RU2556781C2 - Устройство для анализа и управления системой возвратно-поступательного насоса путем определения карты насоса - Google Patents

Устройство для анализа и управления системой возвратно-поступательного насоса путем определения карты насоса Download PDF

Info

Publication number
RU2556781C2
RU2556781C2 RU2011121884/06A RU2011121884A RU2556781C2 RU 2556781 C2 RU2556781 C2 RU 2556781C2 RU 2011121884/06 A RU2011121884/06 A RU 2011121884/06A RU 2011121884 A RU2011121884 A RU 2011121884A RU 2556781 C2 RU2556781 C2 RU 2556781C2
Authority
RU
Russia
Prior art keywords
pump
well
rod
map
friction
Prior art date
Application number
RU2011121884/06A
Other languages
English (en)
Other versions
RU2011121884A (ru
Inventor
Сэм Г. ГИБС
Донейл ДОРАДО
Кенет Б. НОЛЕН
Эрик С. ОСТРАЙХ
Джефри Дж. ДАКУНХА
Original Assignee
ЛАФКИН ИНДАСТРИЗ, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42129226&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2556781(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ЛАФКИН ИНДАСТРИЗ, ЭлЭлСи filed Critical ЛАФКИН ИНДАСТРИЗ, ЭлЭлСи
Publication of RU2011121884A publication Critical patent/RU2011121884A/ru
Application granted granted Critical
Publication of RU2556781C2 publication Critical patent/RU2556781C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B47/009Monitoring of walking-beam pump systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к измерительным системам для оценки работы системы возвратно-поступательного насоса, с помощью которой добывают углеводороды из невертикальной или вертикальной скважины. Измерительная система периодически формирует глубинную карту насоса как функцию прямо или опосредованно измеренной поверхностной карты и функцию закона трения, полученного из волнового уравнения, которое описывает линейные вибрации в длинной тонкой насосной штанге. Сигнал управления или сигнал команды генерируют на основе характеристики глубинной карты насоса для управления насосной системой. Она также генерирует отчет об анализе насоса и скважины, который используется для управления насосом и определения его состояния. Обеспечивается улучшенный контроллер, который определяет карту глубинного насоса для наклонной скважины на основе измерений поверхности и для управления штанговым насосом. 2 н. и 11 з.п. ф-лы, 14 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству, которое определяет рабочие характеристики насосной скважины. Более конкретно, изобретение направлено на устройство для определения условий внутри скважины штанговым глубинным насосом в вертикальной скважине или наклонной скважине по данным с поверхности скважины, которые получают, измеряют и обрабатывают. Изобретение также относится к анализу проблем, возникающих при откачке во время эксплуатации систем глубинного штангового насоса в таких скважинах. Вертикальная скважина представляет собой скважину, которая пробурена, по существу, вертикалью в землю, а наклонная скважина представляет собой скважину, которая расположена в земле не вертикально относительно поверхности. Наклонная скважина может представлять собой горизонтальную скважину, которая отходит от ее вертикального участка.
Еще более конкретно, изобретение относится к улучшенному контроллеру для анализа рабочих характеристик глубинного насоса в наклонной скважине по сравнению со способами, описанными в способах предшествующего уровня техники, разработанных для номинально вертикальной буровой скважины, как описано в патенте США 3343405 от 26 сентября, 1967 г., автора Gibbs.
Уровень техники
Для насосной эксплуатации глубоких скважин, таких как нефтяные скважины, повсеместно используют последовательность взаимно соединенных насосных штанг для соединения устройства привода, расположенного на поверхности, с насосом, который установлен на дне скважины. Эта последовательность насосных штанг обычно называется колонной насосных штанг или насосной штангой, имеет верхнюю насосную штангу, проходящую через устье обсадной трубы скважины для соединения с устройством привода, таким как качалка насосной установки балансирного типа, через соединительное устройство, обычно называемое подвеской насосной штанги. Устье обсадной трубы скважины включает в себя средство для обеспечения скользящего перемещения верхней насосной штанги, которая обычно называется "устьевым сальниковым штоком".
На фиг.1 представлена скважина со штанговым насосом предшествующего уровня техники, показанным для номинально вертикальной скважины.
На фиг.2 представлена измерительная установка на поверхности предшествующего уровня техники, с помощью которой измеряют показания поверхностного динамометра ("карты").
На фиг.1 показана номинальная вертикальная скважина, имеющая обычную обсадную трубу 10 скважины, проходящую от поверхности до дна скважины. Внутри обсадной трубы 10 скважины находится эксплуатационная колонна 11, имеющая насос 12, расположенный на ее нижнем конце. Цилиндр 13 насоса содержит всасывающий клапан 14 и плунжер или поршень 15, который, в свою очередь, содержит нагнетательный клапан 16. Плунжер 15 приводится в действие с помощью сочлененной насосной штанги 17, которая идет от поршня 15 вверх через эксплуатационную колонну до поверхности и соединена на ее верхнем конце с помощью соединения 18 с устьевым сальниковым штоком 19, который проходит через фланцевое уплотнение 20 в устье скважины.
На фиг.2 показано, что верхний конец устьевого сальникового штока 19 соединен с подвесной штангой 23, которая свисает со станки-качалки 24 на двух стальных тросах 25. Подвесная штанга 23 имеет U-образной формы паз 26 для приема сальникового штока 19. Фиксирующая заслонка 27 предотвращает выход сальникового штока из паза 26. U-образной формы платформа 28 удерживается на месте в верхней части подвесной штанги 23 с помощью зажима 29. Аналогичный зажим 30 расположен ниже подвесной штанги 23. Подвесной тензометрический датчик 33 нагрузки соединен с платформой 28. Электрический кабель 34 проведен между датчиком 33 нагрузки и устройством 50 управления скважиной. Туго натянутый провод 36 ведет от подвесной штанги 23 к датчику 37 смещения (см. фиг.1). Датчик 37 смещения также соединен с устройством 50 управления скважиной с помощью электрического провода 36'.
Тензометрический подвесной датчик 33 нагрузки представляет собой обычное устройство и работает хорошо известным образом в этой области техники. Когда платформа 28 нагружена, она становится короче и шире из-за сочетания осевого и поперечного напряжения. Поскольку провод тензометрического датчика 33 соединен с платформой 28, на него также воздействует аналогичное напряжение. В результате для тока, проходящего через провод тензометрического датчика, увеличивается поперечное сечение провода, по которому он протекает, и при этом говорят, что провод имеет меньшее сопротивление. Когда подвесная штанга 23 движется вверх и вниз, электрический сигнал, который соотносит сопротивление тензометрического датчика с нагрузкой на сальниковый шток, передают от подвесного датчика 33 нагрузки устройству 50 управления скважиной через электрический кабель 34.
Датчик 37 смещения представляет собой обычное устройство и работает хорошо известным способом для специалистов в данной области техники. Модуль 37 датчика смещения представляет собой потенциометр с бесконечным разрешением с приводом по принципу "трос и катушка", который оборудован узлом обратной намотки с постоянным натяжением (привод через "инвертирующую" пружину). По мере того, как подвесная штанга 23 движется вверх и вниз, натянутый провод 36 активирует потенциометр с приводом от катушки, и формируется сигнал различного напряжения. Этот сигнал связывает электрическое напряжение со смещением сальникового штока, и его также передают устройству 50 управления скважиной. Другие средства для получения сигнала смещения хорошо известны в области техники определения характеристик насосной скважины.
Устройство 50 управления скважиной записывает сигнал смещения как функцию времени вместе с сигналом нагрузки на шток как функцию времени.
В глубоких скважинах длинная насосная штанга имеет значительное растяжение, распределенную массу и т.д., и движение на конце насоса может радикально отличаться от движения, задаваемого на верхнем конце. В ранние годы производства штанговых насосов динамометр сальникового штока представлял собой основное средство для анализа характеристики скважин со штанговыми насосами. Динамометр представляет собой инструмент, который записывает кривую, обычно называемую "картой" нагрузки сальникового штока, в зависимости от смещения. Форма кривой или "карты" отражает условия, которые преобладают в этой скважине. Представляется, что условия на дне скважины могут быть определены путем визуального изучения карты сальникового штока или "поверхностной карты". Из-за разнообразия форм карт, однако, часто невозможно провести диагностику условий глубинного насоса исключительно на основе визуальной интерпретации. В дополнение к сильной зависимости от специалиста по анализу динамограмм способ визуальной интерпретации обеспечивает только данные на дне скважины, которые являются качественными по своей природе. В результате, часто необходимо использовать сложное устройство и процедуры для непосредственного выполнения измерения на дне скважины, для того чтобы точно определить рабочие характеристики на различных уровнях глубины внутри скважины.
