RU2560247C1 - Сайдоскоп - Google Patents
Сайдоскоп Download PDFInfo
- Publication number
- RU2560247C1 RU2560247C1 RU2014121358/28A RU2014121358A RU2560247C1 RU 2560247 C1 RU2560247 C1 RU 2560247C1 RU 2014121358/28 A RU2014121358/28 A RU 2014121358/28A RU 2014121358 A RU2014121358 A RU 2014121358A RU 2560247 C1 RU2560247 C1 RU 2560247C1
- Authority
- RU
- Russia
- Prior art keywords
- input
- digital
- output
- interface
- analog
- Prior art date
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Изобретение относится к области оптического приборостроения, а именно телескопам. Телескоп содержит корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа, защитный экран с приемным окном, фильтр расположен на пути излучений перед главным зеркалом, приемник излучения включает приемную резисторную матрицу, расположенную в приемном окне так, чтобы лучи, отраженные от зеркала, фокусировались бы только на приемной резисторной матрице, состоящей из N столбцов и M строк, N-канальный аналоговый ключ, M малошумящих дифференциальных усилителей, M цифроаналоговых преобразователей, источник опорного напряжения, М аналого-цифровых преобразователей, M цифровых сумматоров, M-входовый регистр сдвига, микроконтроллер, персональный компьютер, приемник спутниковой навигационной системы, устройство синхронизации, цифровой датчик температуры, конструктивно связанный с подложкой резисторной матрицы, и вентилятор воздушного охлаждения, конструктивно связанный с обратной стороной резисторной матрицы, питание на который поступает от микроконтроллера через устройство синхронизации. Изобретение позволяет обеспечить создание устройства, обладающего повышенной чувствительностью при построении двухмерных изображений небесных объектов. 3 ил.
Description
Изобретение относится к области оптического приборостроения, а именно к астрономическим приборам, и может быть использовано как телескоп для наблюдения Солнца, Луны, планет солнечной системы, звезд в научных и образовательных целях.
По сути, предложенное новое устройство (далее «Сайдоскоп») является суперпозицией трех известных устройств - телескопа, в оптической части, болометрической матрицы, в приемной части и радиометрического приемника в части обработки сигнала с добавлением в него системы модуляции и калибровки сигнала с системой тепловой защиты приемной матрицы.
Известна схема телескопа (см. Козырев Н.А. и др. «Новый метод определения тригонометрических параллаксов на основе измерения разности между истинным и видимым положением звезды», Астрометрия и небесная механика, М.-Л., 1978, с. 168-179), в которой в фокусе главного зеркала размещается резистор, включенный по схеме моста Уитсона. Излучения исследуемого астрономического объекта фокусируются на приемный резистор, вызывая изменение его проводимости, и, соответственно, появление разности потенциалов между двумя плечами моста Уитсона, которая измеряется с помощью гальванометра. Известны также болометрические приемники излучений (см. RU 2456559, кл. Q01J 5/20, 20.07.2012), где в качестве чувствительного элемента также используется резистор, включенный по схеме моста Уитсона. Указанные устройства обладают тем недостатком, что при использовании, в частности, в качестве датчика хромосферного телескопа регистрируют излучения лишь в одной точке и не позволяют строить двумерные (2-Р) изображения наблюдаемого объекта.
Известны устройства (см. RU 2486689, кл. H04N 5/33, 27.06.2013), в которых для получения двумерных изображений объекта наблюдения используются двухмерная резисторная матрица болометрических приемников и система для считывания информации с резисторов двухмерной матрицы. Указанное устройство позволяет строить двухмерные изображения исследуемого объекта, однако обладает недостаточной чувствительностью для детального исследования солнечных излучений.
Из известных устройств наиболее близким можно считать телескоп (см. RU 2143126, кл. G02B 23/00, 20.12.1999), содержащий корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа.
Недостатком данного технического решения является то, что данное устройство работает лишь в оптической или инфракрасной части электромагнитного спектра и не способно принимать излучения миллиметрового и субмиллиметрового диапазонов как болометрические приемники, которые, в свою очередь, обладают низкой чувствительностью.
