RU2555702C2 - Глицериды и смеси жирных кислот и способы их применения - Google Patents

Глицериды и смеси жирных кислот и способы их применения Download PDF

Info

Publication number
RU2555702C2
RU2555702C2 RU2013129037/04A RU2013129037A RU2555702C2 RU 2555702 C2 RU2555702 C2 RU 2555702C2 RU 2013129037/04 A RU2013129037/04 A RU 2013129037/04A RU 2013129037 A RU2013129037 A RU 2013129037A RU 2555702 C2 RU2555702 C2 RU 2555702C2
Authority
RU
Russia
Prior art keywords
fatty acid
glycerides
particles
suspension
flotation
Prior art date
Application number
RU2013129037/04A
Other languages
English (en)
Other versions
RU2013129037A (ru
Inventor
Бо ТРАН
Кирим ИРАЙДИН
Original Assignee
Налко Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Налко Компани filed Critical Налко Компани
Publication of RU2013129037A publication Critical patent/RU2013129037A/ru
Application granted granted Critical
Publication of RU2555702C2 publication Critical patent/RU2555702C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12FRECOVERY OF BY-PRODUCTS OF FERMENTED SOLUTIONS; DENATURED ALCOHOL; PREPARATION THEREOF
    • C12F3/00Recovery of by-products
    • C12F3/10Recovery of by-products from distillery slops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/06Froth-flotation processes differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/04Frothers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/08Coal ores, fly ash or soot
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

Настоящее изобретение относится к способу отделения первого материала от второго материала, который включает следующие стадии: смешение первого материала и второго материала в виде суспензии с обогатительной композицией, обеспечивая получение пузырьков воздуха в суспензии для образования агрегатов частиц с пузырьками с первым материалом, и позволяя агрегатам частиц с пузырьками отделяться от второго материала, при этом указанная обогатительная композиция включает флотационный агент, получаемый из процесса производства этанола и содержащий смесь жирной кислоты и по меньшей мере одного глицерида, причем флотационный агент объединяют с одним или несколькими веществами, способными собирать частицы, и пенообразователями. Техническим результатом является использование эффективных и безопасных обогатительных композиций. 2 з.п. ф-лы, 3 пр., 3 табл.