В 1936 г. W.E.Gilbert и S.B.Sargent раскрыли инструмент, который буквально непосредственно измерял подповерхностную динамограмму. Он представлял собой механическое устройство, которое первоначально запускалось над насосом в колонне насосных штанг. Он обеспечивал возможность сбора малого количества динамограмм перед изъятием путем вытягивания этих насосных штанг на поверхность. Он размечал карту насоса на вращающейся трубе, угловое положение которой было пропорционально положению плунжера относительно колонны. Нагрузку на насос измеряли как пропорциональную степени растяжения калиброванного стержня, находящегося в инструменте. Поскольку насосную штангу требовалось вытягивать для записи насосной карты, инструмент был дорогостоящим и громоздким при использовании. Но он предоставлял ценную информацию, относящуюся к форме насосных карт в различных режимах работы, как известно, существующих в насосных скважинах, таких как скважины полного заполнения, в случае удара плунжера насоса по жидкости, при неисправности насоса и т.д. Количественные данные, которые он предоставлял, обеспечивали возможность улучшения способов прогнозирования рабочего хода поршня насоса и волюметрической производительности насоса. Устройство динамометра насоса представляло собой развитие, которое проложило путь в истории технологии глубинных штанговых насосов.
При появлении цифровых компьютеров, S.G.Gibbs, соавтор настоящего изобретения, запатентовал в 1967 г. (US 3343409) способ для определения рабочих характеристик на дне скважины, оборудованной штанговым насосом, путем измерения поверхностных данных, (поверхностной карты) и расчета карты, представляющей зависимость нагрузки относительно смещения ("насосной карты" для колонны насосных штанг на выбранной глубине внутри скважины). В результате, система обеспечивала рациональный, экономный, количественный способ определения условий на дне скважины, которые не зависят от навыка и опыта выполняющего анализ оператора. Теперь стало более ненужным угадывать рабочие условия на дне скважины на основе записей, снятых на несколько тысяч футов выше глубинного насоса на сальниковом штоке, расположенном на поверхности, или выполнять дорогостоящие и затратные по времени операции спуска инструмента до дна скважины, для измерения таких условий. Благодаря использованию такого способа становится возможным непосредственно определять подповерхностные условия по данным, полученным на верху скважины.
Патент США 3343409, 1967 г., автора Gibbs показал, что анализ рабочих характеристик штангового насоса начинается с точного подсчета карты глубинного насоса. Gibbs показал, что этот расчет основан на задаче граница-значение, содержащей дифференциальное уравнение с частными производными и набор граничных условий.
Насосная штанга математически аналогична электрической передаче или линии передачи данных, поведение которой описывается уравнением вязкостно-демпфированной волны:
2 u ( x , t ) t 2 = ν 2 2 u ( x , t ) x 2 c u ( x , t ) t + g ( 1 )
Figure 00000001
где
ν = скорость звука в стали в футах/секунду;
c = коэффициент демпфирования, 1/секунду;
t = время в секундах;
x = расстояние точки на штоке без напряжения, измеренное от сальникового штока, в футах; и,
u(x,t) = смещение от положения балансирования насосной штанги в футах,
g = вес узла насосной штанги.
В действительности демпфирование в системе глубинного штангового насоса представляет собой сложную смесь множества эффектов. Закон вязкостного демпфирования, установленный уравнением 1, обобщенно выражает все эти эффекты демпфирования в одном эквивалентном члене вязкостного демпфирования. Критерий эквивалентности состоит в том, что эквивалентная сила извлекает из системы такое количество энергии за цикл, которое извлекается реальными силами демпфирования.
На фиг.1 показано, что насосом 200 можно управлять на основе глубинной карты "насоса". В патенте США 5252031 автора S.G.Gibbs иллюстрируется генерирование сигналов управления на основе определения карты насоса. В патенте 6857474 авторов Bramlett и др. описано управление насосом на основе патентованного распознавания карты насоса для анализа работы насоса и его управления. Такие патенты включены сюда по ссылке.
Волновое уравнение, дифференциальное уравнение с частными производными второго порядка по двум независимых переменным (расстояние x и время t), моделирует упругое поведение длинного, тонкого стержня, такого, что используется в штанговых насосах. Как описано в публикации SPE 108762 под названием "Modeling a Finite Length Sucker Rod Using the Semi-Infinite Wave Equation and as Proof to Gibbs' Conjecture," SPE 2007 Annual Technical Conference, Anaheim, CA, 11-14, November 2007, J.J.DaCunha and S.G.Gibbs. Обычно задача, решаемая волновым уравнением, включает в себя граничные условия, определяющие положение верхней части и напряжение на верхней и нижней границах колонны насосных штанг,
u ( 0, t ) = P ( t ) , α u ( L , t ) + β u x ( L , t ) = J ( t ) , α , β R , ( 2 )
Figure 00000002
вместе с двумя условиями, определяющими исходное положение и скорость
u ( x ,0 ) = f ( x ) , u t ( x ,0 ) = g ( x ) ( 3 )
Figure 00000003
вдоль насосных штанг. Для задачи колонны насосных штанг закон демпфирования в волновом уравнении был выбран, в основном, для математического отслеживания, даже при том, что он не совсем точно копирует реальный эффект диссипации вдоль насосных штанг.
Задача с граничными значениями, которая ведет к расчету глубинной насосной карты, задана не полностью. Исходные условия в формуле (3), приведенной выше, не приняты во внимание. Предполагается, что трение вызывает затухание исходных переходных процессов и что поведение в установившемся состоянии штанговой насосной колонны является одинаковым независимо от того, как произошел запуск насосной системы. При этом не делаются какие-либо предположения об условиях в глубинном насосе. В конечном итоге, определение этих условий является целью решения. Таким образом, никакие граничные условия, аналогичные уравнению (2), представленному выше, не определяют в насосе. Вместо этого два граничных условия принудительно устанавливают на поверхности,
u ( 0, t ) = P ( t ) , E A u x ( L , t ) = L ( t ) , ( 4 )
Figure 00000004
где Е и А представляет собой модуль Юнга и площадь поперечного сечения колонны насосных штанг, соответственно. Используя цифровые способы, получают выборки временных историй P(t) и L(t) через равные приращения времени и выражают их как усеченную последовательность Фурье
P ( t ) ϕ 0 + n = 1 m ϕ n cos ( n ω t ) + δ n sin ( n ω t ) , ( 5 )
Figure 00000005
L ( t ) σ 0 + n = 1 m σ n cos ( n ω t ) + τ n sin ( n ω t ) . ( 6 )
Figure 00000006
Используя разделение переменных, выполняют поиск решений волнового уравнения, которые удовлетворяют историям измеренного времени поверхностного положения и нагрузки. Полученные в результате решения для положений насосной штанги и нагрузки насосной штанги, то есть,
u ( x , t ) a n d E A u x ( x , t ) , ( 7 )
Figure 00000007
соответственно, оценивают на определенной глубине и в соответствующей последовательности моментов времени для получения глубинной насосной карты. См., например, рассчитанную карту в скважине глубиной 5175 футов, показанную на фиг.3. Эта иллюстрация также представляет измеренные поверхностные данные (в форме обычной динамометрической карты), по которым получают насосную карту дедуктивным способом. Способ расчета глубинной насосной карты по волновому уравнению описан в патенте Gibbs, ссылка на который была сделана выше. На фиг.3 представлены графики поверхностной и насосной карт предшествующего уровня техники для вертикальной скважины, полученные с использованием способа Gibbs расчета насосных карт, на основе измеренных данных поверхностной карты.
Используя эмпирические знания, решение волнового уравнения, представленного выше, гипотетически считается достоверным, несмотря на теоретические вопросы, связанные с не полностью поставленной задачей, на основе которой она была сформулирована. Его можно было бы использовать для определения условий в насосе, если бы закон трения, внедренный в волновое уравнение, был правильным. Эта гипотеза формально называется гипотезой Гиббса.
Решения волнового уравнения, которые соответствуют историям времени измерения поверхностных нагрузок и положения, позволяют получить точную карту глубинного насоса, если закон трения в волновом уравнении является идеальным. При расчете насосной карты не требуется знание условий в насосе. Любая ошибка в законе трения приведет к ошибке рассчитанной насосной карты.
В публикации (SPE 108762), упомянутой выше, представлено неконструктивное математическое доказательство того, что условия на дне скважины в конечной колонне насосных штанг могут быть получены по измерениям в верхней части полубесконечного стержня. Это доказательство было разработано на основе реализации того, что законы физики требуют, чтобы информация об условиях глубинного насоса наклонной скважины распространялась до поверхности в форме волн напряжения. Ключевой элемент в этом доказательстве (и теперь в теореме Гиббса) состоит в том, что точный закон трения стержня должен быть известен. Даже при том что неконструктивное доказательство не выявляет точный закон, такое доказательство все-таки показывает, как этот процесс можно использовать для уточнения закона трения для получения большей точности при расчете условий на дне скважины.
Член c u ( x , t ) t
Figure 00000008
