном из опорных плеч 110 статора, в то время как второй конец закреплен на роторе 200 генератора. За счет приведения в действие соответствующих сдвигающих блоков 300 можно сдвигать ротор относительно статора.
На фиг. 1 двенадцать сдвигающих блоков предусмотрены, соответственно, между двумя соседними опорными плечами статора. Однако, согласно изобретению, может быть предусмотрено также меньше, чем двенадцать, соответственно, больше, чем двенадцать сдвигающих блоков.
Хотя на фиг. 1 показано, что статор имеет статорное кольцо, а также опорные плечи статора, однако статор согласно изобретению может иметь также другую конструкцию. Согласно изобретению, сдвигающие блоки предусмотрены между ротором генератора и статором генератора, так что приведение в действие гидравлических цилиндров приводит также к относительному сдвигу между ротором генератора и статором генератора.
На фиг. 2 схематично показана в изометрической проекции часть генератора согласно первому примеру выполнения из фиг. 1. На фиг. 2 не показаны некоторые части генератора, такие как, например, статорное кольцо, а также другие части ротора. На фиг. 2 показана лишь часть 210 ротора. Часть 210 (например, тормозной диск ротора) предпочтительно имеет несколько отверстий 211. Сдвигающий блок 300 имеет на своем первом конце вилку 310, а на своем втором конце - консоль 330. Между вилкой 310 и консолью 330 предусмотрен гидравлический цилиндр 320. Вилка 310 закрепляется с помощью болтов или свинчивания в отверстиях 211. Консоль 330 закрепляется на одном из опорных плеч 110 статора. Предпочтительно, консоли 330 закрепляются, соответственно, либо на левой, либо на правой стороне опорного плеча 110 статора.
На фиг. 3 показана другая часть генератора согласно первому примеру выполнения. Также на фиг. 3 не показаны некоторые части генератора, такие как, например, статорное кольцо. Сдвигающий блок 300 имеет на своем первом конце вилку 310, а на своем втором конце консоль 330. Между консолью 330 и вилкой 310 предусмотрен гидравлический цилиндр 320. Вилка 310 имеет по меньшей мере одно отверстие, с помощью которого вилку можно разъемно закреплять в отверстиях 211 части 210 ротора.
На фиг. 4 показан в изометрической проекции второй конец сдвигающего блока из фиг. 3. При этом консоль 330 сдвигающего блока разъемно закреплена на опорном плече 110 статора. Это можно осуществлять, например, посредством свинчивания. На фиг. 4 показан также один конец гидравлического цилиндра 320.
Согласно изобретению, консоль может иметь различную длину, так что сдвигающий блок можно согласовывать с соответствующими условиями установки в ветроэнергетической установке.
На фиг. 5 схематично показана вилка 310 согласно первому примеру выполнения. Вилка 310 имеет два отверстия 311, 312. Эти отверстия служат для закрепления вилки на части 210 ротора. Кроме того, вилка имеет участок 313, который служит для приема одного конца гидравлического цилиндра.
На фиг. 6А и 6В схематично показан в двух проекциях сдвигающий блок для генератора согласно первому примеру выполнения. Сдвигающий блок 300 имеет вилку 310, консоль 330, а также между ними гидравлический цилиндр 320. Вилка 310 имеет отверстие 311, с помощью которого вилку можно разъемно закреплять на части 210. Консоль 330 можно также разъемно закреплять на другой части статора генератора.
Гидравлические цилиндры согласно первому и второму примеру выполнения имеют, например, не обязательно, рабочее давление 700 бар, силу давления 72 т, силу тяги 50 т и вес, например, 54 кг.
Демонтируемые сдвигающие блоки согласно первому и второму примеру выполнения изобретения применяются, в частности, при монтаже и демонтаже роторных лопастей ветроэнергетической установки. За счет применения сдвигающих блоков, согласно изобретению, можно, в частности, при очень больших ветроэнергетических установках отказаться от крана, который иначе обычно применяется для поворота ротора (обтекателя) ветроэнергетической установки. Сдвигающие блоки закрепляют на их одном конце, например на тормозном диске ротора, а на их втором конце - на другой части статора генератора.