Description

Уровень техники
Настоящее изобретение относится к способам и композициям, полезным для зеленых технологий. Более конкретно, настоящее изобретение относится к глицеридам и смесям жирных кислот, полученным из процессов производства этанола в качестве сопродуктов или побочных продуктов. Эти смеси могут применяться во множестве применений. Одним из применений является обогащение, способ выделения полезных веществ из отходов. Другим применением является обезвоживание, отделение воды из материала. Другие применения выбраны из перечня, содержащего смазочные жидкости, прокатное масло, гидравлические жидкости, противовспениватели, пеногасители, буровой раствор, масло для покрытий, огнестойкие жидкости, контроль объемной плотности, контроль объемной плотности угля и контроль пыли.
Как описано, например, в патентах US 7,624,878 и 7,837,891 В2, и заявке на патент US 12/706091, обогащение использует разницу гидрофобности соответствующих компонентов. Во время этого процесса руду измельчают до определенного небольшого размера и суспендируют в воде. Суспензию помещают в устройство для флотации и продувают воздухом. Воздух предпочтительно присоединяется к гидрофобным частицам суспензии, заставляя их плавать в верхней части устройства. Всплывшие частицы собираются, обезвоживаются и аккумулируются в виде продаваемого конечного продукта. Гидрофильные частицы имеют тенденцию мигрировать к нижней части контактного сосуда, откуда они могут быть удалены в виде тяжелой фракции и переработаны в отходы водохранилищ. В других процессах, таких как обратная флотация, продаваемый конечный продукт может мигрировать вниз.
Для облегчения обогащения используют некоторые типы обычных реагентов, такие как пенообразователи, вещества, способные собирать частицы, промоторы и кондиционеры. Тем не менее, эти реагенты могут быть дорогими и токсичными, тем самым снижая стоимость-эффективность процессов обогащения. Дизельное топливо, топливо на основе смеси углеводородов, такое как керосин или мазут, является обычной обогатительной композицией; оно является токсичным и образуется из невозобновляемых ресурсов. Наоборот, настоящее изобретение является безопасным и образуется из возобновляемых ресурсов, оно может использоваться для замены дизельного топлива.
Следовательно, новым, полезным и неочевидным является обеспечение и использование экономически эффективных, безопасных и эффективных обогатительных композиций. Уровень техники, описанный в данном разделе, не предназначен для указания на то, что любой патент, публикация или иная информация, указанная в настоящем описании, является "уровнем техники" в отношении настоящего изобретения, если они специально не определены в качестве таковых. Кроме того, этот раздел не должен истолковываться так, как будто поиск был проведен или нет другой соответствующей информации, как определено в 37 CFR § 1.56 (a).
Краткое изложение сущности изобретения
По крайней мере один вариант осуществления изобретения относится к способу отделения первого материала от второго материала. Способ включает следующие стадии: (1) смешение первого материала и второго материала в суспензии с обогатительной композицией, (2) обеспечение пузырьков воздуха в суспензии с получением агрегатов частиц с пузырьками первого материала, и (3) отделение агрегатов частиц с пузырьками от второго материала. Обогатительная композиция включает по меньшей мере один глицерид и смесь жирных кислот, экстрагированных из процессов производства этанола.
Глицериды и смеси жирных кислот (GFA) могут содержать от 5 весовых процентов до 25 весовых процентов свободных жирных кислот. Глицериды и смеси жирных кислот могут включать один или несколько компонентов, выбранных из линолевой кислоты, фитостеринов, стеариловых эфиров гидроксициннамата, лютеина и зеаксантина. Глицерид и смеси жирных кислот могут экстрагироваться из жидкой барды производства кукурузного этанола сухим измельчением или из барды и растворимых веществ производства кукурузного этанола сухим измельчением. Концентрация стеариловых эфиров гидроксициннамата может варьироваться от 0,3 до 0,5 весовых процентов. Концентрация токоферолов может составлять менее 150 мг на 100 г глицеридов и смесей жирных кислот. В одном варианте осуществления концентрация токоферолов составляет 150 мг на 100 г глицеридов и смесей жирных кислот или менее.
Жирный глицерид и смеси жирных кислот могут применяться в виде эмульсии. Глицериды и смеси жирных кислот могут объединяться с веществами, способными собирать частицы, и/или пенообразователями. По меньшей мере часть (до 100%) глицеридов и смесей жирных кислот может экстрагироваться из производства этанола. Глицериды и смеси жирных кислот могут дополнительно включать один или несколько компонентов, выбранных из линолевой кислоты, фитостеринов, токоферолов, стеариловых эфиров гидроксициннамата, лютеина, зеаксантина, каротиноидов и любых их комбинаций. Глицерид и смеси жирных кислот могут экстрагироваться из жидкой барды производства кукурузного этанола сухим измельчением или из барды и растворимых веществ производства кукурузного этанола сухим измельчением. Концентрация стеариловых эфиров гидроксициннамата может находиться в диапазоне от 0,3 до 0,5 весовых процентов. Концентрация токоферолов может составлять менее 150 мг на 100 г глицеридов и смесей жирных кислот.
Дополнительные особенности и преимущества описаны здесь и будут ясны из последующего подробного описания.
Подробное описание изобретения
Следующие определения приведены для определения терминов, используемых в настоящем описании, и, в частности, в формуле изобретения. Определения приведены только для удобства и не предназначены для ограничения определений какой-либо конкретной категории.
В целях настоящего описания определения терминов являются следующими:
"Обогащение" обозначает отделение полезных веществ из отходов, в частности гидрофобных веществ от гидрофильных веществ. Подходящие способы для достижения этого включают, но не ограничиваются ими, флотацию, обратную флотацию и подобные технологии.
"Глицериды и смеси жирных кислот" обозначают смеси, экстрагируемые из процесса производства этанола, включающие как глицериды, так и жирные кислоты.
В том случае, когда приведенные выше определения или описание, указанное в настоящем приложении, не согласуется со значением (явно или неявно), которое обычно используется в словаре или указано в источнике, включенном в качестве ссылки в данную заявку, термины заявки и формулы изобретения, в частности, понимаются в соответствии с определением или описанием настоящей заявки, а не в соответствии с общим определением, словарным определением или определением, которое включено в виде ссылки. В свете вышеизложенного, в том случае, когда термин может пониматься только на основании словаря, если этот термин определяется Kirk-Othmer Encyclopedia of Chemical Technology, 5-е издание, (2005), (опубликовано Wiley, John & Sons, Inc.), это определение определяет, как термин должен истолковываться в формуле изобретения.
По меньшей мере в одном варианте осуществления настоящее изобретение относится к способу отделения первого материала от второго материала. Например, способ может включать смешение первого материала и второго материала в суспензии с обогатительной композицией. Обогатительная композиция может включать один или несколько глицеридов и смесей жирных кислот, полученных из процесса производства этанола. Пузырьки воздуха могут обеспечиваться в суспензии с образованием агрегатов частиц с пузырьками с первым материалом, и агрегаты частиц с пузырьками могут отделяться от второго материала.