представляет собой член жидкостного трения, представляющий силу сопротивления жидкости, действующую против осевого движения насоса. В его самой простой форме он описывает силу трения, которая пропорциональна скорости. При этом предполагается, что никакие другие силы трения, воздействующие на насосную штангу, не существуют. Член g представляет вес насосной штанги. Другими словами, математическое моделирование штангового насоса, как описано уравнением (1), предполагает номинально вертикальную скважину, для которой предполагается, что силы торможения для колонны труб не существуют.
Квалифицирующее слово "номинальный" используется, поскольку невозможно пробурить идеально вертикальную скважину. Когда нагрузка прикладывается к буровому долоту для бурения скважины, бурильная колонна несколько изгибается и буровая скважина несколько отклоняется от вертикали. Когда требуется получить вертикальную скважину, нефтедобывающая компания включает в себя примечание об отклонении в договор с буровым подрядчиком, в котором предусматривается, что буровая скважина должна быть вертикальной в узких пределах. Вертикальные скважины проще получить с использованием оборудования штанговых насосов, поскольку в этом случае меньше гидравлическое сопротивление бурильной колонны. Колонна насосных штанг передает энергию от поверхностного модуля до глубинного насоса, который поднимает текучую среду на поверхность. Трение приводит к потере рабочего хода поршня насоса и, в результате, снижается эффективность подъема. Оно также приводит к износу и разрыву насосных штанг и насосно-компрессорной колонны.
Практика включения примечаний об отклонении в буровые контракты и технология измерений трассы ствола скважины возникла из-за скандалов в нефтедобывающей промышленности. Недобросовестные нефтедобытчики преднамеренно дренировали нефтяные месторождения, принадлежавшие соседним арендаторам, используя наклонные скважины.
Наклонные скважины все чаще используются. В этих скважинах точка, где (на виде сверху) текучая среда из месторождения попадает в канал скважины, может быть существенно смещена в поперечном направлении от местоположения на поверхности. Такое отклонение может быть непреднамеренным или преднамеренным, как описано выше.
Причин для преднамеренного отклонения скважин множество, и они различные. Большинство причин возникает в результате учета социальных проблем и проблем защиты окружающей среды. Вдоль береговой линии скважины, расположенные на поверхности шельфа, могут быть отклонены для эксплуатации нефтяных месторождений, находящихся под толщей воды. Аналогично, нефтяные месторождения, расположенные под местами жительства или городскими районами, могут эксплуатироваться с использованием наклонных скважин, места расположения на поверхности которых, находятся за пределами чувствительных областей. Добыча нефти и газа требует использования дорожного движения для обслуживания скважин. Наклонные скважины могут уменьшить нежелательный график в областях жилой застройки, поскольку только места расположения на поверхности должны быть обслужены. Зона досягаемости наклонных скважин может составлять тысячи футов (на виде сверху) от места расположения на поверхности. Множество вертикальных скважин требуют множества дорог на поверхности, проведенных к каждому местоположению. Показательный пример может быть представлен системой ANWAR (Национальный заповедник Арти). При использовании наклонных скважин подъездные пути к каждой скважине могут быть ненужными. Двадцать или больше наклонных скважин могут быть соединены вместе в малой области для получения минимального влияния на окружающую среду. Единственного подъездного пути к небольшому местоположению на поверхности при этом будет достаточно. Двадцать разных дорог доступа к каждой скважине (если их пробурить вертикально) потребовались бы в этом случае. Вследствие этих многих причин количество наклонных скважин быстро увеличивается (и продолжит) увеличиваться.
Измерение и управление каналом ствола скважины становятся очень сложными. Различные способы телеметрии используются для передачи тройных комбинаций данных (глубина, азимут и наклон) на поверхность. Эти элементы требуются для получения инклинометрии скважины.
Определение целей изобретения
Основная цель данного изобретения состоит в том, чтобы обеспечить улучшенный контроллер, который определяет карту глубинного насоса для наклонной скважины на основе измерений поверхности.
Другая цель изобретения состоит в том, чтобы обеспечить контроллер скважины, который использует карту глубинного насоса для наклонной скважины для управления штанговым насосом.
Другая цель изобретения состоит в том, чтобы обеспечить улучшенный контроллер, который можно использовать для определения карты глубинного насоса для наклонной скважины и для вертикальной скважины на основе измерений поверхности.
Раскрытие изобретения
Цели изобретения, вместе с другими признаками и преимуществами, внедрены в систему для выполнения мониторинга системы возвратно-поступательного насоса, который добывает углеводороды из невертикальной скважины или вертикальной скважины, которая проходит от поверхности вглубь земли. Система сбора данных представляет собой часть системы, которая обеспечивает сигналы, представляющие рабочие характеристики на поверхности насосной системы и характеристики невертикальной скважины, такие характеристики включают в себя глубину, азимут и наклон. Предусмотрен процессор, который принимает рабочие характеристики с характеристиками невертикальной скважины и генерирует карту поверхности, представляющую нагрузку сальникового штока как функцию положения сальникового штока на поверхности. Процессор генерирует функцию закона трения на основе характеристик невертикальной скважины. Процессор генерирует карту глубинного насоса как функцию карты на поверхности и функцию закона трении для волнового уравнения, которое описывает линейные вибрации в длинном штоке малого диаметра.
Процессор дополнительно включает в себя программное обеспечение для анализа карты насоса, которое формирует сигнал управления для управления насосной системой.
Волновое уравнение для невертикальной скважины представляет собой уравнение следующего вида
2 u ( x , t ) t 1 = ν 2 2 u ( x , t ) x 2 c u ( x , t ) t C ( x ) + g ( x ) ( 8 )
Figure 00000009
где
C ( x ) = δ μ ( x ) [ Q ( x ) + T ( x ) u ( x , t ) x ] ( 9 )
Figure 00000010
δ = u ( x , t ) / t | u ( x , t ) / t | ( 10 )
Figure 00000011
где С(x) представляет силу сопротивления штока или насосно-компрессорной колонны.
Контроллер также можно использовать для номинально вертикальной скважины, используя формулы (8)-(10), где С(x) модифицируют так, чтобы она соответствовала такой вертикальной скважине.
Краткое описание чертежей
Изобретение описано ниже со ссылкой на приложенные чертежи, на которых:
на фиг.1 показана схема частично в продольном разрезе, представляющая общую схему устройства предшествующего уровня техники в номинально вертикальной скважине;
на фиг.2 показан увеличенный вид сбоку, представляющий общую схему участка устройства возле подвески насосных штанг;
на фиг.3 показан график предшествующего уровня техники, представляющий карту поверхности и содержащий рассчитанную карту глубинного насоса для номинально вертикальной скважины;
на фиг.4 иллюстрируется наклонная скважина с улучшенным устройством управления скважины для определения глубинной карты для наклонной скважины в соответствии с изобретением;
на фиг.4А иллюстрируются компоненты вектора в сечении наклонной скважины;
на фиг.5А показана карта насоса, рассчитанная в наклонной скважине с использованием способов в соответствии с настоящим изобретением, и для сравнения, на фиг.5В показана карта насоса той же наклонной скважины, рассчитанная с использованием способов предшествующего уровня техники, в которых предполагается вертикальная скважина;
на фиг.6А, 6В и 6С графически иллюстрируется процедура вывода закона трения для наклонной скважины;
на фиг.7А, 7В и 7С показаны блок-схемы последовательности операций для расчетов и функций, выполняемых в улучшенном устройстве управления скважиной для управления насосом в наклонной скважине, и
на фиг.8 иллюстрируются этапы для расчета коэффициента трения для моделирования наклонной скважины.
Подробное описание изобретения
На фиг.4 иллюстрируется глубинный штанговый насос, работающий в наклонной скважине 100. Номера ссылочных позиций, которые обозначают корпус, насос, насосные штанги и т.д. на фиг.4, являются теми же, которые используются для иллюстрации фиг.1 для вертикальной скважины, но сигналы 34 нагрузки и сигналы 36' смещения подают (либо, используя аппаратные средства, или по беспроводному каналу) в улучшенное устройство 55 управления скважиной для определения поверхностной карты и глубинной карты для наклонной скважины 100. Сигнал 65 управления генерируют в улучшенном устройстве 55 управления скважиной и подают в насос 200, используя аппаратные средства, или по беспроводному каналу.
Наклонная скважина, такая как на фиг.4, требует использования другой версии волнового уравнения, которая моделирует более сложные силы трения, прикладываемые штоком к колонне насосных труб,
2 u ( x , t ) t 1 = ν 2 2 u ( x , t ) x 2 c u ( x , t ) t C ( x ) + g ( x ) ( 8 )
Figure 00000012
где
C ( x ) = δ μ ( x ) [ Q ( x ) + T ( x ) u ( x , t ) x ] ( 9 )
Figure 00000013
δ = u ( x , t ) / t | u ( x , t ) / t | ( 10 )
Figure 00000014
