RU2559022C1 - Импульсный ионный ускоритель - Google Patents

Импульсный ионный ускоритель Download PDF

Info

Publication number
RU2559022C1
RU2559022C1 RU2014109631/07A RU2014109631A RU2559022C1 RU 2559022 C1 RU2559022 C1 RU 2559022C1 RU 2014109631/07 A RU2014109631/07 A RU 2014109631/07A RU 2014109631 A RU2014109631 A RU 2014109631A RU 2559022 C1 RU2559022 C1 RU 2559022C1
Authority
RU
Russia
Prior art keywords
electrode
spark gap
pulse
diode
dfl
Prior art date
Application number
RU2014109631/07A
Other languages
English (en)
Inventor
Александр Иванович Пушкарев
Юлия Ивановна Исакова
Илья Павлович Хайлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2014109631/07A priority Critical patent/RU2559022C1/ru
Application granted granted Critical
Publication of RU2559022C1 publication Critical patent/RU2559022C1/ru

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с генератором импульсного напряжения (1) и через основной газовый разрядник (4) с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод (6) которого соединен через предварительный газовый разрядник (7) с внутренним электродом (5) двойной формирующей линии. В заземленном электроде основного газового разрядника (4) установлен дополнительный запускающий электрод (12), соединенный через линию задержки (10) с выходом двойной формирующей линии. Технический результат - повышение стабильности напряжения пробоя основного газового разрядника в серии импульсов. 5 ил., 1 табл.