По меньшей мере в одном варианте осуществления глицериды и смеси жирных кислот могут быть получены из процесса производства этанола. При производстве этанола экстракция глицеридов и смесей жирных кислот может обозначаться как экстракция кукурузного масла. Одним из способов экстракции кукурузного масла является извлечение из барды и/или растворимых веществ и барды производства кукурузного этанола сухим измельчением. В одном варианте осуществления глицериды и смеси жирных кислот содержат от около 5 до около 25 весовых процентов свободных жирных кислот. В другом варианте осуществления GFA содержат 5 весовых % свободных жирных кислот или более. Линолевая кислота, как правило, является преобладающей жирной кислотой. Глицериды и смеси жирных кислот могут содержать другие компоненты, которые включают фитостерины, стеариловые эфиры гидроксициннамата, лютеин и зеаксантин.
По меньшей мере в одном варианте осуществления глицерид и смеси жирных кислот экстрагируются из процесса производства этанола. В одном варианте осуществления глицерид и смеси жирных кислот содержат линолевую кислоту.
По меньшей мере в одном варианте осуществления обеспечивается разделение гидрофобных и гидрофильных частиц в водной суспензии. Например, способ может включать добавление обогатительной композиции к водной суспензии для повышения гидрофобности гидрофобных частиц. Обогатительная композиция может включать глицериды и смеси жирных кислот. Водная суспензия может смешиваться для адсорбции глицеридов и смесей жирных кислот на поверхности гидрофобных частиц для того, чтобы повысить гидрофобность гидрофобных частиц. Пузырьки воздуха могут обеспечиваться в водной суспензии так, что гидрофобные частицы собираются на поверхности пузырьков воздуха, образуя агрегаты частиц с пузырьками. Агрегаты частиц с пузырьками могут всплывать на поверхность водной суспензии для отделения от гидрофильных частиц.
По меньшей мере в одном варианте осуществления обогатительная композиция содержит один или несколько глицеридов и смесей жирных кислот, полученных из процесса производства этанола. В одном варианте осуществления процесс производства этанола является процессом производства топливного этанола. В одном варианте осуществления процесс производства этанола представляет собой процесс производства пищевого или питьевого этанола.
Преимущество настоящего изобретения заключается в создании экономически эффективных способов разделения двух или более материалов.
Другим преимуществом настоящего изобретения является создание композиций, повышающих гидрофобность, которые могут использоваться в флотационных процессах, что позволит повысить экономию средств.
По меньшей мере в одном варианте осуществления обогатительная композиция включает глицериды и смеси жирных кислот. Глицериды и смеси жирных кислот могут включать линолевые кислоты и один или несколько компонентов, выбранных из группы, состоящей из фитостеринов, токоферолов, стеариловых эфиров гидроксициннамата, лютеина, зеаксантина и каротиноидов.
Неожиданно обнаружено, что глицериды и смеси жирных кислот (GFA) являются эффективными в качестве реагентов для использования в технологиях обогащения, таких как, например, флотационные процессы. Кроме того, эти глицериды и смеси жирных кислот, как правило, являются экологически безопасными и безвредными. Глицериды и смеси жирных кислот также являются негорючими и могут обеспечить преимущества в применениях, где присутствуют режимы с "высокой" температурой вспышки. Побочные продукты могут использоваться в дополнение или вместо обычных опасных веществ, способных собирать частицы, для флотационных процессов, таких как получение дизельного топлива, тем самым снижая зависимость от таких экологически вредных веществ. Дизельное топливо используется повсеместно в обогатительной промышленности. Большая часть отработанного дизеля из процессов наносит скрытый вред окружающей среде и здоровью человека. Настоящее изобретение имеет дополнительное преимущество в том, что не несет какой-либо опасности окружающей среде и или здоровью человека, если сливается под землю.
По меньшей мере в одном варианте осуществления глицериды и смеси жирных кислот являются сопродуктами или побочными продуктами производства этанола. Они считаются зелеными композициями, потому что они не являются опасными и получаются из природных, возобновляемых ресурсов. Эти возобновляемые ресурсы включают кукурузу.
Водоросли могут использоваться для производства этанола. GFA могут быть получены из водорослей.
Этанол может быть получен из кукурузы с использованием сухого измельчения, где всю массу кукурузы измельчают в муку и смешивают с водой. Ферменты добавляют для преобразования крахмала в сахар. Затем добавляют дрожжи для превращения сахара в этанол. Раствор, обычно называемый бурдой, питанием, пивной массой или кислой массой, затем перегоняют, отделяя этанол от остальной части или барды, обычно называемой как цельная барда, густая барда или густая масса. Неферментированные части отделяют. Твердые вещества объединяют в питательный совместный продукт, называемый высушенными растворимыми веществами барды (DDGS). Жидкую часть, которая может содержать некоторые твердые частицы, называют жидкой бардой. Глицериды и смеси жирных кислот могут экстрагироваться из жидкой барды и/или DDGS. GFA может обозначаться как «постферментативное кукурузное масло».
В опубликованной заявке на патент US 2009/0008301 раскрывается использование повышающих гидрофобность реагентов с применением природных липидов и триацилглицеридов, которые могут быть легко гидролизованы до жирных кислот. Так как растительные масла получают путем экстракции растворителем, некоторые примеси в сыром масле, такие как свободные жирные кислоты и фосфолипиды, удаляются из сырого растительного масла щелочной переработкой и осаждением. В опубликованной заявке на патент US 2009/0008301 не описаны GFA, полученные из процесса производства этанола.
Настоящее изобретение отличается от коммерческих растительных масел. Коммерческие растительные масла являются рафинированными, отбеленными и дезодорированными (RBD). Как правило, RBD коммерческого кукурузного масла не содержат свободных жирных кислот. В результате предшествующий уровень техники не раскрывает какого-либо намерения использовать глицериды и смеси жирных кислот, полученных из процесса производства этанола.
В патентах US 7,497,955 и 7,566,469 и заявке на патент US 12/949850 описаны способы обезвоживания жидкой барды от производства этанола, используя полимеры. GFA могут экстрагироваться с различных фаз процесса производства этанола. Различные способы описаны для повышения эффективности извлечения масла из нескольких потоков процесса производства этанола, таких как процесс сухого измельчения получения пищевого и топливного этанола из кукурузы. По меньшей мере в одном варианте осуществления в процессе производства этанола, этанол извлекается из пивной массы в отпарной колонне, а оставшиеся твердые вещества кукурузной барды обезвоживаются, и обогащенную массу глицеридов и смесей жирных кислот извлекают из сухой кукурузной барды.