Сдвигающие блоки согласно изобретению могут вызывать сдвиг (относительный, между ротором генератора и статором генератора), например, на несколько градусов. При использовании сдвигающих блоков согласно изобретению ротор (обтекатель) ветроэнергетической установки можно сдвигать также тогда, когда на нем уже закреплены одна или две роторные лопасти. Таким образом, обеспечивается возможность поворота также под нагрузкой. Когда смонтирован по меньшей мере один из сдвигающих блоков, то этот сдвигающий блок можно применять также для ограничения поворота, поскольку поворот не может никогда составлять больше хода гидравлических цилиндров.
Согласно изобретению, консоли 330 могут иметь различную длину с целью обеспечения возможности согласования с различными условиями установки.
При этом сдвигающие блоки согласно изобретению могут быть выполнены так, что, например, в первом примере выполнения необходимо лишь десять из двенадцати сдвигающих блоков для поворота ротора.
Сдвигающие блоки согласно изобретению применяются, в частности, при монтаже или демонтаже роторных лопастей ветроэнергетической установки. С помощью сдвигающих блоков согласно изобретению можно поворачивать место соединения для роторной лопасти в положение 9 часов с целью обеспечения возможности монтажа роторной лопасти. Затем можно поворачивать гондолу на 180°. После этого выдвигают гидравлические цилиндры сдвигающих блоков, и ротор генератора можно перемещать, например, на 3,75° (тем самым перемещается также ротор ветроэнергетической установки, поскольку роторы соединены друг с другом). Затем можно отсоединять, например, два цилиндра, в то время как другие цилиндры удерживают всю систему. Поршневые штоки гидравлических цилиндров вдвигаются, и вилку и консоль можно отсоединять и снова закреплять, т.е. в другом месте. Затем демонтируют другие, например, десять сдвигающих блоков и снова монтируют в другом месте. В качестве альтернативного решения, можно отказаться от демонтажа и повторного монтажа, а именно тем, что демонтируют лишь вилку с тормозного диска и снова монтируют в другом месте. Например, согласно изобретению необходимо выполнять 16 процессов сдвига с целью поворота ротора генератора на 60°, так что следующий переходник лопасти находится в положении 9 часов, и можно закреплять следующую роторную лопасть. В качестве альтернативного решения, можно поворачивать место соединения также в положение 6 часов и можно монтировать лопасть снизу с помощью системы тросов, а затем снова поворачивать на 120°.
Затем ротор ветроэнергетической установки необходимо поворачивать на 120° с целью обеспечения возможности крепления следующей роторной лопасти на третьем переходнике для лопасти.
На фиг. 7 схематично показана ветроэнергетическая установка согласно изобретению. Ветроэнергетическая установка имеет башню 10 и гондолу 20 на башне 10. Азимутальную ориентацию гондолы можно изменять с помощью азимутального привода 80 с целью согласования ориентации гондолы с фактическим направлением ветра. Гондола 2 0 имеет вращаемый ротор 7 0 по меньшей мере с двумя, предпочтительно тремя роторными лопастями. Роторные лопасти 30 могут быть соединены со ступицей 75 ротора, которая в свою очередь соединена непосредственно или с помощью (не изображенного редуктора) с электрическим генератором 60. За счет вращения роторных лопастей 30 и ротора 70 вращается ротор генератора и тем самым вырабатывается электрическая энергия.
Кроме того, ветроэнергетическая установка может иметь управляющий блок 4 0 для управления работой ветроэнергетической установки. На гондоле 20 может быть дополнительно предусмотрен анемометр и/или указатель 50 направления ветра. С помощью управляющего блока 4 0 можно регулировать угол тангажа роторных лопастей 30 с использованием привода 31 тангажа. Кроме того, с помощью управляющего блока можно управлять азимутальной ориентацией гондолы с использованием азимутального привода 80. Генерируемая генератором 60 электрическая энергия может направляться, не обязательно, в силовой шкаф 90, например, у основания башни 10. В силовом шкафу 90 может быть предусмотрен инвертор, который может выдавать электрическую мощность с желаемым напряжением и частотой в сеть электроснабжения.
Поворот ротора 70 (например, для монтажа роторных лопастей) можно осуществлять согласно первому или второму примеру выполнения.

