RU2555030C2 - Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла - Google Patents

Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла Download PDF

Info

Publication number
RU2555030C2
RU2555030C2 RU2012133214/05A RU2012133214A RU2555030C2 RU 2555030 C2 RU2555030 C2 RU 2555030C2 RU 2012133214/05 A RU2012133214/05 A RU 2012133214/05A RU 2012133214 A RU2012133214 A RU 2012133214A RU 2555030 C2 RU2555030 C2 RU 2555030C2
Authority
RU
Russia
Prior art keywords
modified
nanohybrid
gold nanoparticles
carrier
separation material
Prior art date
Application number
RU2012133214/05A
Other languages
English (en)
Other versions
RU2012133214A (ru
Inventor
Олег Алексеевич Шпигун
Александр Георгиевич Мажуга
Ирина Алексеевна Ананьева
Елена Кимовна Белоглазкина
Николай Васильевич Зык
Николай Серафимович Зефиров
Полина Григорьевна Рудаковская
Яна Андреевна Елфимова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2012133214/05A priority Critical patent/RU2555030C2/ru
Publication of RU2012133214A publication Critical patent/RU2012133214A/ru
Application granted granted Critical
Publication of RU2555030C2 publication Critical patent/RU2555030C2/ru

Links

Images

Abstract

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH2, обрабатывают коллоидным раствором золота. Затем ковалентно закрепляют серосодержащее органическое соединение на поверхности наночастиц золота. 2 н. и 1 з.п. ф-лы, 6 ил.