По меньшей мере в одном варианте осуществления глицериды и смеси жирных кислот получают в качестве побочного продукта из процесса производства этанола. Как описано в опубликованной статье «The Composition of Crude Corn Oil Recovered after Fermentation via Centrifugation from a Commercial Dry Grind Ethanol Process», Journal of the American Oil Chemists Society, T.87, cc.895-902, Robert Moreau, Kevin Hicks, David Johnston и Nathan Laun, 26.07.2010, состав этих побочных продуктов существенно отличается от коммерческого кукурузного масла и нерафинированного кукурузного масла, и в результате заметная эффективность GFA является неожиданной. Например, уровни свободных жирных кислот в постферментативном кукурузном масле являются более высокими по сравнению с уровнями масла RBD или нерафинированного масла. Уровни свободных стеринов и стеариловых эфиров гидроксициннамата в GFA также являются более высокими по сравнению с уровнями в коммерческом масле. Уровни стеариловых эфиров гидроксициннамата в GFA колеблются от 0,3 до 0,5 весовых %, в то время как гидроксициннамат в коммерческом кукурузном масле не обнаружен. Кроме того, уровни каротиноидов намного выше в GFA при концентрации выше 250 мкг на грамм GFA. В одном варианте осуществления уровень каротиноидов составляет 250 мкг на грамм GFA или более.
Кроме того, из-за воздействия на все предыдущие процессы производства топливного этанола, включая высокотемпературное сжижение, осахаривание и ферментацию, побочные продукты имеют пониженные уровни токоферолов. Токоферолы в коммерческом растительном масле, которое является нерафинированным, как сообщается, содержатся в количестве около 319 мг на 100 г масла. Токоферолы в настоящем изобретении содержатся в среднем около 100 мг на 100 г масла.
Последние федеральные постановления позволяют использовать в торговле 15 миллиардов галлонов кукурузного этанола к 2022 году. ЕРА, позволяющий осуществлять экстракцию глицеридов и потоков жирных кислот из процессов производства топливного этанола, является полезным с точки зрения усовершенствования процесса этанола и снижения выбросов парниковых газов из целостного цикла производства этанола. Одним из преимуществ является использование глицеридов и смесей жирных кислот в качестве исходного материала для получения биодизельного топлива. По оценкам, от 0,5 фунта до 1,4 фунта глицеридов и смесей жирных кислот могут быть получены из бушеля кукурузы, используемой для производства этанола.
По меньшей мере в одном варианте осуществления изобретение относится к способам повышения гидрофобности соединений в определенных процессах обогащения. Например, обогатительные композиции, включающие глицериды и смеси жирных кислот, могут быть полезны при обогащении следующих материалов, включая, но не ограничиваясь ими, уголь, полимеры, песок и гравий, фосфаты, алмазы и другие минеральные руды или искусственные материалы. В альтернативных вариантах обогатительные композиции могут использоваться в процессах повышения гидрофобности частиц материалов, в частности в таких применениях, как флотация в результате обогащения угля, фосфатов, алмазных руд и им подобных. Обогатительные композиции также могут использоваться в сочетании с другими подходящими флотационными веществами, способными собирать частицы, и промоторами.
Флотационные процессы являются одними из наиболее широко используемых методов отделения ценных материалов от бесполезных материалов, присутствующих, например, в частицах или угольной мелочи. Например, в этом процессе мелкие частицы диспергированы в воде или другом подходящем растворе, и мелкие пузырьки воздуха вводят в суспензию так, что гидрофобные частицы могут селективно собираться на поверхности воздушных пузырьков и извлекаться из суспензии (например, всплывая на поверхность), а гидрофильные частицы остаются ниже. Гидрофильные частицы также могут опускаться на дно суспензии и собираться в виде шлама.
Глицериды и смеси жирных кислот могут использоваться для разделения материалов, например, любым подходящим способом флотации. Следует иметь в виду, что целевые конечные продукты могут подниматься на поверхность во время флотации и/или опускаться на дно, например, в обратных процессах флотации. Например, в процессе флотации кремнезема целевой продукт может опускаться на дно суспензии, и побочный продукт может подниматься в верхнюю часть суспензии.
По крайней мере в одном варианте осуществления способ включает отделение первого материала от второго материала. Например, способ может включать смешение первого материала и второго материала в суспензии с обогатительной композицией. Первым материалом может быть вода, а второй материал обезвоживается. Композиция обезвоживания может включать один или несколько глицеридов и смесей жирных кислот.
По меньшей мере в одном варианте осуществления глицериды и смеси жирных кислот применяются в виде эмульсии. Эмульсии глицеридов и смесей жирных кислот могут помочь диспергировать смеси, полученные аналогично в менее активной концентрации. Эмульсия может содержать стабилизирующий эмульсию реагент.
Разделяемые материалы могут иметь любой подходящий размер. Например, и никоим образом не ограничивая концепцию изобретения, размер материалов может варьироваться от 2 мм до 0,1 мм. Суспензия может также содержать до 50% твердых веществ. Любые подходящие механические или химические силы могут использоваться для введения частиц суспензии в контакт с обогатительными композициями настоящего изобретения. Плавающий продукт и неплавающие отходы могут собираться любым подходящим способом, известным в настоящее время в уровне техники.
Примеры
Вышеизложенное лучше разъясняется со ссылкой на следующие примеры, которые представлены с целью иллюстрации и не предназначены для ограничения объема настоящего изобретения.
Пример 1. Образец угольной суспензии, взятый из местоположения заказчика, подвергали флотации в лаборатории с использованием флотационного устройства Denver. Тесты разрабатывали для определения полезности глицеридов и смесей жирных кислот в качестве автономных веществ, способных собирать частицы. Суспензию угля подавали в флотационную камеру, затем разделяя на два потока концентрата и остатка. Проводили три теста образцов. Пять концентрированных образцов и один образец остатка собирали для каждого теста. % Золы и % выхода приведен в таблице 1 для отдельных образцов, а также для совокупных образцов. Процент золы совокупного образца и процент выхода объединяли в процент золы индивидуального образца и процент выхода. Зола представляет неиспользуемую часть угольной суспензии; концентрат или процентный выход составляет полезную часть суспензии. Глицериды и смеси жирных кислот тестировали в отношении дизельного топлива, стандартного вещества, способного собирать частицы. В некоторых случаях характерно добавлять пенообразователи в процесс для облегчения образования пузырьков, повышая образование агрегатов частиц с пузырьками. В примере 1 в качестве пенообразователя использовали смесь спиртов, содержащих метилизобутилкарбинол. Дозировки вещества, способного собирать частицы, и пенообразователя приведены в таблице 1.
% Золы и % выхода сравнивали с использованием дизельного топлива вместо глицеридов и смеси жирных кислот. % Выход концентрата был сопоставим для дизельного топлива и глицеридов и смесей жирных кислот для всех трех наборов данных. Аналогично, % золы близко соответствует при использовании двух веществ, способных собирать частицы. Результаты показывают, что глицериды и смеси жирных кислот также эффективны, как дизельное топливо в тех же условиях. Среднее содержание золы (%) составило 43%.
Таблица 1
Сравнение производительности веществ, способных собирать частицы дизельного топлива по сравнению с глицеридом и смесями жирных кислот (новые химические вещества в качестве веществ, способных собирать частицы).
Дизельное топливо в качестве коллектора Новые химические вещества в качестве коллектора