Claims (5)

1. Ветроэнергетическая установка, содержащая
ротор (70), на котором предусмотрена возможность монтажа роторных лопастей (30),
электрический генератор (60), который имеет статор (100) генератора и ротор (200) генератора,
при этом ротор (70) связан с ротором (200) генератора, и
по меньшей мере один сдвигающий блок (300), который первым концом разъемно закрепляется на статоре (100) генератора, а вторым концом разъемно закрепляется на роторе (200) генератора, при этом указанный по меньшей мере один сдвигающий блок (300) имеет гидравлический цилиндр (320), выдвигание которого является управляемым, так что при приведении в действие указанного по меньшей мере одного сдвигающего блока ротор (200) генератора сдвигается относительно статора (100) генератора, и тем самым вызывается поворот ротора (70).
2. Ветроэнергетическая установка по п. 1, в которой указанный по меньшей мере один сдвигающий блок (300) имеет на своем первом конце вилку (310), а на своем втором конце - консоль (330), при этом консоль (330) закрепляется на статоре (100) генератора, а вилка (310) закрепляется на роторе (200) генератора, при этом гидравлический цилиндр предусмотрен между вилкой (310) и консолью (330).
3. Ветроэнергетическая установка по любому из пп. 1 или 2, в которой вилка (310) разъемно закреплена на тормозном диске ротора (200) генератора.
4. Способ монтажа или демонтажа роторных лопастей (30) ветроэнергетической установки, при этом ветроэнергетическая установка имеет ротор (70) и электрический генератор (60), который имеет статор (100) генератора и ротор (200) генератора, при этом ротор (70) связан с ротором (200) генератора, содержащий стадии:
закрепления первого конца по меньшей мере одного сдвигающего блока на статоре (100) генератора,
закрепления второго конца указанного по меньшей мере одного сдвигающего блока на роторе (200) генератора,
при этом указанный по меньшей мере один сдвигающий блок имеет гидравлический цилиндр, выдвигание которого является управляемым,
приведения в действие гидравлического цилиндра для достижения выдвигания гидравлического цилиндра,
демонтажа второго конца указанного по меньшей мере одного сдвигающего блока,
приведения в действие гидравлического цилиндра указанного по меньшей мере одного сдвигающего блока для сжимания гидравлического цилиндра,
повторного монтажа второго конца указанного по меньшей мере одного сдвигающего блока на роторе (200) генератора, и
повторного приведения в действие гидравлического цилиндра для выдвигания гидравлического цилиндра и тем самым вызывания относительного сдвига между статором (100) генератора и ротором (200) генератора и тем самым также поворота ротора (70).
5. Применение сдвигающего блока с гидравлическим цилиндром для вызывания относительного сдвига между ротором (200) генератора и статором (100) генератора (60) ветроэнергетической установки,
при этом первый конец сдвигающего блока закрепляют на статоре (100) генератора, а второй конец сдвигающего блока закрепляют на роторе (200) генератора,
при этом за счет выдвигания гидравлического цилиндра происходит относительное перемещение между ротором (200) генератора и статором (100) генератора и тем самым также поворот ротора (70).
RU2013152803/06A 2011-04-29 2012-04-18 Ветроэнергетическая установка RU2560642C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011017801A DE102011017801B8 (de) 2011-04-29 2011-04-29 Windenergieanlage mit einer Mehrzahl von Verschiebeeinheiten zur Montage oder Demontage von Rotorblättern und Verfahren hierzu
DE102011017801.5 2011-04-29
PCT/EP2012/057091 WO2012146521A1 (de) 2011-04-29 2012-04-18 Windenergieanlage

Publications (2)

Publication Number Publication Date
RU2013152803A RU2013152803A (ru) 2015-06-20
RU2560642C2 true RU2560642C2 (ru) 2015-08-20

Family

ID=45998347

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152803/06A RU2560642C2 (ru) 2011-04-29 2012-04-18 Ветроэнергетическая установка

Country Status (19)