где
ν = скорость звука в стали в футах/секунду;
c = коэффициент демпфирования, 1/секунду;
t = время в секунду;
x = расстояние точки свободного штока, измеренное от сальникового штока, в футах;
u(x,t) = смещение от положения равновесия насосной штанги в футах в момент времени t, и
g(x) = компонент веса насосной штанги в направлении X.
Член С(x) представляет силу трения насосной штанги 17 о колонну 11 насосных труб. Член g(x) веса насосной штанги обобщен до невертикального случая, где только компонент веса штока вносит вклад в осевую силу в штангах. Направление осевых усилий в насосной штанге определяют по сигналам глубины, азимута и наклона, полученным по результатам инклинометрии скважины во время бурения скважины. В наклонных скважинах используют расходуемые направляющие штанг для поглощения износа, который, в противном случае, происходил бы штангах и в колонне насосных труб. Функция µ(x) обеспечивает возможность вариаций трения вдоль насосных штанг 17 в зависимости от того, находятся ли направляющие насосных штанг или сами штанги в контакте с колонной 11 насосных труб. Оператор δ обеспечивает то, что силы трения всегда будут действовать противоположно движению насосных штанг. Боковые усилия на изогнутых участках колонны насосных штанг моделируют с помощью функции Q(x). Функция, зависимая от механического напряжения, также действует в направлении, противоположном направлению движения и представлена следующей формулой
T ( x ) u ( x , t ) x
Figure 00000015
Трение текучей среды моделируют с помощью члена c u ( x , t ) t
Figure 00000008
так же, как и в вертикальной скважине.
Коэффициент µ трения определен, как
μ = т р е н и е н а с о с н о й о т р у б ы б о к о в а я с и л а м е ж д у н а с о с н о й ш т а н г о й и к о л о н н о й т р у б ( 10 1 )
Figure 00000016
Коэффициент трения изменяется при смазке и при изменении контактирующих материалов (например, направляющих насосных штанг, стального покрытия основания и т.д.). Оно может быть оценено, измерено или определено путем сопоставления характеристик.
В формулах (8), (9), (10) коэффициент µ трения может изменяться вдоль колонны насосных штанг в соответствии с контактирующими поверхностями.
Определение µ(x), Q(x) и Т(x) с помощью математического моделирования колонны насосных штанг
Функцию µ(x) и функцию Q(x) и Т(x) вначале определяют в математических моделях при компьютерном моделировании. На прямых участках скважины Q(x)≠0, и Т(x)=0. На изогнутых участках Q(x)≠0 и Т(x)≠0. Моделирование следует восьми этапам, как представлено в прямоугольниках 308, 310 логических выражений на фиг.8 и описано следующим образом.
Этап 1. Начать с коммерческой инклинометрии скважины (например, из логического прямоугольника 308), содержащей измеренную глубину (футы вдоль ствола скважины), наклон от вертикали (градусов) и азимут от направления на север (градусов). Такое исследование содержит определенное количество измерительных станций. Рассчитывают 3D пространственные координаты (x,y,z) каждой станции, используя любой способ. Способ (векторного) радиуса кривизны является предпочтительным. См. фиг.4А. Рассчитать (единичные) векторы касательных, фактическую вертикальную глубину и центры кривизны для каждой измерительной станции и пары измерительных станций.
Этап 2. Добавить измерительные станции в точках постепенного сужения в колонне насосных штанг и в насосе. Новые станции должны быть размещены на дуге, определенной центром кривизны станций, расположенных выше и ниже новой станции. Рассчитать те же количественные значения, которые были описаны на этапе 1.
Этап 3. Добавить дополнительные измерительные станции в средних точках между парами измерительных станций, описанных на этапе 2. Станции в средних точках должны попасть на дугу, определенную центром кривизны станций, расположенных выше и ниже. Рассчитать (единичные) векторы, которые определяют направление боковой силы S, силы W веса насосных штанг и силы С сопротивления, как показано на фиг.4А.
Этап 4. Применить действующую вниз силу в узле насоса (допустим 5000 фунтов), направление которой определено единичным вектором касательной в месте размещения насоса. На фиг.4А это представляет собой вектор D. Рассчитать боковую силу S, силу С трения и действующую направленную вверх осевую силу U из векторных уравнений
U + W + D + S + C = 0 ( 10.2 )
Figure 00000017
| C | = μ | S | ( 10.3 )
Figure 00000018
Символы || обозначают абсолютную величину вектора, находящегося между ними. Вектор W веса всегда действует в направлении вниз и имеет величину wΔx, где w представляет собой погонный вес насосных штанг (фунтов/фут), и Δx представляет собой длину насосных штанг между измерительными станциями.
Этап 5. Продолжить процесс путем перемещения вверх к следующей станции в средней точке. Отрицательная часть направленного вверх вектора U осевого усилия на этапе 4 становится направленным вниз вектором D осевого усилия. Возвращаться к этапу 4, до тех пор, пока не будет достигнута верхняя часть колонны насосных штанг. Записать результаты, определенные в каждой станции, расположенной в средней точке. Затем перейти на этап 6.
Этап 6. Возвратиться к этапу 4 и повторить процесс (этапы 4 и 5), за исключением того, что процесс начинается с большей нагрузкой в районе насоса, например 10000 фунтов. Этот второй эксперимент помогает определить чувствительность боковой нагрузки (следовательно, силы трения) к осевой нагрузке в насосных штангах.
Этап 7. Используя записанную информацию, построить функции Q(x) и Т(x), показанные в формуле 10.
Этап 8. Используя записанную информацию, построить функцию q(x) веса насосной штанги из формулы 8.
Разработка или диагностика наклонной скважины со штанговым насосом
Волновое уравнение (формула 8 с формулами 9 и 10), используют для разработки или диагностики наклонных скважин. Когда его используют для разработки, делают предположения об условиях на дне скважины для того, чтобы обеспечить возможность прогнозирования рабочих характеристик насосной штанговой установки. Для диагностики волновое уравнение используют для предположения условий на дне скважины, используя данные динамометра, собранные на поверхности. Значительные ошибки при прогнозировании или диагностике получают, если трение штанг не будет смоделировано должным образом. Это иллюстрируется со ссылкой на фиг.5А и 5В. Цель состоит в том, чтобы рассчитать карту насоса на дне скважины по поверхностным данным (то есть, задача диагностики). На фиг.5А показана карта насоса, рассчитанная в наклонной скважине, используя уравнение 8. На фиг.5В показана карта насоса, рассчитанная с использованием уравнения 1, как если бы скважина была вертикальной. Карта насоса на фиг.5В является неправильной. Обозначенный рабочий ход поршня насоса является слишком длинным, и нагрузка на нанос является слишком большой. Также форма карты насоса искажена. Карта насоса на фиг.5В представляет собой графическое обозначение теоремы Гиббса, как описано выше.
Один из способов определения точной карты для насоса наклонной скважины по фиг.4 представляет способ сегментирования скважины и получение верхней и нижней карт для каждого сегмента. Нижняя карта верхнего сегмента используется как верхняя карта для нижнего сегмента и так далее, до тех пор, пока не будет определена карта насоса (или требуемая точка внутри скважины). Каждый сегмент характеризуется разной функцией Q(x) боковой силы в соответствии с изогнутым сегментом колонны насосных штанг.
Используя гипотетические данные, становится возможным показать, как вывести более сложный закон трения для наклонной скважины. Пример, представленный ниже, относится к мелким скважинам, в которых общая скорость, по существу, является одинаковой на всех глубинах вдоль колонны насосных штанг. Последнее предложение в теореме Гиббса "Любая ошибка в законе трения вызывает ошибку в рассчитанной карте насоса" описывает эту процедуру. Наибольшая возможная ошибка преднамеренно сделана в рассчитанной карте насоса путем установки трения равным нулю в гипотетической скважине с насосом 2,50 дюйма, установленным на глубину 3375 футов. Модуль качалки С640-305-144 для глубинных насосов работает в установке, выполняя 8,81 рабочих тактов в минуту. Линейное трение вдоль колонны насосных штанг, как задано, должно быть равно 0,158 фунтов на фут длины насосной штанги на фут/секунду скорости насосной штанги. Таким образом, если скважина является мелкой, так что скорость насосной штанги остается приблизительно одинаковой вдоль всей штанги, общее трение, зависимое от скорости при 5 футах/секунду, составит 2666 фунтов [0,158 (3375) (5)=2666]. Зависимое от скорости трение действует противоположно направлению движения. Кроме того, задан компонент Кулона (независимый от скорости, но всегда противоположный направлению движения), равный 0,3 фунта/фут длины насосных штанг. Таким образом, общее сопротивление Кулона вдоль всей колонны насосных штанг составит 1013 фунтов [0,3 (3375)=1013]. Когда насосные штанги движутся вверх со скоростью 5 футов/секунду, сила, направленная вниз, равная 3679 фунтов, будет действовать на них. Когда насосные штанги движутся вниз со скоростью 5 футов/секунду, будет приложена направленная вверх сила трения, равная 3679 фунтов. Закон трения, используемый для формирования гипотетических данных, может быть записан следующим образом
F = 0,158 ( 3375 ) V 0,3 ( 3375 ) V / | V | . ( 11 )
Figure 00000019