Description

Изобретение относится к области материаловедения, а также к аналитической химии. Изобретение может быть использовано для получения материалов как для разделения рацематов оптически активных соединений в хроматографии, так и для выделения индивидуальных изомеров и контроля энантиомерной чистоты (например, аминокислот, пестицидов и других биологически активных соединений).
Известны функциональные сепарационные материалы для разделения рацемических смесей, получаемые иммобилизацией путем адсорбции гидрофобных производных оптически активных аминокислот на минеральном носителе (патент США №4851382 от 25.07.1989). В качестве носителя используют SiO2. Модифицирование проводят в динамическом режиме производным аминокислоты с последующей координацией ионов металла (меди) на поверхности носителя. Максимальный коэффициент селективности α наблюдался при разделении смеси энантиомеров глутаминовой кислоты и составил 1,64. Такие сорбенты нестабильны в водно-органических и органических подвижных фазах, а способы их получения достаточно сложны.
Известен наногибридный функциональный сепарационный материал (патент США №6824776 от 30.11.2004) на основе силикагеля и наночастиц золота, модифицированных белковыми молекулами. Способ получения наногибридного материала включает предварительную модификацию наночастиц золота цитохромом С, который является органическим лигандом и содержит полипептидную цепь, и последующее закрепление наночастиц на поверхности силикагеля. Тем не менее, такой материал может быть использован только для определения узкого класса биомолекул.
Известен наногибридный функциональный сепарационный материал на основе модифицированных наночастиц металлов (патент РФ №2366502 от 10.09.2009), который по совокупности существенных признаков является прототипом заявляемого изобретения. В соответствии с патентом РФ №2366502 наногибридный сорбент для разделения органических веществ содержит носитель с адсорбированными наночастицами металла и ковалентно присоединенные к наночастицам серосодержащие лиганды. Основными недостатками наногибридного функционального сепарационного материала, раскрытого в патенте РФ №2366502, являются недостаточная стабильность и недостаточная эффективность сорбента, что связано с небольшой прочностью связи между носителем и наночастицами металла.
Задачами, на решение которых направлено заявленное изобретение, являются увеличение срока службы и увеличение эффективности сепарационного материала.
При решении поставленной задачи достигаются следующие технические результаты - увеличение стабильности сепарационного материала (в процессе работы материал длительно сохраняет свои сорбционные свойства); увеличение содержания наночастиц золота на поверхности носителя.
Указанные технические результаты достигаются при использовании наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц золота, включающего носитель с ковалентно закрепленными на нем наночастицами золота и серосодержащие органические лиганды, ковалентно закрепленные на поверхности наночастиц золота.
Наиболее стабильные сорбционные свойства наногибридный функциональный сепарационный материал проявляет в том случае, когда в качестве серосодержащих соединений используют серосодержащие аминокислоты, например L-цистеин, их производные и высокомолекулярные соединения - белки.
В качестве носителя могут быть использованы неорганические носители - оксиды кремния.
Наногибридный функциональный сепарационный материал может быть получен с использованием следующего способа: наночастицы золота ковалентно закрепляют на носителе, затем ковалентно закрепляют серосодержащие органические лиганды (например, серосодержащие аминокислоты, производные серосодержащих аминокислот) на поверхности наночастиц металла.
Для обеспечения ковалентного закрепления наночастиц золота носитель предварительно модифицируют кремнийорганическим соединением, например кремнийорганическим соединением, включающим группу -SH или -NH2.
Наночастицы золота закрепляют на носителе при обработке модифицированного носителя коллоидным раствором наночастиц.
Осуществление вышеописанной последовательности операций приводит к образованию ковалентных связей между носителем и наночастицами золота, а также между органическими серосодержащими лигандами и наночастицами золота, что значительно увеличивает стабильность получаемых материалов, эффективность их в качестве сорбентов, а также содержание лигандов в получаемом сепарационном материале. При этом наночастицы металла, предварительно ковалентно закрепленные на поверхности носителя, являются центрами взаимодействия с энантиомерами, что усиливает взаимодействие определяемого вещества с наногибридным функциональным сепарационным материалом.
Сущность изобретения поясняется иллюстративными материалами.
На фиг.1 показана общая схема получения наногибридного функционального сепарационного материала.
На фиг.2 показана хроматограмма разделения смеси аминопиридинов на колонке, заполненной наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином. Цифрами обозначены: 1-2-аминопиридин, 2-3-аминопиридин, 3-4-аминопиридин.
На фиг.3 показана хроматограмма разделения надолола на колонке, заполненной наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком.
На фиг.4 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу-прототипу с использованием оксида кремния, наночастиц золота и L-цистеина, микрофотографии получены методом сканирующей электронной микроскопии (СЭМ).
На фиг.5 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 1, микрофотографии получены методом СЭМ.
На фиг.6 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 2, микрофотографии получены методом СЭМ.
Изобретение иллюстрируется примерами альтернативных вариантов его выполнения.
Пример 1. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных L-цистеином
Получение носителя - модифицированного оксида кремния - проводят по схеме, представленной на фиг.1. Навеску оксида кремния (2 г) с диаметром частиц 5 мкм суспензируют в 300 мл свежеперегнанного толуола, доводят до кипения, добавляют 3-меркаптопропилтриэтоксисилан (МПТС) и кипятят в течение 4-х часов в атмосфере аргона, затем фильтруют. Полученный тиолированный силикагель суспензируют в 200 мл коллоидного раствора наночастиц золота со средним размером 10 нм (концентрация раствора 1011 частиц в одном миллилитре) при тщательном перемешивании с помощью механической верхнеприводной мешалки при комнатной температуре. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом, получая тиолированный оксид кремния с ковалентно закрепленными на нем наночастицами золота. Полученный оксид кремния суспензируют в 0,01 М растворе органического серосодержащего лиганда - L цистеина. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным серосодержащим органическим лигандом.
Пример 2. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином
Получение наногибридного функционального материала проводят аналогично примеру 1, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).
Пример 3. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком
Получение тиолированного оксида кремния с ковалентно закрепленными на нем наночастицами золота проводят аналогично примеру 1. Затем полученный модифицированный оксид кремния суспензируют в 0,1 М буферном растворе, содержащем органический высокомолекулярный серосодержащий лиганд - бычий сывороточный белок. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно буферным раствором и водой. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным высокомолекулярным органическим лигандом.
Пример 4. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, стабилизированных бычьим сывороточным белком.
Получение наногибридного функционального материала проводят аналогично примеру 3, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).
Наногибридные функциональные сепарационные материалы могут быть использованы следующим образом: материалом набивают хроматографическую колонку размером 4,6×100 мм под давлением 200-300 бар. Разделение на колонках, заполненных сорбентом, содержащим низкомолекулярные лиганды, осуществляют с использованием как водных, так и неводных подвижных фаз - в обращенно-фазовом, нормально-фазовом или полярно-органическом вариантах хроматографии. Разделение на колонках, заполненных сорбентом, содержащим высокомолекулярные лиганды, осуществляют с использованием водных подвижных фаз - в обращенно-фазовом варианте хроматографии.
Смесь производных аминопиридина разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином, в нормально-фазовом варианте ВЭЖХ с использованием подвижной фазы гексан/изопропанол (90/10 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 230 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.2. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.
Энантиомеры β-блокатора надолола разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком, в обращенно-фазовом варианте ВЭЖХ с использованием подвижной фазы фосфатный буферный раствор (рН 7,5; 20 мМ) / изопропанол (96/4 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 275 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.3. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.
Таким образом, во всех случаях был достигнут технический результат, заключающийся в увеличении стабильности сепарационного материала, который в процессе работы сохраняет свои сорбционные свойства не менее 1 года.
Использование полученных по заявленному способу стабильных наногибридных функциональных сепарационных материалов позволяет проводить разделение широкого круга соединений, в том числе разделение изомеров оптически активных соединений, в частности, относящихся к классам N-гидроксипропиламинов (β-блокаторов) и профенов, широко использующимся в фармакологии и медицине.
Предварительная модификация силикагеля 3-аминопропилтриэтоксисиланом или 3-меркаптопропилтриэтоксисиланом приводит к значительному увеличению степени покрытия силикагеля наночастицами золота за счет образования прочных ковалентных связей Au-S или ковалентных донорно-акцепторных связей Au-N. Данные СЭМ показали значительное увеличение степени покрытия поверхности силикагеля наночастицами золота, при этом максимальное покрытие наблюдалось в случае обработки силикагеля МПТС (фиг.4-6). По данным атомно-абсорбционной спектроскопии на модифицированной поверхности силикагеля при описанных в примерах 1 и 2 условиях обработки закрепляются практически все наночастицы золота, введенные в реакцию. Таким образом, при использовании заявленного способа получения наногибридных функциональных сепарационных материалов достигается технический результат, заключающийся в увеличении содержания наночастиц на поверхности носителя.