Технический результат, на достижение которого направлено изобретение, заключается в создании устройства, обладающего повышенной чувствительностью при построении двухмерных изображений небесных объектов.
Указанный технический результат достигается тем, что телескоп, содержащий корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа, содержит защитный экран с приемным окном, фильтр расположен на пути излучений перед главным зеркалом, приемник излучения содержит приемную резисторную матрицу, расположенную в приемном окне защитного экрана и состоящую из N столбцов и M строк, N-канальный аналоговый ключ, каждый из N входов которого подключен к соответствующему столбцу резисторной матрицы, а выход которого заземлен, M малошумящих дифференциальных усилителей, неинвертирующие входы которых соединены с M выходами строк резисторной матрицы, M цифроаналоговых преобразователей, выходы которых соединены с инвертирующими входами соответствующих малошумящих дифференциальных усилителей, источник опорного напряжения, выход которого соединен со входом опорного напряжения резисторной матрицы и входом опорного напряжения каждого цифроаналогового преобразователя, M аналого-цифровых преобразователей, аналоговый вход каждого цифроаналогового преобразователя соединен с выходом соответствующего малошумящего дифференциального усилителя, M цифровых сумматоров, цифровой вход каждого сумматора соединен с цифровым выходом соответствующего аналого-цифрового преобразователя, M-входовый регистр сдвига, каждый вход которого соединен с выходом соответствующего цифрового сумматора, микроконтроллер, вход которого соединен с выходом M-входового регистра сдвига, персональный компьютер, интерфейсный вход которого соединен с интерфейсным выходом микроконтроллера, приемник спутниковой навигационной системы, интерфейсный выход которого соединен с первым интерфейсным входом микроконтроллера, устройство синхронизации, первый интерфейсный выход которого соединен с интерфейсным входом управления каждого цифроаналогового преобразователя, второй интерфейсный выход соединен с интерфейсным входом управления каждого аналого-цифрового преобразователя, третий интерфейсный выход соединен с интерфейсным входом управления каждого цифрового сумматора, четвертый интерфейсный выход соединен с интерфейсным входом управления регистра сдвига, пятый интерфейсный выход соединен со вторым интерфейсным входом микроконтроллера, цифровой датчик температуры, конструктивно связанный с подложкой резисторной матрицы и выход которого соединен со входом устройства синхронизации, вентилятор воздушного охлаждения, конструктивно связанный с обратной стороной резисторной матрицы, команда на включение на который поступает от микроконтроллера через устройство синхронизации.
Изобретение будет понятно из последующего описания и приложенных к нему чертежей.
На фиг. 1 изображена конструкция сайдоскопа.
На фиг. 2 представлена принципиальная схема резисторной матрицы. На фиг. 3 изображена блок-схема сайдоскопа.
Сайдоскоп (телескоп) содержит корпус 1 (фиг. 1), входной объектив 2, фильтр 3, параболическое зеркало 4 и приемник изучения 5, расположенный под углом к оптической оси телескопа так, что его оптическая ось совпадает с центральным отраженным лучом. Сайдоскоп содержит защитный экран 5 с приемным окном 7. Фильтр 3 расположен на пути излучений перед параболическим зеркалом 4. Приемник излучения содержит приемную резисторную матрицу 8, расположенную в приемном окне 7 защитного экрана 6.
Приемная резисторная матрица содержит N рядов и M столбцов приемных резисторов одинакового номинала (фиг. 2), где Rп - сопротивление приемного резистора матрицы, зависящее от интенсивности засветки, и M запитывающих резисторов, Rз - сопротивление запитывающего резистора.
Напряжение Uвых на выходе резисторной матрицы приблизительно может быть вычислено по формуле резисторного делителя
где Uоп - напряжение на выходе источника опорного напряжения.