Description

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик.
Известен импульсный ионный ускоритель [Ремнев Г.Е., Исаков И.Ф., Опекунов М.С., Матвиенко В.М. Источники мощных ионных пучков для практического применения // Известия вузов. Физика. 1998. №4 (приложение), с.92-110]. Ускоритель содержит генератор импульсного напряжения, корпус, двойную формирующую линию (ДФЛ), зарядную индуктивность, основной и предварительный газовые разрядники, вакуумный полосковый диод, состоящий из потенциального и заземленного электродов. Для создания плотной плазмы необходимого состава на поверхности потенциального электрода диода используется явление взрывной электронной эмиссии. Недостатком известного устройства является низкая эффективность передачи энергии из ДФЛ в диод из-за потери энергии в зарядной индуктивности. В течение генерации ионного пучка часть энергии, накопленной в ДФЛ, потребляется зарядной индуктивностью. Потери энергии достигают 40%.
Наиболее близким к предлагаемому устройству является выбранный нами за прототип импульсный ионный ускоритель ТЕМП-4М [Патент РФ на ПМ №86374, опубл. 27.08.2009]. Ускоритель ТЕМП-4М содержит генератор импульсного напряжения, корпус, двойную формирующую линию, основной и предварительный газовые разрядники, вакуумный полосковый диод, состоящий из потенциального и заземленного электродов. Потенциальный графитовый электрод диода соединен через предварительный газовый разрядник с внутренним электродом ДФЛ. Средний электрод ДФЛ соединен с корпусом ускорителя через основной газовый разрядник и с генератором импульсного напряжения. Зарядная индуктивность отсутствует.
Ускоритель ТЕМП-4М работает следующим образом. Генератор импульсного напряжения (ГИН) заряжает емкость, образованную средним электродом ДФЛ и корпусом ускорителя. Емкость внутреннего электрода ДФЛ относительно среднего электрода много больше емкости внутреннего электрода ДФЛ относительно корпуса, поэтому потенциал внутреннего электрода приблизительно равен потенциалу среднего электрода. При достижении на предварительном газовом разряднике пробивного напряжения он срабатывает и происходит зарядка емкости между внутренним и средним электродами ДФЛ. Зарядка происходит через предварительный газовый разрядник и диод. При этом на диоде формируется импульс отрицательного напряжения. В течение первого импульса на поверхности графитового потенциального электрода диода образуется взрывоэмиссионная плазма. Пробивное напряжение основного разрядника выше, чем у предварительного разрядника, и его пробой происходит через паузу, контролируемую давлением газа в основном разряднике. В течение паузы происходит дополнительная зарядка емкостей среднего электрода относительно корпуса и внутреннего электрода ДФЛ. После срабатывания основного газового разрядника генерируется второй импульс напряжения положительной полярности. В течение второго импульса из взрывоэмиссионной плазмы формируется пучок-ионов, который ускоряется в диодном зазоре. При работе ускорителя без зарядной индуктивности потери передачи энергии из ДФЛ в нагрузку снизились до 30-31%.
Недостатком устройства-прототипа является низкая стабильность работы основного газового разрядника. Стандартная девиация напряжения пробоя в серии 50 импульсов составляет 5-9%. Большой коммутируемый ток, превышающий 40 кА, вызывает сильную эрозию электродов. При искровом пробое основного разрядника формируются капли расплавленного металла, которые оседают на поверхности электрода. Формируемые при этом микроострия снижают электрическую прочность разрядного промежутка и вызывают разброс напряжения пробоя в серии импульсов.
Основной технический результат предлагаемого изобретения заключается в повышении стабильности напряжения пробоя основного газового разрядника в серии импульсов. Экспериментально нами получено снижение стандартной девиации напряжения пробоя до 1-2% в серии 50 импульсов. Кроме того, выполненные исследования показали, что управляемый режим работы основного разрядника обеспечивает снижение потерь передачи энергии из ДФЛ в нагрузку до 15-16%.
Указанный технический результат достигается тем, что в импульсном ионном ускорителе, содержащем как и прототип, генератор импульсного напряжения и установленные в корпусе предварительный газовый разрядник, основной газовый разрядник, включающий заземленный и потенциальный электроды, двойную формирующую линию, средний электрод которой соединен с генератором импульсного напряжения и через основной газовый разрядник с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод которого соединен через предварительный газовый разрядник с внутренним электродом двойной формирующей линии, согласно предложенному решению, в заземленном электроде основного газового разрядника установлен дополнительный запускающий электрод, соединенный через линию задержки с выходом двойной формирующей линии.
Изобретение поясняется графическими материалами.
Фиг.1 - функциональная схема примера выполнения импульсного ионного ускорителя, где обозначено: 1 - генератор импульсного напряжения, 2 - корпус двойной формирующей линии, 3 - средний электрод двойной формирующей линии, 4 - основной газовый разрядник, 5 - внутренний электрод двойной формирующей линии, 6 - потенциальный электрод вакуумного полоскового диода, 7 - предварительный газовый разрядник, 8 - заземленный электрод вакуумного полоскового диода, 9 - делитель напряжения, 10 -линия задержки, 11 - резистор, 12 - запускающий электрод.
Фиг.2 - осциллограммы напряжения на выходе ДФЛ и импульса запуска, где обозначено: 13 - осциллограммы напряжения на выходе ДФЛ, 14 - осциллограммы импульса запуска основного разрядника.
Фиг.3 - статистический анализ работы ДФЛ на резистивную нагрузку, где обозначено: 15 - изменение напряжения пробоя основного разрядника, 16 - изменение напряжения пробоя предварительного разрядника в серии импульсов.
Фиг.4 - статистический анализ работы ДФЛ на диод, где обозначено: 17 - изменение напряжения пробоя основного разрядника, 18 - изменение напряжения пробоя предварительного разрядника в серии импульсов.