На фиг.6А показаны две карты насоса, представленные в одном и том же масштабе нагрузки и положения и с общим исходным временем. Шестьдесят точек использовали для нанесения каждой карты с постоянным интервалом времени между точками. Функция ошибки определяется следующей формулой
Δ i = L a ( t i ) L 0 ( t i ) , ( 12 )
Figure 00000020
в которой La(t)i представляет собой фактические (истинные) нагрузки насоса, полученные в соответствии с полностью выраженной программой прогноза, и L0(ti) представляет собой нагрузки насоса, рассчитанные с помощью технологии диагностики с нулевым трением. Δi представляет собой измеренную ошибку, вызванную использованием некорректного закона трения (нулевое трение) в соответствии с теоремой Гиббса. Поскольку трение бурильной колонны было установлено равным нулю, и скорость вдоль насосных штанг, по существу, является одинаковой в заданный момент времени (неглубокая скважина), Δi представляет общее трение вдоль длины колонны насосных штанг.
На фиг.6b показано изменение во времени скорости насоса, полученной так, чтобы она представляла локальную скорость в любом месте вдоль колонны насосных штанг.
Наконец, на фиг.6с показано изменение во времени величины Δi, и изменение во времени закона трения по формуле (12), используемой для создания этого гипотетического примера. Согласие между двумя временными диаграммами хорошее, но не идеальное. Не идеальные моменты вызваны тем, что даже в неглубокой скважине колонна насосных штанг растягивается таким образом, что допущение равных скоростей вдоль ее длины не является строго истинным. Тем не менее, это согласие достаточно хорошее для того, чтобы использовать теорему Гиббса для определения более сложных законов трения.
На фиг.7А и 7В схематично иллюстрируется в виде блок-схемы последовательности операций вид функций улучшенного устройства 55 управления скважиной. На фиг.7А в логическом прямоугольнике 300 показано, что данные нагрузки и положения измеряют непосредственно (например, данные нагрузки получают с помощью датчика нагрузки и данные положения получают с помощью потенциометра колонны штанг, инклинометра, лазера, RF, радарного датчика измерения расстояния/положения и т.д.), или измеряют опосредованно (то есть, рассчитывают на основе других входных данных). Такие данные применяют в логическом прямоугольнике 304, где данными нагрузки и положения управляют, и их конфигурируют. Эти данные передают в генератор 306 карты на поверхности, где данные положения и нагрузки коррелируют для каждого цикла возвратно-поступательных движений штангового насоса.
В логическом прямоугольнике 302 иллюстрируется, что данные, введенные из различных устройств, передают в логический прямоугольник 308, где сохраняют данные о насосе и скважине. Инклинометрия скважины включает в себя данные глубины, азимута и наклона в каждой точке вдоль скважины. Информация разработки сужения насосных штанг и инклинометрия используются для расчета коэффициента трения, как описано выше со ссылкой на фиг.8, для расчета карты насоса наклонной скважины или горизонтальной скважины. Информация о конструкции сужения насосных штанг используется в логическом прямоугольнике 312 для определения Н-фактора, используемого при генерировании карты насоса в логическом прямоугольнике 314.
Определение Н факторов, используемых для получения числового решения волнового уравнения
Н факторы представляют собой безразмерные коэффициенты для узловых положений насосных штанг, используемых при численном решении волнового уравнения. Они не изменяются со временем и могут, таким образом, быть заранее рассчитаны перед тем, как будет начато решение в реальном времени. Это экономит время расчетов на компьютере и помогает сделать выполнимыми на практике варианты выполнения процесса на микрокомпьютерах на месте буровой площадки. Начинают с волнового уравнения для наклонных скважин
2 u ( x , t ) t 2 = ν 2 2 u ( x , t ) x 2 c u ( x , t ) t C ( x ) + g ( x ) ( 8 ) п о в т о р
Figure 00000021
Н факторы получают путем замены частных производных в уравнении (8) на аппроксимацию частной разностью, как представлено ниже:
2 u ( x , t ) t 2 u ( x , t + Δ t ) 2 u ( x , t ) + u ( x , t Δ t ) Δ t 2 ( 10.4 )
Figure 00000022
2 u ( x , t ) x 2 u ( x + Δ s , t ) 2 u ( x , t ) + u ( x Δ x , t ) Δ x 2 + [ Δ x 2 ν 2 Δ t 2 ] u ( x , t Δ t ) u ( x Δ x , t ) ( 10.5 )
Figure 00000023
Правосторонняя разность уравнения 10.5 имеет вид,
u(x+Δx,t)0=H1u(x,t+Δt)-H2u(x,t)+H3u(x,t-Δt)-u(x-Δx,t),
где
H 1 = Δ s 2 ν 2 Δ t 2 + c Δ s 2 ν 2 Δ t ( 10.8 )
Figure 00000024
H 2 = 2 Δ s 2 ν 2 Δ t 2 + c Δ s 2 ν 2 Δ t 2 ( 10.9 )
Figure 00000025
H 3 = Δ s 2 ν 2 Δ t 2 . ( 10.8 )
Figure 00000026
Колонны насосных штанг могут быть выполнены из различных отрезков, называемых расширенными хвостовиками. Расширенный хвостовик определен диаметром насосной штанги, длиной и ее материалом. Таким образом, количественные значения H должны быть заранее рассчитаны для каждого расширенного хвостовика. Когда подставляют более полные определения количественных характеристик, используемых в значениях H, получают
Скорость распространения:
ν 2 144 E g c ρ ( 10.11 )
Figure 00000027
Коэффициент трения штанга - текучая среда:
c 144 c ' g c ρ A ( 10.12 )
Figure 00000028
c ' = π ν λ ρ A 288 g c L ( 10.13 )
Figure 00000029
количественные значения H получают для каждого расширенного хвостовика.
Значения Н не включают в себя члены C(x) и g(x) уравнения (8). Их обрабатывают отдельно, как описано ниже.
Задачи прогнозирования и диагностики решаются различными формулами частной разности. Для прогнозирования (задача SROD для наклонного случая) необходимо приращение по времени. Таким образом, уравнение (8) решается для u(x, t+Δt). В результате получают другой набор значений Н, чем описан выше. Условия в глубинном насосе известны по граничным условиям в задаче прогнозирования. Для задачи диагностики (задача DIAG для наклонного случая) необходимо рассчитать условия насоса, которые неизвестны. Как показано выше, уравнение (8) решается для u(x+Δ, t). Из первого граничного условия положение узла насосной штанги на поверхности (atx=0) известно для всего времени t. Из второго граничного условия и закона Гука, положение штока во втором узле (x=Δx) также может быть рассчитано для всего времени t. В результате, можно начать решение, и может быть рассчитано положения узлов на всем протяжения до насоса. Это позволяет установить общую нагрузку на насос и положение, которое содержит глубинную карту насоса.
Другая функция Н, Н4, не включена в формат решения волнового уравнения. Она также представляет собой заранее рассчитанное значение, которое используется только при расчете нагрузки на трение колонны насосных штанг.
Данные, относящиеся к поверхностной карте из прямоугольника 306, коэффициент трения в скважине из прямоугольника 310, Н-фактор из прямоугольника 312 и данные параметра скважины применяют для генератора 314 карты насоса. Компьютерное моделирование используется для построения функций Q(x) и T(x). Эти функции описывают кулоновское тормозящее трение между штангой и колоннами насосных труб. Производную в уравнении (8) заменяют конечной разностью,
C ( x ) = δ μ ( x ) [ Q ( x ) + T ( x ) u ( x + Δ x , t ) u ( x , t ) Δ t ] ( 9.1 )
Figure 00000030
и эффект кулоновского трения вводят в решение частной разности, используя
u(x+Δx,t)=H1u(x,t+Δ)-H2u(x,t)+H3u(x,t-Δt)-u(x-Δs,t)
+H4C(x)
Аппроксимацию конечных разностей к частной производной в уравнении (8) рассчитывают на предыдущем временном этапе. Такой компромисс исключает математические трудности, но приводит к незначительным потерям точности результатов. Время обработки в компьютере уменьшается.
Карты насоса для наклонных и горизонтальных скважин генерируют в соответствии с формулами 8, 9, 10, с коэффициентом трения, определенным, как описано выше. Карты насоса для вертикальных скважин генерируют также в соответствии с формулами 8, 9, 10, но используя скорее коэффициент трения, соответствующий вертикальной скважине, вместо процедуры, описанной выше наклонной скважины.
После определения карты насоса ее анализируют для определения множества параметров насоса, как обозначено в прямоугольнике 318. Распознавание структур формы насоса обозначает возможные проблемы насоса, как обозначено в прямоугольнике 320. В патенте США 6857474 авторов Bramlett и др. (приведен здесь по ссылке) иллюстрируются различные формы глубинной карты, представляющие различные состояния насоса.
Устройство управления скважиной генерирует отчет, содержащий состояние скважины, как обозначено прямоугольником 312 генератора отчетов, и передает этот отчет наружу и через электронную почту, sms, mms и т.д., или делает его доступным для схемы передачи данных по запросу через проводной или беспроводный канал передачи данных. См. прямоугольник 319. Он также генерирует сигнал/команду 65 управления, которая должна быть применена или передана (по проводному или беспроводному каналу передачи) в электрическую панель 322, для ВКЛЮЧЕНИЯ/ВЫКЛЮЧЕНИЯ питания, которое приложено к насосу 200, для управления им в зависимости от анализа карты насоса.
Управление может представлять собой сигнал/команду 65 выключения насоса, поданную или переданную (по проводному или беспроводному каналу передачи) в электрическую панель 322 насоса 200 или сигнал/команду изменения скорости, поданную или переданную (по проводному или беспроводному каналу передачи), например, в привод 324 с переменной частотой.