При этом формируемое двумерное изображение будет содержать M×N пикселов (разрешаемых элементов). Резисторная матрица, в частности, может изготавливаться на поликоровой подложке с напыленными на ней резисторными структурами и проводниками, расположенными в виде горизонтальных и вертикальных линий в разных слоях, или на стеклотекстолитовой плате с пайкой на ее контактные площадки чип резисторов, например типономинала 0204, размером 0,5 на 1,0 миллиметр. Приемная резисторная матрица соединяется с приемником, смонтированным, в частности, на стеклотекстолитовой плате, при помощи разъемов. Приемные резисторы матрицы должны быть обращены в сторону главного зеркала. Резисторная матрица и приемник должны располагаться в экранирующем металлическом коробе с вырезом прямоугольной формы, соответствующим размерам приемной резисторной матрицы, а запитывающие резисторы должны быть вне приемного окна, то есть защищены от влияния сфокусированного излучения исследуемого небесного объекта.
Приемник излучения содержит N-канальный аналоговый ключ 9 (фиг. 3), каждый из N входов которого подключен к соответствующему столбцу резисторной матрицы 8, через соответствующие контакты К, а выход которого заземлен. Приемник излучения содержит M малошумящих дифференциальных усилителей 10, неинвертирующие входы которых соединены с M выходами строк резисторной матрицы 8, M цифроаналоговых преобразователей 11, выходы которых соединены с инвертирующими входами соответствующих малошумящих дифференциальных усилителей 10, источник опорного напряжения 12, выход которого соединен со входом опорного напряжения резисторной матрицы 8 и входом опорного напряжения каждого цифроаналогового преобразователя 11, M аналого-цифровых преобразователей 13, аналоговый вход каждого из которых соединен с выходом соответствующего малошумящего дифференциального усилителя 10, M цифровых сумматоров, цифровой вход каждого из которых соединен с цифровым выходом соответствующего аналого-цифрового преобразователя 13, M-входовый регистр сдвига 15, каждый вход которого соединен с выходом соответствующего цифрового сумматора 14, микроконтроллер 16, вход которого соединен с выходом M-входового регистра сдвига 15, персональный компьютер 17, интерфейсный вход которого соединен с интерфейсным выходом микроконтроллера 16, приемник спутниковой навигационной системы 18, интерфейсный выход которого соединен с первым интерфейсным входом микроконтроллера 16, устройство синхронизации 19, первый интерфейсный выход которого соединен с интерфейсным входом управления каждого цифроаналогового преобразователя 11, второй интерфейсный выход соединен с интерфейсным входом управления каждого аналого-цифрового преобразователя 13, третий интерфейсный выход соединен с интерфейсным входом управления каждого цифрового сумматора 14, четвертый интерфейсный выход соединен с интерфейсным входом управления регистра сдвига 15, пятый интерфейсный выход соединен со вторым интерфейсным входом микроконтроллера 16, цифровой датчик температуры 20, конструктивно связанный с подложкой резисторной матрицы 8 и выход которого соединен со входом устройства синхронизации 19, вентилятор воздушного охлаждения 21, конструктивно связанный с обратной стороной резисторной матрицы 8, команда включения на который поступает от микроконтроллера 16 через устройство синхронизации 19.
Сайдоскоп состоит из корпуса, на задней стенке которого крепится главное параболическое зеркало-объектив, а на передней стенке в стороне от главной оптической оси зеркала, в защитном металлическом экране располагается приемник излучения с конструктивно и электрически связанной с ним приемной резисторной матрицей. В защитном металлическом экране проделано прямоугольное окно так, чтобы лучи, отраженные от зеркала, фокусировались бы только на приемной резисторной матрице, поскольку матрица должна располагаться в фокальной плоскости зеркала. На другой стороне от оптической оси в корпусе имеется входное окно, которое полностью может закрываться фильтром. Фильтр изготавливается из плоского листового однородного материала и предназначен для фильтрации падающих на приемное окно излучений или полного перекрытия излучений, если в качестве фильтра используется металлическая пластинка.
Сайдоскоп работает следующим образом.