Фиг.5 - баланс энергии в ДФЛ, где обозначено: зависимость энергии, переданной из ДФЛ в диодный узел от энергии в ДФЛ при работе основного разрядника в управляемом (19) и неуправляемом (20) режимах.
Импульсный ионный ускоритель (фиг.1) содержит генератор импульсного напряжения 1, корпус 2, двойную формирующую линию, основной 4 и предварительный 7 газовые разрядники, вакуумный полосковый диод, состоящий из потенциального 6 и заземленного 8 электродов, линию задержки 10, делитель напряжения 9 и запускающий электрод 12, установленный в основном газовом разряднике 4.
Генератор импульсного напряжения 1, собранный по схеме Аркадьева-Маркса, содержит восемь ступеней конденсаторов ИК100-0.4 (100 кВ, 0.4 мкФ) и разрядную штангу. Собственная индуктивность ГИН~5 мкГн. Двойная формирующая линия с деионизированной водой в качестве диэлектрика имеет емкость среднего электрода 3 относительно корпуса 2 и внутреннего электрода 5 ДФЛ 14 нФ и 10 нФ соответственно. Средний электрод 3 двойной формирующей линии коммутируется на корпус 2 основным газовым разрядником 4 (зазор 11 мм, давление до 8 атм. технического азота). Внутренний электрод 5 двойной формирующей линии соединен с потенциальным электродом 6 вакуумного полоскового диода через предварительный газовый разрядник 7. Заземленный электрод 8 диода соединен с корпусом 2 только с одной стороны. Запускающий электрод 12 основного газового разрядника 4 соединен с потенциальным электродом 6 диода через делитель 9, линию задержки 10 (например, коаксиальный кабель РК 50-15 длиной 80 м) и резистор 11.
Задержку пробоя основного газового разрядника относительно времени пробоя предварительного газового разрядника регулировали изменением длины коаксиального кабеля.
Ускоритель работает следующим образом. Генератор импульсного напряжения 1 заряжает емкость между средним электродом 3 ДФЛ и корпусом 2. Емкость внутреннего электрода 5 ДФЛ относительно среднего электрода 3 много больше емкости между средним электродом 3 ДФЛ и корпусом 2, поэтому потенциал внутреннего электрода 5 ДФЛ приблизительно равен потенциалу среднего электрода 3 ДФЛ. Внутренняя формирующая линия ДФЛ практически не заряжается. При достижении на предварительном газовом разряднике 7 пробивного напряжения он срабатывает и происходит зарядка емкости между внутренним 5 и средним 3 электродами ДФЛ. Зарядка происходит через предварительный газовый разрядник 7 и диод. При этом на диоде формируется импульс отрицательного напряжения. Этот импульс через делитель 9, линию задержки 10 и резистор 11 поступает на запускающий электрод 12 основного газового разрядника 4. Пробивное напряжение основного разрядника 4 ниже напряжения на выходе ГИН, и его пробой происходит при поступлении импульса запуска на запускающий электрод 12 через паузу, контролируемую длиной коаксиального кабеля линии задержки 10. В течение паузы происходит дополнительная зарядка емкостей среднего электрода 3 относительно корпуса 2 и внутреннего электрода 5 ДФЛ. На поверхности потенциального электрода 6 диода формируется взрывоэмиссионная плазма. После пробоя основного газового разрядника 4 генерируется второй импульс напряжения положительной полярности. В течение второго импульса из взрывоэмиссионной плазмы формируется пучок ионов, который ускоряется в диодном зазоре.
Пример 1 конкретного выполнения. Ускоритель работал на резистивную нагрузку, установленную в диодной камере между потенциальным электродом и корпусом. Заземленный электрод диода отсутствовал. Ускоритель ТЕМП-4М в двухимпульсном режиме формирует сдвоенные разнополярные импульсы - первый отрицательный (300-600 нс, 150-200 кВ) и второй положительный (150 нс, 250-300 кВ). Делитель напряжения 9 обеспечивал снижение амплитуды импульса запуска основного газового разрядника 4 до 60-65 кВ. Запускающий Управляющий электрод 12 диаметром 3 мм расположен в центре заземленного электрода основного разрядника 4. При величине основного промежутка 10 мм зазор между управляющим электродом и корпусом заземленного электрода составлял 2 мм. На фиг.2 показаны осциллограммы напряжения на выходе ускорителя и импульса запуска основного разрядника.
На фиг.3 и в таблице приведены результаты исследования стабильности работы ускорителя в серии импульсов. Управляемый режим работы основного разрядника 4 обеспечивает высокую стабильность напряжения пробоя и длительности первого импульса в серии импульсов. Стандартная девиация напряжения пробоя основного разрядника снизилась с 5-9% до 1-2% в серии 50 импульсов.
Пример 2 конкретного выполнения. Ускоритель работал на ионный диод. Исследования выполнены на полосковом фокусирующем диоде размером 22 см×4,5 см, фокусное расстояние 15 см. Зазор между потенциальным 6 и заземленным 8 электродами выбирали из условия согласования импеданса диода с волновым сопротивлением двойной формирующей линии (4,9 Ом), он составлял 8 мм в начале диода (вблизи точки заземления) и 10 мм в конце диода. Потенциальный электрод 6 изготовлен из графита, заземленный электрод 8 - из нержавеющей стали с прорезями 2 см×0,5 см, прозрачность 80%. Электроды фокусирующего ионного диода имеют полуцилиндрическую конфигурацию, и геометрическая фокусировка происходит только в вертикальном сечении диода. На фиг.4 приведены данные исследования стабильности работы ускорителя в серии импульсов. Стандартная девиация напряжения пробоя основного разрядника составила 1-2% в серии 50 импульсов.
Использование выходного напряжения ДФЛ для запуска основного разрядника не снизило эффективность ее работы. Результаты исследования баланса энергии в ДФЛ при работе ускорителя на диод показаны на фиг.4. Расчет энергии, переданной из ДФЛ в диод, проводили интегрированием произведения ускоряющего напряжения на полный ток диодного узла в течение второго импульса и после импульсов. Энергию, передаваемую из ГИН в ДФЛ, рассчитывали интегрированием произведения напряжения и тока на выходе ГИН. Выполненные исследования показали, что управляемый режим работы основного разрядника обеспечивает снижение потерь энергии в ДФЛ с 30-31% до 15-16%.