Claims (3)

1. Способ получения наногибридного функционального сепарационного материала на основе модифицированного оксида кремния и модифицированных наночастиц золота, в котором выполняют следующие стадии: оксид кремния предварительно модифицируют кремнийорганическим соединением, содержащим группу -SH или -NF2, модифицированный носитель обрабатывают коллоидным раствором наночастиц золота и раствором серосодержащего органического соединения.
2. Способ по п.1, отличающийся тем, что серосодержащие органические соединения выбирают из группы, включающей тиолы, дисульфиды, серосодержащие аминокислоты и производные серосодержащих аминокислот.
3. Наногибридный функциональный сепарационный материал на основе модифицированного оксида кремния и модифицированных наночастиц золота, полученный способом, охарактеризованным в п.1 или 2.
RU2012133214/05A 2012-08-03 2012-08-03 Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла RU2555030C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012133214/05A RU2555030C2 (ru) 2012-08-03 2012-08-03 Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012133214/05A RU2555030C2 (ru) 2012-08-03 2012-08-03 Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Publications (2)

Publication Number Publication Date
RU2012133214A RU2012133214A (ru) 2014-02-10
RU2555030C2 true RU2555030C2 (ru) 2015-07-10

Family

ID=50031954

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012133214/05A RU2555030C2 (ru) 2012-08-03 2012-08-03 Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Country Status (1)