Country Link
US (1) US9464625B2 (ru)
EP (1) EP2702266B1 (ru)
JP (1) JP5827742B2 (ru)
KR (1) KR101577519B1 (ru)
CN (1) CN103502635B (ru)
AR (1) AR086139A1 (ru)
AU (1) AU2012247623B2 (ru)
BR (1) BR112013027633A2 (ru)
CA (1) CA2834058C (ru)
CL (1) CL2013003113A1 (ru)
DE (1) DE102011017801B8 (ru)
DK (1) DK2702266T3 (ru)
ES (1) ES2681699T3 (ru)
MX (1) MX346727B (ru)
PT (1) PT2702266T (ru)
RU (1) RU2560642C2 (ru)
TW (1) TWI545254B (ru)
WO (1) WO2012146521A1 (ru)
ZA (1) ZA201308378B (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145362B2 (en) 2013-01-07 2018-12-04 Siemens Aktiengesellschaft Transportation of a direct drive generator
DE102014208468A1 (de) * 2014-05-06 2015-11-12 Wobben Properties Gmbh Azimutverstellung einer Windenergieanlage
CN107795437B (zh) 2016-08-29 2019-05-10 江苏金风科技有限公司 用于转子转动装置的控制方法、控制装置及转子转动系统
CN107781122B (zh) * 2016-08-29 2019-11-29 江苏金风科技有限公司 用于转动风力发电机转子的装置、方法及风力发电机
DE102016116945A1 (de) * 2016-09-09 2018-03-15 Wobben Properties Gmbh Rotorarretiervorrichtung für eine Windenergieanlage und Verfahren
CN106762438B (zh) * 2016-12-29 2020-11-24 江苏金风科技有限公司 用于转动风力发电机组转子的装置及方法
CN106762443B (zh) * 2016-12-30 2019-04-30 江苏金风科技有限公司 用于直驱风电机组的叶轮辅助锁定装置及叶片安装方法
CN109973304B (zh) * 2017-12-28 2020-04-28 江苏金风科技有限公司 风力发电机组的转子转动控制系统和控制方法
CN109973303B (zh) * 2017-12-28 2020-05-12 江苏金风科技有限公司 发电机转子液控盘车系统的控制方法及装置
CN110296112B (zh) * 2018-03-23 2020-06-02 江苏金风科技有限公司 盘车液压驱动系统及驱动方法
KR102625666B1 (ko) * 2023-07-11 2024-01-17 국방과학연구소 유압 조절을 이용한 원격 제어식 사격 시험용 총포무장 고정 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU74858A1 (ru) * 1946-04-16 1948-11-30 В.И. Сидоров Ветросилова установка
EP1412638A1 (de) * 2001-07-20 2004-04-28 Aloys Wobben Verfahren zur in situ konstruktion einer windenergieanlage
EP1659286A1 (de) * 2004-11-18 2006-05-24 Eickhoff Maschinenfabrik GmbH Törn-Vorrichtung zum Drehen des Antriebsstranges einer Windkraftanlage
RU67194U1 (ru) * 2007-05-16 2007-10-10 Андрей Геннадьевич Цыденов Высотная ветроэнергетическая установка

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2196897A1 (en) 1994-08-16 1996-02-22 John Thomas Olesen Crane for raising longitudinal bodies, foundation for such a crane and method for raising of longitudinal bodies by means of such a crane
CN1155312A (zh) * 1994-08-16 1997-07-23 米肯公司 吊起长形体的起重机、这种起重机的底座和用这种起重机吊起长形体的方法
FR2810374B1 (fr) 2000-06-19 2004-09-03 Jeumont Ind Dispositif de production de courant electrique a partir d'energie eolienne
US6476534B1 (en) * 2000-08-08 2002-11-05 General Dynamics Advanced Technology Systems, Inc. Permanent magnet phase-control motor
ATE319008T1 (de) 2002-05-27 2006-03-15 Vestas Wind Sys As Verfahren zur handhabung von windturbinenblättern und montage der blätter an einer windturbine, system und greifeinheit zur handhabung eines windturbinenblatts
DE10224439C5 (de) * 2002-06-01 2009-12-31 Aloys Wobben Verfahren zur Montage/Demontage von Komponenten einer Windenergieanlage
DE10305543C5 (de) * 2003-02-10 2011-04-28 Aloys Wobben Verfahren zur Montage von Rotorblättern sowie ein Rotorblatt für eine Windenergieanlage
US7726941B2 (en) 2004-07-30 2010-06-01 Vestas Wind Systems A/S Methods of handling wind turbine blades and mounting said blades on a wind turbine, system and gripping unit for handling a wind turbine blade
US7861404B2 (en) * 2006-10-19 2011-01-04 Siemens Energy, Inc. Method for removing the endplate of an electric generator
US20100139062A1 (en) * 2009-02-25 2010-06-10 General Electric Company Lowering and raising a single wind turbine rotor blade from six-o'clock position
SE534012C2 (sv) * 2009-03-13 2011-03-29 Ge Wind Energy Norway As Bladmontering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU74858A1 (ru) * 1946-04-16 1948-11-30 В.И. Сидоров Ветросилова установка
EP1412638A1 (de) * 2001-07-20 2004-04-28 Aloys Wobben Verfahren zur in situ konstruktion einer windenergieanlage
EP1659286A1 (de) * 2004-11-18 2006-05-24 Eickhoff Maschinenfabrik GmbH Törn-Vorrichtung zum Drehen des Antriebsstranges einer Windkraftanlage
RU67194U1 (ru) * 2007-05-16 2007-10-10 Андрей Геннадьевич Цыденов Высотная ветроэнергетическая установка