Сайдоскоп направляется на исследуемый небесный объект, в частности, с помощью экваториальной монтировки. Излучение от исследуемого небесного объекта, проходя через фильтр, попадает в окно объектива, представляющего вырез в металлической экранирующей пластине. Пройдя через фильтр и окно объектива, излучение падает на параболическое главное зеркало и, отражаясь от него, фокусируется в фокальной плоскости, где располагается приемная резисторная матрица. Сигналы от N линий резисторной матрицы подаются на N входов N канального аналогового ключа 9. В качестве многоканального аналогового ключа, в частности, может использоваться микросхема ADG731 фирмы Analog Devices. Аналоговый ключ по команде интерфейсной линии управления аналоговым ключом, поступающей от синхронизатора 19, единовременно замыкает на «землю» (провод нулевого потенциала) только одну из N входных линий. Именно эта линия в данный момент времени является активной и M ее выходных сигналов подаются на входы M малошумящих дифференциальных усилителей для дальнейшей обработки.
Таким образом, если прием и обработка M каналов осуществляются за период времени T, то прием и обработка сигналов от всех каналов осуществляются за время N×T.
Чувствительность ΔUвых к изменению сопротивления (проводимости) приемного резистора ΔRп может быть оценена по формуле
Кроме того, значения сопротивлений Rз и Rп также зависят от температуры окружающей среды. Но, как видно из формулы (1), Uвых будет зависеть от температуры окружающей среды только тогда, когда различаются температурные коэффициенты сопротивления (ТКС) резисторов Rз и Rп. Поэтому номиналы и тип резисторов Rз и Rп выбираются одинаковыми и с минимальным технологическим разбросом номиналов и ТКС.
Соотношение между числом N рядов и M столбцов приемных резисторов выбирается исходя из конструктивных особенностей приемных резисторов и соображений по массо-габаритным требованиям, требованиям к цене изделия и чувствительности. Так, увеличение количества рядов М требует увеличения числа малошумящих усилителей 10, цифроаналоговых преобразователей 11, аналого-цифровых преобразователей 13 и сумматоров 14, что требует увеличения массы, габаритов, энергопотребления и стоимости, но зато позволяет повысить чувствительность за счет большего времени накопления сигнала на один элемент разрешения.
Напряжение с M выходов резисторной матрицы подается на неинвертирующие входы малошумящих дифференциальных усилителей 10. В качестве малошумящих дифференциальных усилителей, в частности, могут использоваться микросхемы ADA4841 фирмы Analog Devices. На инвертирующий вход малошумящих дифференциальных усилителей подается напряжение с выхода M цифроаналоговых преобразователей. В качестве цифроаналогового преобразователя, в частности, может использоваться микросхема многоканального цифроаналогового преобразователя AD5382 фирмы Analog Devices. Напряжение на выходе каждого цифроаналогового преобразователя устанавливается по команде устройства синхронизации 19. Значения устанавливаемых на выходе цифроаналоговых преобразователей напряжений определяется в результате процедуры калибровки приемной матрицы. При калибровке в качестве фильтра 3 используется экранирующая металлическая пластина, полностью перекрывающая попадание излучений на приемную резисторную матрицу 8. При этом по командам от устройства синхронизации 19 для каждого приемного резистора матрицы подбирается такое значение кода выходного напряжения цифроаналоговых преобразователей, чтобы выходной сигнал малошумящих дифференциальных усилителей был бы максимально близким к нулю. Полученная таким образом числовая матрица кодов калибровочных значений хранится в памяти персонального компьютера 17 и выдается в виде соответствующих команд для установки требуемых теневых значений напряжений на выходе цифроаналоговых преобразователей 11 в режиме наблюдения. В режиме наблюдения экранирующая металлическая пластина заменяется на пластину, прозрачную для какой-либо части электромагнитного спектра или частично прозрачную, в частности, может применяться обычный солнечный фильтр.
Наблюдения солнечного диска и солнечной короны могут проводиться и без фильтра в случае, когда солнце закрыто облаками или туманом.