Claims (13)

1. Измерительная система для оценки работы системы возвратно-поступательного насоса (200) для добычи углеводородов из невертикальной скважины, проходящей от поверхности вглубь земли, содержащая
систему (300, 304) сбора данных, выполненную с возможностью предоставления сигналов, представляющих рабочие характеристики на поверхности насосной системы и характеристики упомянутой невертикальной скважины,
процессор (306), выполненный с возможностью приема упомянутых рабочих характеристик с упомянутыми характеристиками упомянутой невертикальной скважины и генерирования поверхностной карты, представляющей нагрузку на сальниковый шток на поверхности как функцию положения сальникового штока на поверхности, при этом
процессор выполнен с возможностью определять функцию закона трения на основе упомянутых характеристик упомянутой невертикальной скважины, и
процессор выполнен с возможностью периодически генерировать глубинную карту насоса как функцию упомянутой поверхностной карты и упомянутой функции закона трения для волнового уравнения, описывающего линейные вибрации в длинной тонкой насосной штанге, при этом волновое уравнение для наклонной скважины имеет вид
Figure 00000031

где
Figure 00000032

Figure 00000033

Figure 00000034

где C(x) - сила трения штанги о колонну насосных труб и где
ν = скорость звука в стали в футах/секунду;
c = коэффициент демпфирования, 1/секунду;
t = время в секундах;
x = расстояние точки свободного штока, измеренное от сальникового штока, в футах;
u(x,t) = смещение от положения равновесия насосной штанги в футах в момент времени t, и
g(x) = вес насосного узла с насосной штангой в направлении X,
µ(x) = коэффициент трения между насосной штангой и колонной труб;
Q(x) = боковое усилие на изогнутых участках насосных штанг; и
Т(x) = механическое напряжение в насосной штанге,
при этом
функции µ(x), Q(x) и Т(x) определяются путем математического моделирования колонны насосных штанг в указанной скважине
2. Система по п.1, в которой процессор содержит программное обеспечение для анализа карты насоса, выполненное с возможностью вырабатывать сигнал управления для управления упомянутым насосом.
3. Система по п.1, в которой
программное обеспечение для анализа карты насоса выполнено с возможностью вырабатывать сигнал управления для выключения двигателя привода упомянутого насоса при распознавании показателя карты насоса, требующего отключения насоса.
4. Система по п.1, в которой
программное обеспечение для анализа карты насоса выполнено с возможностью вырабатывать сигнал управления для управления переменной скоростью насоса при распознавании показателя карты насоса, указывающего, что изменение скорости насоса улучшит работу насоса.
5. Измерительная система для оценки работы системы возвратно-поступательного насоса (200) для добычи углеводородов из скважины, проходящей от поверхности вглубь земли, содержащая,
систему (300, 304) сбора данных, выполненную с возможностью приема упомянутых характеристик упомянутой скважины и включающую в себя процессор (65), выполненный с возможностью генерирования поверхностной карты, представляющей нагрузку на сальниковый шток на поверхности как функцию положения сальникового штока на поверхности, при этом
процессор (65) выполнен с возможностью определять функцию закона трения для упомянутой скважины,
процессор (65) выполнен с возможностью периодически генерировать глубинную карту насоса по упомянутой поверхностной карте как функцию упомянутой поверхностной карты и коэффициента закона трения для волнового уравнения, описывающего вибрации в длинной тонкой насосной штанге, причем волновое уравнение имеет вид
Figure 00000035