Also Published As

Publication number Publication date
CL2013003113A1 (es) 2014-03-28
TWI545254B (zh) 2016-08-11
CA2834058C (en) 2016-03-29
WO2012146521A1 (de) 2012-11-01
KR20140007467A (ko) 2014-01-17
JP2014512487A (ja) 2014-05-22
ES2681699T3 (es) 2018-09-14
MX346727B (es) 2017-03-30
JP5827742B2 (ja) 2015-12-02
AU2012247623B2 (en) 2015-01-22
DE102011017801B8 (de) 2013-05-08
CN103502635A (zh) 2014-01-08
EP2702266A1 (de) 2014-03-05
MX2013012638A (es) 2014-02-11
TW201307677A (zh) 2013-02-16
BR112013027633A2 (pt) 2017-02-14
CN103502635B (zh) 2016-05-18
NZ617574A (en) 2014-12-24
EP2702266B1 (de) 2018-05-30
US9464625B2 (en) 2016-10-11
KR101577519B1 (ko) 2015-12-14
DE102011017801B4 (de) 2013-01-17
PT2702266T (pt) 2018-10-04
RU2013152803A (ru) 2015-06-20
US20140110949A1 (en) 2014-04-24
DK2702266T3 (en) 2018-07-23
CA2834058A1 (en) 2012-11-01
AU2012247623A1 (en) 2013-11-28
ZA201308378B (en) 2014-07-30
DE102011017801A1 (de) 2012-10-31
AR086139A1 (es) 2013-11-20

Similar Documents

Publication Publication Date Title
RU2560642C2 (ru) Ветроэнергетическая установка
US7944079B1 (en) Systems and methods for assembling a gearbox handling assembly for use in a wind turbine
US20090250939A1 (en) Wind-driven generation of power
EP2143936B1 (en) Wind turbine comprising a main bearing and method for replacement of the main bearing
EP2306002B1 (en) Systems and methods for assembling a pitch control assembly for use in a wind turbine
US20080014088A1 (en) Apparatus for assembling rotary machines
EP2290229A2 (en) Systems and methods for assembling a pitch assembly for use in a wind turbine
CN102562438A (zh) 模块化转子叶片以及用于安装风力涡轮机的方法
KR20130129179A (ko) 수직 축 풍력 터빈
US11480152B2 (en) Rotor arresting device for a wind turbine and method
CN112585351A (zh) 用于在风力涡轮的单个叶片安装期间使用的配重组件
KR20240013684A (ko) 구멍들을 정렬시키기 위한 장치
EP2975262B1 (en) Wind power generation facility
RU2719166C1 (ru) Арретирующее устройство для ротора ветроэнергетической установки
WO2013117652A1 (en) A bearing assembly for a vertical axis wind turbine
EP2607684B1 (en) Means to rotate the rotor of a wind turbine and method to rotate the rotor
NZ617574B2 (en) Wind turbine
KR101956922B1 (ko) 풍력 터빈 장치 및 이의 작동 방법
RU2510611C2 (ru) Способ размещения роторной ветроэнергетической установки на дымовой трубе
GB2494924A (en) Blade connection for wind turbine