Таким образом, в режиме наблюдения на вход цифроаналоговых преобразователей 11 подается напряжение, пропорциональное усиленной разности напряжения на выходе засвеченной приемной матрицы и соответствующего теневого значения. Цифроаналоговые преобразователи управляются от устройства синхронизации по интерфейсной линии. В качестве цифроаналоговых преобразователей, в частности, могут быть применены микросхемы AD7988 фирмы Analog Devices.
Выходные цифровые коды аналого-цифровых преобразователей 13 подаются на входы сумматоров 14, которые управляются от устройства синхронизации 19 по интерфейсной линии. Сумматоры могут получать от устройства синхронизации только две команды: «сброс», в начале каждого периода накопления сигнала, и «суммирование», во время накопления сигнала. По команде «сброс» на выходе сумматора устанавливается код, соответствующий числу ноль. По команде «суммирование» выходное значение кода сумматора заменяется на сумму кодов на входе сумматора и значения кода, находившееся ранее на его выходе. Таким образом, реализуется известное устройство «интегратор со сбросом», широко применяемое в СВЧ-радиометрах для получения радиометрического выигрыща (см. Есепкин Н.А. и др. Радиотелескопы и радиометры, М., Наука, 1973).
Радиометрический выигрыш показывает, во сколько раз может быть улучшено отношение сигнал-шум за счет длительного интегрирования (суммирования) широкополосного сигнала (см. RU 2510513, кл. G01R 29/08, 27.03.2014). Радиометрический выигрыш численно равен корню квадратному из числа независимых отсчетов сигнала. В частности, при использовании микросхемы AD7988 фирмы Analog Devices с максимальной тактовой частотой преобразования 5 МГц и накоплении 65536 отсчетов за время T=131072 мкс. Радиометрический выигрыш равен 256.
Цифровой код сигнала накопленного за время T с M сумматоров по команде от устройства синхронизации запоминается в регистре сдвига 15. Регистр сдвига, сумматоры и устройство синхронизации, выделенные на фиг. 3 пунктирной линией, могут быть реализованы, в частности, в единой программируемой логической интегральной схеме, например микросхеме EP3C10E144C8N фирмы Altera.
После окончания периода T накопления от M каналов резисторной матрицы устройство синхронизации по интерфейсной линии посылает микроконтроллеру 16 команду готовности данных вместе с кодом обслуживаемого столбца резисторной матрицы - числом от 1 до N. По этой команде микроконтроллер считывает данные из регистра сдвига во внутреннюю оперативную память, а затем формирует выходную строку с полученными данными и пересылает ее по интерфейсной линии в персональный компьютер 17. В качестве микроконтроллера, в частности, может быть использована микросхема ATXMEGA128 фирмы Atmel. Микроконтроллер может быть также реализован внутри программируемой логической интегральной схемы, в частности фирмы Altera с ядром NIQS.
Описанный выше процесс повторяется для всех N столбцов приемной резисторной матрицы, после чего по программе в персональном компьютере формируется двухмерное изображение и отображается в псевдоцветах на экране монитора.
Для точной привязки накопленных данных к географическим координатам положения сайдоскопа и привязки наблюдений к мировому времени с целью предоставления возможности совместной обработки полученных и запомненных данных сайдоскопа с данными, полученными другими мировыми обсерваториями, применен приемник спутниковой навигационной системы 18. Приемник спутниковой навигационной системы один раз в секунду посылает микроконтроллеру по интерфейсной линии строку с навигационной информацией и импульс «1PPS», начало которого совпадает с началом новой секунды мирового времени. Микроконтроллер транслирует полученную информацию в персональный компьютер. В качестве приемника спутниковой навигационной системы может, в частности, использоваться микросхема EB-600 фирмы Transystem Inc., способная одновременно принимать сигналы от двух спутниковых навигационных систем ГЛОНАС и GPS.