где
Figure 00000036

Figure 00000034

где C(x) - сила трения штанги о колонну насосных труб и где
ν = скорость звука в стали в футах/секунду;
c = коэффициент демпфирования, 1/секунду;
t = время в секундах;
x = расстояние точки свободного штока, измеренное от сальникового штока, в футах;
u(x,t) = смещение от положения равновесия насосной штанги в футах в момент времени t, и
g(x) = вес насосного узла с насосной штангой в направлении X,
µ(x) = коэффициент трения между насосной штангой и колонной труб;
Q(x) = боковое усилие на изогнутых участках насосных штанг; и
Т(x) = механическое напряжение в насосной штанге,
при этом
функции µ(x), Q(x) и T(x) определяются путем математического моделирования колонны насосных штанг в указанной скважине.
6. Система по п.5, в которой
упомянутая скважина является по существу вертикальной, а коэффициент закона трения представляет характеристику трения насосной штанги в вертикальной скважине.
7. Система по п.5, в которой
упомянутая скважина является невертикальной, а коэффициент закона трения представляет характеристику трения насосной штанги в невертикальной скважине.
8. Система по п.5, в которой
процессор включает в себя программное обеспечение для анализа карты насоса, выполненное с возможностью выработки сигнала управления для управления упомянутым насосом.
9. Система по п.5, в которой
программное обеспечение для анализа карты насоса выполнено с возможностью вырабатывать сигнал управления для выключения двигателя привода упомянутого насоса при распознавании показателя карты насоса, требующего отключения насоса.
10. Система по п.5, в которой
программное обеспечение для анализа карты насоса выполнено с возможностью вырабатывать сигнал управления для управления переменной скоростью насоса при распознавании показателя карты насоса, указывающего, что изменение скорости насоса улучшит работу насоса.
11. Система по п.8, характеризующаяся тем, что выполнена с возможностью подачи упомянутого сигнала управления к упомянутому насосу либо через проводное, либо через беспроводное устройство.
12. Система по п.8, в которой
программное обеспечение для анализа карты насоса выполнено с возможностью вырабатывать сводный отчет о характеристиках карты насоса, при этом система дополнительно содержит
модуль передачи данных, выполненный с возможностью передачи упомянутого сводного отчета из упомянутой системы насоса в удаленное место.
13. Система по п.8, в которой
процессор (65) географически удален от упомянутого возвратно-поступательного насоса (200) со штоком и выполнен с возможностью принимать упомянутые характеристики беспроводным образом от упомянутой системы (300, 304) сбора данных, и
процессор (65) выполнен с возможностью передавать упомянутый сигнал управления беспроводным образом упомянутому насосу.
RU2011121884/06A 2008-10-31 2009-10-27 Устройство для анализа и управления системой возвратно-поступательного насоса путем определения карты насоса RU2556781C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/290,477 US8036829B2 (en) 2008-10-31 2008-10-31 Apparatus for analysis and control of a reciprocating pump system by determination of a pump card
US12/290,477 2008-10-31
PCT/US2009/062185 WO2010051270A1 (en) 2008-10-31 2009-10-27 Apparatus for analysis and control of a reciprocating pump system by determination of a pump card

Publications (2)

Publication Number Publication Date
RU2011121884A RU2011121884A (ru) 2012-12-10
RU2556781C2 true RU2556781C2 (ru) 2015-07-20

Family

ID=42129226

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011121884/06A RU2556781C2 (ru) 2008-10-31 2009-10-27 Устройство для анализа и управления системой возвратно-поступательного насоса путем определения карты насоса

Country Status (8)

Country Link
US (2) US8036829B2 (ru)
EP (1) EP2344768B1 (ru)
AU (1) AU2009308931B2 (ru)
BR (1) BRPI0916085B1 (ru)
CA (1) CA2742270C (ru)
MX (1) MX2011004640A (ru)
RU (1) RU2556781C2 (ru)
WO (1) WO2010051270A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721986C2 (ru) * 2015-07-27 2020-05-25 Бристоль, Инк., Д/Б/А Ремоут Аутомейшен Солюшенз Способы и устройство для попарного сопоставления значений положения контроллера штангового глубинного насоса и нагрузки
RU2782351C1 (ru) * 2021-07-12 2022-10-26 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" Способ контроля поступательного перемещения звеньев механизма с помощью инклинометров