Country Link
RU (1) RU2555030C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824776B2 (en) * 2003-04-16 2004-11-30 The United States Of America As Represented By The Secretary Of The Navy Silica mesoporous aerogels having three-dimensional nanoarchitecture with colloidal gold-protein superstructures nanoglued therein
US7122381B2 (en) * 1991-09-06 2006-10-17 Magnus Glad Selective affinity material, preparation thereof by molecular imprinting, and use of the same
RU2366502C2 (ru) * 2007-10-29 2009-09-10 Александр Георгиевич Мажуга Наногибридные функциональные сепарационные материалы на основе модифицированных наночастиц металлов и способ их получения
US7893104B2 (en) * 2007-03-01 2011-02-22 Jong-Min Lee Process for synthesizing silver-silica particles and applications
US8133301B2 (en) * 2008-04-17 2012-03-13 Korea Research Institute Of Chemical Technology Porous nanohybrid materials formed by covalent hybridization between metal-organic frameworks and gigantic mesoporous materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122381B2 (en) * 1991-09-06 2006-10-17 Magnus Glad Selective affinity material, preparation thereof by molecular imprinting, and use of the same
US6824776B2 (en) * 2003-04-16 2004-11-30 The United States Of America As Represented By The Secretary Of The Navy Silica mesoporous aerogels having three-dimensional nanoarchitecture with colloidal gold-protein superstructures nanoglued therein
US7893104B2 (en) * 2007-03-01 2011-02-22 Jong-Min Lee Process for synthesizing silver-silica particles and applications
RU2366502C2 (ru) * 2007-10-29 2009-09-10 Александр Георгиевич Мажуга Наногибридные функциональные сепарационные материалы на основе модифицированных наночастиц металлов и способ их получения
US8133301B2 (en) * 2008-04-17 2012-03-13 Korea Research Institute Of Chemical Technology Porous nanohybrid materials formed by covalent hybridization between metal-organic frameworks and gigantic mesoporous materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАТВЕЕВСКАЯ Н.А.и др. «Получение, структура и свойства гетерочастиц SIO 2 /Au», Доклады Национальной академии наук Украины, 2007, 3, стр.101-107;МЕТЕЛИЦА С.И. «Сорбционно-люминесцентное определение благородных и цветных металлов с использованием реагентов, ковалентно и нековалентно закреплённых на поверхности силикагеля», автореферат дисс. на соиск.уч. степ.канд.хим. наук, Красноярск, 2009. *

Also Published As

Publication number Publication date
RU2012133214A (ru) 2014-02-10

Similar Documents

Publication Publication Date Title
CN109569026B (zh) 制备多孔框架材料为基质的色谱固定相用于手性分离
Chen et al. Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides
Li et al. Novel Fe3O4@ TiO2 core− shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis
Xu et al. Metal oxides in sample pretreatment
Negishi et al. Atomic-level separation of thiolate-protected metal clusters
JP6452704B2 (ja) 磁性粒子の製造
Vergara-Barberan et al. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins
US20200332028A1 (en) Charged surface reversed phase chromatographic materials method for analysis of glycans modified with amphipathic, strongly basic moieties
Kupcik et al. New interface for purification of proteins: one-dimensional TiO2 nanotubes decorated by Fe3O4 nanoparticles
US20050029196A1 (en) Packing materials for separation of biomolecules
Xu et al. Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment
Prosuntsova et al. New composite stationary phase for chiral high-performance liquid chromatography
CN111495332A (zh) 一种磁性吸附材料及其在苯甲酰脲类杀虫剂检测中的应用
US4773994A (en) Liquid chromatography packing materials
González-García et al. Nanomaterials in protein sample preparation
JPH03218458A (ja) カラム充填剤及びその製造方法
WO2020021496A1 (en) Liquid chromatography/mass spectrometry methods for the analysis of polar molecules
Sakai-Kato et al. Integration of biomolecules into analytical systems by means of silica sol-gel technology
Khoshhesab et al. Ultrasound-assisted mixed hemimicelle magnetic solid phase extraction followed by high performance liquid chromatography for the quantification of atorvastatin in biological and aquatic samples
RU2555030C2 (ru) Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
RU2543170C2 (ru) Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
US9925522B2 (en) Doped materials for reverse phase chromatography
JP3995935B2 (ja) クロマトグラフィー用充填剤
Nazario et al. Analysis of fluoxetine and norfluoxetine in human plasma by HPLC-UV using a high purity C18 silica-based SPE sorbent
RU2366502C2 (ru) Наногибридные функциональные сепарационные материалы на основе модифицированных наночастиц металлов и способ их получения