Для предотвращения теплового повреждения резисторной матрицы, в частности, при наблюдении солнца с высоким коэффициентом прозрачности фильтра или без него на обратной (не рабочей) стороне резисторной матрицы устанавливаются конструктивно связанные с ней цифровой термодатчик 20 (или несколько термодатчиков данного типа), измеряющий температуру поверхности резисторной матрицы, и вентилятор воздушного охлаждения 21. Данные о температуре передаются по интерфейсной линии в устройство синхронизации 19, которое транслирует их через микроконтроллер в персональный компьютер для документирования. Одновременно, при превышении температурой заданного значения микроконтроллер через устройство синхронизации включает вентилятор воздушного охлаждения 21. Если производительность вентилятора воздушного охлаждения оказывается недостаточной и температура резисторной матрицы увеличивается до критического значения, то на экран монитора выдается сообщение оператору о необходимости срочно установить на входе оптической системы соответствующий солнечный фильтр.
Использование изобретения позволит создать устройство, обладающее повышенной чувствительностью при построении двухмерных изображений небесных объектов.
Claims (1)
- Телескоп, содержащий корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа, отличающийся тем, что содержит защитный экран с приемным окном, фильтр расположен на пути излучений перед главным зеркалом, приемник излучения включает приемную резисторную матрицу, расположенную в приемном окне так, чтобы лучи, отраженные от зеркала, фокусировались бы только на приемной резисторной матрице, состоящей из N столбцов и M строк, N-канальный аналоговый ключ, каждый из N входов которого подключен к соответствующему столбцу резисторной матрицы, а выход которого заземлен, M малошумящих дифференциальных усилителей, неинвертирующие входы которых соединены с M выходами строк резисторной матрицы, M цифроаналоговых преобразователей, выходы которых соединены с инвертирующими входами соответствующих малошумящих дифференциальных усилителей, источник опорного напряжения, выход которого соединен со входом опорного напряжения резисторной матрицы и входом опорного напряжения каждого цифроаналогового преобразователя, M аналого-цифровых преобразователей, аналоговый вход каждого цифроаналогового преобразователя соединен с выходом соответствующего малощумящего дифференциального усилителя, M цифровых сумматоров, цифровой вход каждого сумматора соединен с цифровым выходом соответствующего аналого-цифрового преобразователя, M-входовый регистр сдвига, каждый вход которого соединен с выходом соответствующего цифрового сумматора, микроконтроллер, вход которого соединен с выходом M-входового регистра сдвига, персональный компьютер, интерфейсный вход которого соединен с интерфейсным выходом микроконтроллера, приемник спутниковой навигационной системы, интерфейсный выход которого соединен с первым интерфейсным входом микроконтроллера, устройство синхронизации, первый интерфейсный выход которого соединен с интерфейсным входом управления каждого цифроаналогового преобразователя, второй интерфейсный выход соединен с интерфейсным входом управления каждого аналого-цифрового преобразователя, третий интерфейсный выход соединен с интерфейсным входом управления каждого цифрового сумматора, четвертый интерфейсный выход соединен с интерфейсным входом управления регистра сдвига, пятый интерфейсный выход соединен со вторым интерфейсным входом микроконтроллера, цифровой датчик температуры, конструктивно связанный с подложкой резисторной матрицы и выход которого соединен со входом устройства синхронизации, вентилятор воздушного охлаждения, конструктивно связанный с обратной стороной резисторной матрицы, команда на включение на который поступает от микроконтроллера через устройство синхронизации.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014121358/28A RU2560247C1 (ru) | 2014-05-28 | 2014-05-28 | Сайдоскоп |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014121358/28A RU2560247C1 (ru) | 2014-05-28 | 2014-05-28 | Сайдоскоп |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2560247C1 true RU2560247C1 (ru) | 2015-08-20 |