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9086506B2 (en) 2008-07-24 2015-07-21 Schlumberger Technology Corporation Estimating formation stresses using radial profiles of three shear moduli
US9494704B2 (en) * 2008-07-24 2016-11-15 Schlumberger Technology Corporation Estimating formation stresses using sonic data
US8036829B2 (en) 2008-10-31 2011-10-11 Lufkin Industries, Inc. Apparatus for analysis and control of a reciprocating pump system by determination of a pump card
US8988237B2 (en) 2010-05-27 2015-03-24 University Of Southern California System and method for failure prediction for artificial lift systems
US8988236B2 (en) 2010-05-27 2015-03-24 University Of Southern California System and method for failure prediction for rod pump artificial lift systems
US8146657B1 (en) 2011-02-24 2012-04-03 Sam Gavin Gibbs Systems and methods for inferring free gas production in oil and gas wells
US10227969B1 (en) * 2010-11-05 2019-03-12 Cushing Pump Regulator, Llc Methods and apparatus for control of oil well pump
SK1692010A3 (sk) * 2010-12-16 2012-07-03 Naftamatika, S. R. O. Method of diagnosis and management of pumping oil or gas wells and device there of
US9280517B2 (en) * 2011-06-23 2016-03-08 University Of Southern California System and method for failure detection for artificial lift systems
US9810212B2 (en) 2011-10-28 2017-11-07 Weatherford Technology Holdings, Llc Fluid load line calculation and concavity test for downhole pump card
US9273544B2 (en) * 2011-12-29 2016-03-01 Chevron U.S.A. Inc. System, method, and program for monitoring and hierarchial displaying of data related to artificial lift systems
KR101335935B1 (ko) * 2012-07-09 2013-12-04 한국지질자원연구원 지중 설치형 미소지진센서의 재사용을 위한 센서고정장치
WO2014078851A2 (en) * 2012-11-19 2014-05-22 Lufkin Industries, Llc Real-time pump diagnostic algorithms and application thereof
US9617837B2 (en) 2013-01-14 2017-04-11 Lufkin Industries, Llc Hydraulic oil well pumping apparatus
RU2546376C1 (ru) * 2014-03-13 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Беспроводной динамограф для контроля работы скважинных штанговых насосов
US20150275650A1 (en) * 2014-03-25 2015-10-01 Bristol, Inc., D/B/A Remote Automated Solutions Methods and apparatus to determine production of downhole pumps
US10018032B2 (en) * 2014-06-30 2018-07-10 Weatherford Technology Holdings, Llc Stress calculations for sucker rod pumping systems
EP2963234B1 (en) * 2014-07-01 2018-06-06 Weatherford Technology Holdings, LLC Stress calculations for sucker rod pumping systems
US10145230B2 (en) 2014-10-10 2018-12-04 Henry Research And Development, Llc Systems and methods for real-time monitoring of downhole pump conditions
US20160117620A1 (en) * 2014-10-22 2016-04-28 Schlumberger Technology Corporation Methods and systems for visualizing items
US10280731B2 (en) 2014-12-03 2019-05-07 Baker Hughes, A Ge Company, Llc Energy industry operation characterization and/or optimization
WO2016112385A1 (en) 2015-01-09 2016-07-14 Weatherford Technology Holdings, Llc Long-stroke pumping unit
US10400761B2 (en) 2015-01-29 2019-09-03 Weatherford Technology Holdings, Llc Long stroke pumping unit
US10113544B2 (en) 2015-02-23 2018-10-30 Weatherford Technology Holdings, Llc Long-stroke pumping unit
US20160265321A1 (en) * 2015-03-11 2016-09-15 Encline Artificial Lift Technologies LLC Well Pumping System Having Pump Speed Optimization
US10280729B2 (en) * 2015-04-24 2019-05-07 Baker Hughes, A Ge Company, Llc Energy industry operation prediction and analysis based on downhole conditions
CN106326630B (zh) * 2015-06-29 2022-01-18 布里斯托公司商用名远程自动化解决方案 用于确定井下泵的产量的方法和装置
US10465457B2 (en) 2015-08-11 2019-11-05 Weatherford Technology Holdings, Llc Tool detection and alignment for tool installation
US10626683B2 (en) 2015-08-11 2020-04-21 Weatherford Technology Holdings, Llc Tool identification
US10240452B2 (en) * 2015-11-20 2019-03-26 Weatherford Technology Holdings, Llc Reservoir analysis with well pumping system
US10450851B2 (en) 2015-11-30 2019-10-22 Weatherford Technology Holdings, Llc Calculating downhole card in deviated wellbore using parameterized segment calculations
US10781813B2 (en) * 2015-12-10 2020-09-22 Baker Hughes Oilfield Operations, Llc Controller for a rod pumping unit and method of operation
US10711788B2 (en) 2015-12-17 2020-07-14 Wayne/Scott Fetzer Company Integrated sump pump controller with status notifications
US10197050B2 (en) 2016-01-14 2019-02-05 Weatherford Technology Holdings, Llc Reciprocating rod pumping unit
US10774627B1 (en) * 2016-07-08 2020-09-15 James F. Lea, Jr. Adjusting speed during beam pump cycle using variable speed drive
RU2626616C1 (ru) * 2016-08-03 2017-07-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Устройство для измерения числа качаний станка-качалки
CN106437682B (zh) * 2016-11-01 2019-10-01 中国石油集团东方地球物理勘探有限责任公司 一种预测油井示功图的方法
US10260500B2 (en) 2017-05-15 2019-04-16 General Electric Company Downhole dynamometer and method of operation
US10544631B2 (en) 2017-06-19 2020-01-28 Weatherford Technology Holdings, Llc Combined multi-coupler for top drive
USD893552S1 (en) 2017-06-21 2020-08-18 Wayne/Scott Fetzer Company Pump components
US10527104B2 (en) 2017-07-21 2020-01-07 Weatherford Technology Holdings, Llc Combined multi-coupler for top drive
USD890211S1 (en) 2018-01-11 2020-07-14 Wayne/Scott Fetzer Company Pump components
CN108979624B (zh) * 2018-08-07 2022-03-08 东北大学 一种基于示功图矩特征的有杆抽油系统摩擦因数辨识方法
CA3116804A1 (en) * 2018-10-19 2020-04-23 Toku Industry Inc. System and method for operating downhole pump
AR116177A1 (es) 2019-05-28 2021-04-07 Ypf Tecnologia Sa Métodos y dispositivos para el monitoreo de esfuerzos, desgaste y sumergencia en pozos petroleros desviados con bombeo mecánico
US11560784B2 (en) 2019-06-11 2023-01-24 Noven, Inc. Automated beam pump diagnostics using surface dynacard
WO2024124069A2 (en) 2022-12-08 2024-06-13 Sensia Llc Rapid sucker rod pump downhole dynacard estimation for deviated wells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343409A (en) * 1966-10-21 1967-09-26 Shell Oil Co Method of determining sucker rod pump performance
US5252031A (en) * 1992-04-21 1993-10-12 Gibbs Sam G Monitoring and pump-off control with downhole pump cards
US5431230A (en) * 1991-04-08 1995-07-11 Rotating Production Systems, Inc. Slant wellbore tubing anchor catcher with rotating mandrel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306210A (en) * 1965-08-25 1967-02-28 Harvey W Boyd Automatic oil well pump control
US6857474B2 (en) * 2001-10-02 2005-02-22 Lufkin Industries, Inc. Methods, apparatus and products useful in the operation of a sucker rod pump during the production of hydrocarbons
US7212923B2 (en) * 2005-01-05 2007-05-01 Lufkin Industries, Inc. Inferred production rates of a rod pumped well from surface and pump card information
US8036829B2 (en) 2008-10-31 2011-10-11 Lufkin Industries, Inc. Apparatus for analysis and control of a reciprocating pump system by determination of a pump card

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343409A (en) * 1966-10-21 1967-09-26 Shell Oil Co Method of determining sucker rod pump performance
US5431230A (en) * 1991-04-08 1995-07-11 Rotating Production Systems, Inc. Slant wellbore tubing anchor catcher with rotating mandrel
US5252031A (en) * 1992-04-21 1993-10-12 Gibbs Sam G Monitoring and pump-off control with downhole pump cards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721986C2 (ru) * 2015-07-27 2020-05-25 Бристоль, Инк., Д/Б/А Ремоут Аутомейшен Солюшенз Способы и устройство для попарного сопоставления значений положения контроллера штангового глубинного насоса и нагрузки
RU2782351C1 (ru) * 2021-07-12 2022-10-26 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" Способ контроля поступательного перемещения звеньев механизма с помощью инклинометров

Also Published As

Publication number Publication date
US8036829B2 (en) 2011-10-11
EP2344768A1 (en) 2011-07-20
CA2742270A1 (en) 2010-05-06
EP2344768B1 (en) 2018-10-10
AU2009308931B2 (en) 2014-03-06
EP2344768A4 (en) 2017-05-17
BRPI0916085A2 (pt) 2015-11-10
RU2011121884A (ru) 2012-12-10
US20100111716A1 (en) 2010-05-06
BRPI0916085B1 (pt) 2019-12-03
US8433516B1 (en) 2013-04-30
AU2009308931A1 (en) 2010-05-06
MX2011004640A (es) 2011-10-28
CA2742270C (en) 2016-11-08
WO2010051270A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
RU2556781C2 (ru) Устройство для анализа и управления системой возвратно-поступательного насоса путем определения карты насоса
RU2567567C1 (ru) Вычисление скважинных диаграмм при искривленных скважинах
CN113167269B (zh) 泵系统
EP3176361B1 (en) Calculating downhole card in deviated wellbore using parameterized segment calculations
US9574435B2 (en) Hydrocarbon well performance monitoring system
US7212923B2 (en) Inferred production rates of a rod pumped well from surface and pump card information
CN111655969B (zh) 使用实时测量和建模来优化管子运行操作的系统和方法
CN106089184A (zh) 一种井下抽油泵工况的诊断方法和装置
US11525351B2 (en) Wellbore friction measurement, method and apparatus
US20220018240A1 (en) Predicting and reducing vibrations during downhole drilling operations
US11519260B2 (en) Rod pump position measurement employing wave-based technologies
US10774637B2 (en) Sensing formation properties during wellbore construction
Kristensen Model of hook load during tripping operation
Podio et al. Integrated well performance and analysis
Jegbefume et al. Rod-Guide Placement Based on High-Resolution Tortuosity Analysis of Production Tubing
Buckley et al. Measurements of Distributed Strain During Impact Pile Driving
WO2020226509A1 (en) Determination of temperature and temperature profile in pipeline or a wellbore
CA3198604A1 (en) Computer-implemented method for determining an operational property of a drill-rod borehole pump, analysis device and pump system for same
Podio et al. Dynamometer analysis plots improve ability to troubleshoot and analyze problems

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141028

NF4A Reinstatement of patent

Effective date: 20151110