Зола (%) Вес Выход (%) Зола (%) Вес Выход (%) Дозировка коллектора (г/т) Дозировка пенообразователя (г/т)
Индекс Сумм. Индекс Сумм. Индекс Сумм. Индекс Сумм.
Т1С1 11,3 11,3 34,7 17,7 17,7 Т7С1 12,8 12,8 42,7 20,7 20,7 50 г/т 75 г/т
Т1С2 15,2 13,1 31,0 15,9 33,6 Т7С2 17,0 14,6 31,4 15,2 35,9
Т1С3 22,5 15,0 16,9 8,6 42,2 Т7СЗ 24,3 16,2 15,2 7,4 43,3
Т1С4 24,9 16,4 12,8 6,5 48,8 Т7С4 33,0 18,2 11,9 5,8 49,1
Т1С5 29,3 17,6 9,9 5,0 53,8 Т7С5 32,0 19,6 11,9 5,8 54,8
Т1Т 100,72,10 42,7 90,2 46,2 100,0 Т7Т 72,6 43,6 93,2 45,2 100,0
195,4 100,0 206,3 100,0
Т2С1 12,1 12,1 37,8 20,0 20,0 Т8С1 12,5 12,5 41,0 22,0 22,0 100 г/т 75 г/т
Т2С2 14,4 13,0 23,9 12,6 32,7 Т8С2 16,0 13,9 27,0 14,5 36,5
Т2С3 19,6 14,6 20,2 10,7 43,4 Т8С3 23,6 15,6 14,4 7,7 44,2
Т2С4 27,8 16,4 12,6 6,7 50,1 Т8С4 31,9 17,9 13,8 7,4 51,6
Т2С5 32,9 17,9 9,6 5,1 55,1 Т8С5 32,4 19,2 8,7 4,7 56,3
Т2Т 74,2 43,1 84,7 44,9 100,0 Т8Т 73,3 42,8 81,5 43,7 100,0
188,7 100,0 186,4 100,0
Т3С1 12, 12, 48, 24, 24, Т9С1 13,2 13, 50, 25, 25, 150 г/т 75 г/т
7 7 4 0 0 2 2 4 4
Т3С2 16,0 14,0 30,4 15,1 39,1 Т9С2 17,6 14,8 29,9 15,1 40,6
Т3С3 22,7 15,5 17,4 8,6 47,7 Т9С3 26,2 16,5 14,0 7,1 47,7
Т3С4 35,2 17,8 12,8 6,3 54,1 Т9С4 33,7 18,4 11,8 6,0 53,6
Т3С5 39,6 19,5 8,9 4,4 58,5 Т9С5 33,5 19,5 8,4 4,3 57,9
Т3Т 72,5 41,5 83,8 41,5 100,0 ТЭТ 72,6 41,9 83,1 42,1 100,0
201,8 100,0 197,4 100,0
Примеры 2 и 3. Флотационные тесты проводили в флотационном устройстве Denver объемом 1,5 л для демонстрации того, что GFA (глицериды и смеси жирных кислот) могут применяться для флотации угля. Образцы угля, трудные для флотации и легкие для флотации, использовали для испытаний. GFA использовали в качестве вещества, способного собирать частицы, в виде масла или в эмульсиях. Эмульсии GFA получали механическим перемешиванием, добавляя эмульгаторы (соевый лецитин и Tween 81) и пенообразователь. Следующие составы являются типичными эмульсиями GFA:
Эмульсия А: 36% GFA, 10% пенообразователя, 2% соевого лецитина, 2% Tween 81 и 50% воды;
Эмульсия В: 26% GFA, 10% #2 дизельного топлива, 10% пенообразователя, 2% соевого лецитина, 2% Tween 81 и 50% воды;
Эмульсия С: 4 6% GFA, 10% пенообразователя, 2% соевого лецитина, 2% Tween 81 и 40% воды;
Эмульсия D: 33% GFA, 13% #2 дизельного топлива, 10% пенообразователя, 2% соевого лецитина, 2% Tween 81 и 40% воды.
В примерах 2 и 3 приведены данные по извлечению. Извлечение определяется как процент ценного минерала в порции, основываясь на концентрате.
Пример 2. В таблице 2 приведены результаты, полученные с образцом суспензии угля, легким для флотации. GFA и их эмульсии использовали в качестве веществ, способных собирать частицы, в различных дозах. Без веществ, способных собирать частицы, флотационное извлечение составляет 86%. Это показывает, что этот уголь легок для флотации. При добавлении # 2 дизельного топлива максимальное флотационное извлечение составляло 88%. При добавлении GFA и эмульсий А, В, С, D, максимальное флотационное извлечение достигало 90-91%. Эти результаты показывают, что GFA и их эмульсии являются более эффективными по сравнению с #2 дизельным топливом в качестве веществ, способных собирать частицы, для угля, легкого для флотации.
Таблица 2
Результаты флотации с GFA и их эмульсиями в качестве коллекторов для образцов угля, легкого для флотации. Доза пенообразователя составляет 160 г/т.
Коллектор Коллектор, г/т Результаты, %
Выход Зола Извлечение
Нет 0 49,77 15,76 86,45
#2 дизельное топливо 70 50,71 16,07 87,68
#2 дизельное топливо 140 51,68 17,02 87,89
#2 дизельное топливо 210 51,97 17,32 88,41
GFA 70 52,60 18,03 88,15
GFA 140 53,52 18,56 89,43
GFA 210 54,93 20,12 89,94
Эмульсия А 70 52,48 18,16 88,34
Эмульсия А 140 54,17 19,42 89,53
Эмульсия А 280 55,14 20,13 90,32
Эмульсия В 70 52,95 18,36 88,96
Эмульсия В 140 53,44 18,52 89,39
Эмульсия В 280 55,99 20,72 90,91
Эмульсия С 70 54,28 19,62 90,13
Эмульсия С 140 55,66 20,93 90,22
Эмульсия С 280 57,04 21,72 91,34
Эмульсия D 70 54,61 20,12 89,89
Эмульсия D 140 56,05 20,47 90,82
Эмульсия D 280 56,22 21,29 91,27
Пример 3. В таблице 3 приведены результаты, полученные с образцом суспензии угля, трудным для флотации. GFA и эмульсии использовали в качестве коллекторов в различных дозах. Без коллектора флотационное извлечение составляет 13%. Это показывает, что этот уголь является трудным для флотации. При добавлении #2 дизельного топлива максимальное флотационное извлечение составляло 70%. При добавлении GFA и эмульсий А, В, С, D, максимальное флотационное извлечение достигало 80%. Эти результаты показывают, что GFA и их эмульсии являются более эффективными по сравнению с #2 дизельным топливом в качестве коллектора для угля, трудного для флотации.
Таблица 3
Результаты флотации с GFA и их эмульсиями в качестве коллекторов для образцов угля, трудного для флотации. Доза пенообразователя составляет 300 г/т.
Коллектор Коллектор, г/т Результаты, %
Выход Зола Извлечение
Нет 0 8,91 9,01 13,40
#2 дизельное топливо 140 33,92 10,90 49,72
#2 дизельное топливо 280 40,52 12,12 58,72
#2 дизельное топливо 420 41,16 12,54 59,59
GFA 140 42,13 12,12 61,58
GFA 280 47,11 13,51 67,51
GFA 420 48,14 14,30 68,34
Эмульсия В 140 43,56 13,20 62,66
Эмульсия В 280 44,62 13,77 64,01
Эмульсия В 560 50,30 15,15 70,42
Эмульсия С 140 43,56 13,83 62,11
Эмульсия С 280 46,26 14,37 65,29
Эмульсия С 560 49,52 15,27 69,63
Эмульсия D 140 44,81 13,68 64,14
Эмульсия D 280 48,74 14,27 69,21
Эмульсия D 560 48,59 14,88 69,37
Хотя настоящее изобретение может быть воплощено в многочисленных различных формах, подробно описаны конкретные предпочтительные варианты осуществления настоящего изобретения. Настоящее изобретение является иллюстрацией принципов изобретения и не предназначено для ограничения изобретения конкретными проиллюстрированными вариантами осуществления. Все патенты, патентные заявки, научные публикации и любые другие упомянутые здесь материалы включены в качестве ссылки во всей их полноте.
Кроме того, изобретение охватывает любые возможные комбинации некоторых или всех различных описанных здесь вариантов осуществления, и они включены в настоящее описание.
Приведенное выше описание предназначено для иллюстрации и не является исчерпывающим. Это описание предполагает многочисленные модификации и альтернативы, ясные специалисту в данной области техники. Все эти альтернативы и модификации включены в объем формулы изобретения, где термин "содержащий" означает "включающий, но не ограничиваясь ими". Специалисту в данной области техники понятны другие эквиваленты описанных здесь конкретных вариантов осуществления, которые также предназначены для включения в объем изобретения.
Все описанные здесь диапазоны и параметры следует понимать как включающие любые и все поддиапазоны, входящие в указанный диапазон, и каждое число между конечными точками. Например, указанный диапазон «от 1 до 10» следует рассматривать как включающий любые и все поддиапазоны между (и включительно) минимальным значением 1 и максимальным значением 10, то есть все поддиапазоны, начинающиеся с минимального значения 1 или более (например, от 1 до 6,1) и заканчивающиеся максимальным значением 10 или менее (например, от 2,3 до 9,4, от 3 до 8, от 4 до 7), и, наконец, каждое число 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10, содержащееся в диапазоне.
Это полное описание предпочтительных и альтернативных вариантов осуществления изобретения. Специалистам в данной области техники понятны другие эквиваленты приведенных здесь конкретных вариантов осуществления, где эквиваленты охватываются приведенной формулой изобретения.