Claims (1)

  1. Импульсный ионный ускоритель, содержащий генератор импульсного напряжения и установленные в корпусе предварительный газовый разрядник, основной газовый разрядник, включающий заземленный и потенциальный электроды, двойную формирующую линию, средний электрод которой соединен с генератором импульсного напряжения и через основной газовый разрядник с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод которого соединен через предварительный газовый разрядник с внутренним электродом двойной формирующей линии, отличающийся тем, что в заземленном электроде основного газового разрядника установлен дополнительный запускающий электрод, соединенный через линию задержки с выходом двойной формирующей линии.
RU2014109631/07A 2014-03-12 2014-03-12 Импульсный ионный ускоритель RU2559022C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109631/07A RU2559022C1 (ru) 2014-03-12 2014-03-12 Импульсный ионный ускоритель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109631/07A RU2559022C1 (ru) 2014-03-12 2014-03-12 Импульсный ионный ускоритель

Publications (1)

Publication Number Publication Date
RU2559022C1 true RU2559022C1 (ru) 2015-08-10

Family

ID=53796180

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109631/07A RU2559022C1 (ru) 2014-03-12 2014-03-12 Импульсный ионный ускоритель

Country Status (1)

Country Link
RU (1) RU2559022C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1415475A1 (ru) * 1986-01-21 1988-08-07 Научно-исследовательский институт ядерной физики при Томском политехническом институте им.С.М.Кирова Ускоритель ионов
WO2001037309A1 (en) * 1999-11-18 2001-05-25 Cymer, Inc. Plasma focus light source with improved pulse power system
US6696792B1 (en) * 2002-08-08 2004-02-24 The United States Of America As Represented By The United States National Aeronautics And Space Administration Compact plasma accelerator
RU2242851C1 (ru) * 2003-05-23 2004-12-20 Государственное научное учреждение "Научно-исследовательский институт ядерной физики при Томском политехническом университете министерства образования Российской Федерации" Линейный индукционный ускоритель для технологических целей
RU86374U1 (ru) * 2009-04-27 2009-08-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Импульсный ионный ускоритель

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1415475A1 (ru) * 1986-01-21 1988-08-07 Научно-исследовательский институт ядерной физики при Томском политехническом институте им.С.М.Кирова Ускоритель ионов
WO2001037309A1 (en) * 1999-11-18 2001-05-25 Cymer, Inc. Plasma focus light source with improved pulse power system
US6696792B1 (en) * 2002-08-08 2004-02-24 The United States Of America As Represented By The United States National Aeronautics And Space Administration Compact plasma accelerator
RU2242851C1 (ru) * 2003-05-23 2004-12-20 Государственное научное учреждение "Научно-исследовательский институт ядерной физики при Томском политехническом университете министерства образования Российской Федерации" Линейный индукционный ускоритель для технологических целей
RU86374U1 (ru) * 2009-04-27 2009-08-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Импульсный ионный ускоритель

Similar Documents

Publication Publication Date Title
Savage et al. Status of the Z pulsed power driver
CN111010792B (zh) 轮转等离子体喷射触发装置和触发方法
RU2559022C1 (ru) Импульсный ионный ускоритель
CN109672358B (zh) 一种纳秒前沿双极性高压脉冲产生装置
RU2559027C1 (ru) Управляемый вакуумный разрядник
RU86374U1 (ru) Импульсный ионный ускоритель
RU2624000C2 (ru) Генератор высокочастотного излучения на основе разряда с полым катодом
RU2646845C2 (ru) Устройство формирования импульса сильноточного ускорителя электронов
SU410502A1 (ru)
RU2682305C1 (ru) Генератор высоковольтных импульсов
CN104412470A (zh) 带有电容式储能器的火花间隙
RU141586U1 (ru) Импульсный источник рентгеновского излучения наносекундной длительности
Kovalchuk et al. Stability of triggering of the switch with sharply non-uniform electric field at the electrode with negative potential
CN107659291B (zh) 一种具有低抖动度的高压脉冲发生器
RU203340U1 (ru) Управляемый газонаполненный разрядник
RU107646U1 (ru) Управляемый плазменный разрядник
Brussaard et al. A 2.5-MV subnanosecond pulser with laser-triggered spark gap for the generation of high-brightness electron bunches
RU2305364C1 (ru) Генератор высоковольтных импульсов напряжения пикосекундной длительности
GB2525008A (en) Spark-Gap Switch
RU198711U1 (ru) Генератор высоковольтных импульсов
Lee et al. High repetitive switching of parallel micro-plasma spark gaps
RU2529879C1 (ru) Устройство для стабилизации катодного плазменного потока
Remnev et al. High-power double-pulse generator for power supply to pulsed high-current accelerator
RU2233538C1 (ru) Генератор высоковольтных импульсов наносекундной длительности
SU852135A1 (ru) Генератор мощных наносекундных импульсов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170313