Family
ID=53880591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014121358/28A RU2560247C1 (ru) | 2014-05-28 | 2014-05-28 | Сайдоскоп |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2560247C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107907989A (zh) * | 2017-11-24 | 2018-04-13 | 中国科学院长春光学精密机械与物理研究所 | 望远镜及其主镜环控装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11249028A (ja) * | 1998-03-03 | 1999-09-17 | Nikon Corp | 太陽望遠鏡 |
RU2143126C1 (ru) * | 1997-08-28 | 1999-12-20 | Институт солнечно-земной физики СО РАН | Хромосферный телескоп |
EP1241457A2 (en) * | 2001-03-16 | 2002-09-18 | Infrared Integrated Systems Ltd. | Testing resistance bolometer arrays |
US8471209B2 (en) * | 2007-04-26 | 2013-06-25 | Sagem Defense Securite | Method for maintenance of an array of bolometer-type detectors |
-
2014
- 2014-05-28 RU RU2014121358/28A patent/RU2560247C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2143126C1 (ru) * | 1997-08-28 | 1999-12-20 | Институт солнечно-земной физики СО РАН | Хромосферный телескоп |
JPH11249028A (ja) * | 1998-03-03 | 1999-09-17 | Nikon Corp | 太陽望遠鏡 |
EP1241457A2 (en) * | 2001-03-16 | 2002-09-18 | Infrared Integrated Systems Ltd. | Testing resistance bolometer arrays |
US6992291B2 (en) * | 2001-03-16 | 2006-01-31 | Infrared Integrated Systems Limited | Testing resistance bolometer arrays |
US8471209B2 (en) * | 2007-04-26 | 2013-06-25 | Sagem Defense Securite | Method for maintenance of an array of bolometer-type detectors |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107907989A (zh) * | 2017-11-24 | 2018-04-13 | 中国科学院长春光学精密机械与物理研究所 | 望远镜及其主镜环控装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fujisada et al. | Design and preflight performance of ASTER instrument protoflight model | |
US8067738B1 (en) | Space based calibration transfer spectroradiometer | |
Cramer et al. | Precise measurement of lunar spectral irradiance at visible wavelengths | |
Haas et al. | VIIRS solar diffuser bidirectional reflectance distribution function (BRDF) degradation factor operational trending and update | |
Nadeau et al. | The Montreal near-infrared camera | |
Adams et al. | The infrared camera onboard JEM-EUSO | |
Da Deppo et al. | Radiometric model for the stereo camera STC onboard the BepiColombo ESA mission | |
RU2560247C1 (ru) | Сайдоскоп | |
Kataza et al. | Conceptual design of the satellite payload for the JASMINE mission | |
Kumar et al. | Hyper spectral imager for lunar mineral mapping in visible and near infrared band | |
Yu et al. | Radiometric calibration accuracy and stability of GOES-16 ABI Infrared radiance | |
Wang et al. | Ground-based observation system development for the moon hyper-spectral imaging | |
Wallace et al. | Status of ESA's EarthCARE mission, passive instruments payload | |
Campo et al. | Characterization and video chain development of the CMOS detector applied in the multi-angle spectro-polarimeter SPEXone | |
RU132887U1 (ru) | Прибор ориентации по земле на основе микроболометрической матрицы | |
Paproth et al. | MERTIS: system theory and simulation | |
Irbah et al. | Ground-based solar astrometric measurements during the PICARD mission | |
Daniels et al. | The point response functions of CERES instruments aboard the Terra and Aqua spacecrafts over the mission-to-date | |
McGraw et al. | Near-field calibration of an objective spectrophotometer to NIST radiometric standards for the creation and maintenance of standard stars for ground-and space-based applications | |
Kishimoto et al. | Surface Shape Measuring Method for Space Structures Based on Images in Ultra-Violet Range | |
WO2023286323A1 (ja) | 日照計及び日照計測方法 | |
Le Naour et al. | OCAPI: a multidirectional multichannel polarizing imager | |
Kielkopf et al. | AFRL/RV | |
Mariscal et al. | Probing of Hermean Exosphere by Ultraviolet Spectroscopy: instrument presentation, calibration philosophy and first lights results | |
Smith et al. | Assessment of the clouds and the Earth's radiant energy system (CERES) flight model 5 (FM5) instrument's performance and stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160529 |