Claims (3)

1. Способ отделения первого материала от второго материала, который включает следующие стадии: смешение первого материала и второго материала в виде суспензии с обогатительной композицией, обеспечивая получение пузырьков воздуха в суспензии для образования агрегатов частиц с пузырьками с первым материалом, и позволяя агрегатам частиц с пузырьками отделяться от второго материала, при этом указанная обогатительная композиция включает флотационный агент, получаемый из процесса производства этанола и содержащий смесь жирной кислоты и по меньшей мере одного глицерида, причем флотационный агент объединяют с одним или несколькими веществами, способными собирать частицы, и пенообразователями.
2. Способ по п. 1, в котором флотационный агент, включающий смесь жирной кислоты и по меньшей мере одного глицерида, экстрагируют из жидкой барды производства кукурузного этанола сухим измельчением или из барды и растворимых веществ производства кукурузного этанола сухим измельчением.
3. Способ по п. 2, в котором флотационный агент, включающий смесь жирной кислоты и по меньшей мере одного глицерида, используют в виде эмульсии.
RU2013129037/04A 2010-12-30 2011-12-27 Глицериды и смеси жирных кислот и способы их применения RU2555702C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/982,217 2010-12-30
US12/982,217 US8955685B2 (en) 2010-12-30 2010-12-30 Glycerides and fatty acid mixtures and methods of using same
PCT/US2011/067359 WO2012092253A2 (en) 2010-12-30 2011-12-27 Glycerides and fatty acid mixtures and methods of using same

Publications (2)

Publication Number Publication Date
RU2013129037A RU2013129037A (ru) 2015-02-10
RU2555702C2 true RU2555702C2 (ru) 2015-07-10

Family

ID=46379816

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129037/04A RU2555702C2 (ru) 2010-12-30 2011-12-27 Глицериды и смеси жирных кислот и способы их применения

Country Status (10)

Country Link
US (2) US8955685B2 (ru)
EP (1) EP2658837B1 (ru)
CN (1) CN103415497A (ru)
AP (1) AP3549A (ru)
AU (1) AU2011352267B2 (ru)
CA (1) CA2823309C (ru)
ES (1) ES2899580T3 (ru)
PT (1) PT2658837T (ru)
RU (1) RU2555702C2 (ru)
WO (1) WO2012092253A2 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2882173C (en) 2012-08-23 2020-08-04 Lee Tech Llc A method of and system for producing oil and valuable byproducts from grains in dry milling systems with a back-end dewater milling unit
US9352326B2 (en) 2012-10-23 2016-05-31 Lee Tech Llc Grind mill for dry mill industry
US9695381B2 (en) 2012-11-26 2017-07-04 Lee Tech, Llc Two stage high speed centrifuges in series used to recover oil and protein from a whole stillage in a dry mill process
US9440242B2 (en) * 2013-10-01 2016-09-13 Ecolab Usa Inc. Frothers for mineral flotation
US9752165B2 (en) * 2014-02-10 2017-09-05 Cellulosic Ethanol Technologies, Llc Processes and systems for recovering oil from fermentation products
US11680278B2 (en) 2014-08-29 2023-06-20 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
US11427839B2 (en) 2014-08-29 2022-08-30 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
AR103032A1 (es) 2014-12-16 2017-04-12 Polymer Ventures Inc Auxiliar de recuperación de aceite
US10597603B2 (en) 2014-12-16 2020-03-24 Polymer Ventures, Inc. Oil recovery aid
US20170137711A1 (en) * 2015-11-17 2017-05-18 Weinhold Scientific LLC Biodegradable soil conditioner
CN105834005A (zh) * 2016-03-25 2016-08-10 北京矿冶研究总院 一种云母与长石的分离方法及选矿药剂
CN105855064B (zh) * 2016-05-25 2018-04-20 太原理工大学 一种脱除高岭土中石英的方法
CN106044872A (zh) * 2016-06-15 2016-10-26 山东智汇专利运营有限公司 一种教学用自来水的过滤装置及其制备方法
US11166478B2 (en) 2016-06-20 2021-11-09 Lee Tech Llc Method of making animal feeds from whole stillage
CN107537695A (zh) * 2017-08-14 2018-01-05 内蒙古森泰企业咨询有限公司 一种提高复杂铅锌矿金属回收率的方法
US11518910B2 (en) 2018-10-25 2022-12-06 Poet Research, Inc. Bio-based additive for asphalt
US20220176385A1 (en) 2019-03-05 2022-06-09 Basf Se Mixture of octene hydroformylation by-product and diesel, kerosene or c8-c20 olefins as collectors
CN109772591A (zh) * 2019-03-22 2019-05-21 山东超美清洁能源有限公司 一种节能环保、清洁高效的助选剂
CN110453066A (zh) * 2019-09-19 2019-11-15 辽宁东大矿冶工程技术有限公司 一种高铁铝土矿浮选脱硅-深度还原熔炼的方法
US12018155B1 (en) 2019-12-27 2024-06-25 Poet Research, Inc. Process oil for rubber compounding
CN111215253B (zh) * 2020-01-22 2021-04-20 中国矿业大学 一种低阶煤浮选药剂及浮选方法
CN111266195B (zh) * 2020-03-05 2021-09-07 中南大学 一种氧化锌矿浮选组合捕收剂及其应用
CN112221717A (zh) * 2020-10-26 2021-01-15 厦门紫金矿冶技术有限公司 一种氧化锌矿浮选消泡剂及其应用
US11623966B2 (en) 2021-01-22 2023-04-11 Lee Tech Llc System and method for improving the corn wet mill and dry mill process
CN113843050B (zh) * 2021-10-11 2023-02-28 内蒙古宏鉮科技发展有限责任公司 白云鄂博含铁围岩的铁选矿方法
WO2023244840A1 (en) 2022-06-17 2023-12-21 Lee Tech Llc System for and method of producing pure starch slurry and alcohol by using a process combining wet corn milling and a dry corn milling processes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2014406A (en) * 1932-10-12 1935-09-17 Weed Floyd Method of concentrating nonsulphide minerals by froth flotation
SU1678871A1 (ru) * 1989-06-14 1991-09-23 Норильский горно-металлургический комбинат им.А.П.Завенягина Способ переработки трудновскрываемого пирротинового концентрата
US6375853B1 (en) * 2000-03-17 2002-04-23 Roe-Hoan Yoon Methods of using modified natural products as dewatering aids for fine particles
WO2007098115A2 (en) * 2006-02-16 2007-08-30 Nalco Company Fatty acid by-products and methods of using same
US20090008301A1 (en) * 2000-05-16 2009-01-08 Roe-Hoan Yoon Methods of Increasing Flotation Rate
US20100252487A1 (en) * 2006-02-16 2010-10-07 Tran Bo L Methods and compositions of beneficiation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2838369A (en) * 1949-01-26 1958-06-10 Antoine M Gaudin Process for the concentration of ores containing gold and uranium
US4210531A (en) * 1977-12-15 1980-07-01 American Cyanamid Company Process for dewatering mineral concentrates
CA1086601A (en) 1977-12-15 1980-09-30 Samuel S. Wang Dewatering aid for processing mineral concentrates
CA1214039A (en) 1982-09-30 1986-11-18 George E. Snow Process for the beneficiation of carbonaceous matter employing high shear conditioning
PH16050A (en) * 1983-01-14 1983-06-02 Antonio M Dr Ostrea Gold recovery by sulfhydric-fatty acid flotation as applied to gold ores/cyanidation tailings
US6827220B1 (en) * 1998-08-11 2004-12-07 Versitech, Inc. Flotation of sulfide mineral species with oils
PE20040142A1 (es) 2002-08-03 2004-03-22 Clariant Gmbh Colector para menas del tipo de sulfuros
US7566469B2 (en) 2003-10-13 2009-07-28 Nalco Company Method of dewatering grain stillage solids
US7398935B2 (en) 2004-05-14 2008-07-15 Nalco Company Methods and compositions for dust control and freeze control
US20080005956A1 (en) 2004-05-14 2008-01-10 Tran Bo L Methods and compositions for controlling bulk density of coking coal
US20080115409A1 (en) 2006-11-17 2008-05-22 Tran Bo L Alternative fuel comprising combustible solids and by-products or waste material from industrial processes
US7497955B2 (en) 2004-07-09 2009-03-03 Nalco Company Method of dewatering thin stillage processing streams
US7275643B2 (en) * 2004-08-17 2007-10-02 Fairmount Minerals, Inc. Environmentally safe promoter for use in flotation separation of carbonates from minerals
US7942270B2 (en) 2006-02-16 2011-05-17 Nalco Company Fatty acid by-products and methods of using same
US7837891B2 (en) 2006-02-16 2010-11-23 Nalco Company Fatty acid by-products and methods of using same
US8163059B2 (en) 2007-02-12 2012-04-24 Nalco Company Coating oil comprising by-products from the manufacture of fatty acid alkyl esters and/or biodiesel
US8123042B2 (en) 2007-06-18 2012-02-28 Nalco Company Methyl isobutyl carbinol mixture and methods of using the same
US7824553B2 (en) 2007-07-24 2010-11-02 Neo Solutions, Inc. Process for dewatering a mineral slurry concentrate and increasing the production of a filter cake
CN101861211B (zh) 2008-08-19 2014-04-09 塔塔钢铁有限公司 用于通过浮选生产低灰分含量精煤的混合起泡剂
US8413816B2 (en) 2010-02-16 2013-04-09 Nalco Company Sulfide flotation aid
US20120145605A1 (en) * 2010-12-09 2012-06-14 Greene Michael G Collectors for flotation of molybdenum-containing ores

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2014406A (en) * 1932-10-12 1935-09-17 Weed Floyd Method of concentrating nonsulphide minerals by froth flotation
SU1678871A1 (ru) * 1989-06-14 1991-09-23 Норильский горно-металлургический комбинат им.А.П.Завенягина Способ переработки трудновскрываемого пирротинового концентрата
US6375853B1 (en) * 2000-03-17 2002-04-23 Roe-Hoan Yoon Methods of using modified natural products as dewatering aids for fine particles
US20090008301A1 (en) * 2000-05-16 2009-01-08 Roe-Hoan Yoon Methods of Increasing Flotation Rate
WO2007098115A2 (en) * 2006-02-16 2007-08-30 Nalco Company Fatty acid by-products and methods of using same
US20100252487A1 (en) * 2006-02-16 2010-10-07 Tran Bo L Methods and compositions of beneficiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Luis F. Gutierrez et al. "Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry" Bioresource Technology, v.100, N3, 2009, p. 1227-1237. Prof. Donato Aranda "A Brazilian Perspective on Bioenergy Issues" Future of Forest Bioenergy, 2007, глава "Ethanol/Biodiesel Integration". *

Also Published As

Publication number Publication date
CA2823309C (en) 2016-08-02
US8955685B2 (en) 2015-02-17
PT2658837T (pt) 2021-12-03
US20150144570A1 (en) 2015-05-28
EP2658837A4 (en) 2018-01-17
US10384958B2 (en) 2019-08-20
CA2823309A1 (en) 2012-07-05
WO2012092253A2 (en) 2012-07-05
AU2011352267A1 (en) 2013-07-11
WO2012092253A3 (en) 2012-11-22
AU2011352267B2 (en) 2015-02-26
AP3549A (en) 2016-01-15
US20120168387A1 (en) 2012-07-05
EP2658837A2 (en) 2013-11-06
CN103415497A (zh) 2013-11-27
ES2899580T3 (es) 2022-03-14
RU2013129037A (ru) 2015-02-10
AP2013006956A0 (en) 2013-06-30
EP2658837B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
RU2555702C2 (ru) Глицериды и смеси жирных кислот и способы их применения
AU2013352453B2 (en) Composition and method for improvement in froth flotation
RU2675641C1 (ru) Композиция жирных кислот и n-ацильных производных саркозина для улучшенной флотации несульфидных минералов
CN101384370B (zh) 脂肪酸副产物及其使用方法
CN101384369B (zh) 脂肪酸副产物及其使用方法
AU2009208154B2 (en) Blended frother for producing low ash content clean coal through flotation
US7837891B2 (en) Fatty acid by-products and methods of using same
CA1201223A (en) Coal flotation reagents
US8925730B2 (en) Methods and compositions of beneficiation
US20170283515A1 (en) Methods of Preparing Hemicellulose Compositions
NO784255L (no) Fremgangsmaate til oppredning av ikke-sulfidiske malmer og samler herfor