RU2554686C2 - Способ повышения точности измерений расхода многофазной смеси в трубопроводе - Google Patents

Способ повышения точности измерений расхода многофазной смеси в трубопроводе Download PDF

Info

Publication number
RU2554686C2
RU2554686C2 RU2013146562/28A RU2013146562A RU2554686C2 RU 2554686 C2 RU2554686 C2 RU 2554686C2 RU 2013146562/28 A RU2013146562/28 A RU 2013146562/28A RU 2013146562 A RU2013146562 A RU 2013146562A RU 2554686 C2 RU2554686 C2 RU 2554686C2
Authority
RU
Russia
Prior art keywords
pipeline
section
flow
flowmeter
flow rate
Prior art date
Application number
RU2013146562/28A
Other languages
English (en)
Other versions
RU2013146562A (ru
Inventor
Александр Борисович Старостин
Андрей Александрович Осипцов
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2013146562/28A priority Critical patent/RU2554686C2/ru
Priority to US14/513,169 priority patent/US20150107328A1/en
Publication of RU2013146562A publication Critical patent/RU2013146562A/ru
Application granted granted Critical
Publication of RU2554686C2 publication Critical patent/RU2554686C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/12Cleaning arrangements; Filters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Предложенное изобретение относится к процедуре контроля многофазных смесей при их транспортировке по трубопроводу, в процессе которого исключают процесс пробкообразования. Предложенный способ повышения точности измерений расхода многофазной смеси в трубопроводе заключается в том, что определяют свойства многофазной смеси для условий, ожидаемых в трубопроводе, определяют режимы течения в трубопроводе для ожидаемых значений расхода, перед местом установки расходомера обеспечивают наклон участка трубопровода вниз по течению потока, при этом угол наклона и протяженность наклонного участка выбирают так, чтобы для ожидаемых значений расходов режим течения с пробкообразованием стал наименее вероятным, и устанавливают расходомер в конце этого участка. В качестве контролируемых свойств многофазной смеси выступает плотность, вязкость и поверхностное натяжение. Протяженность наклонного участка превышает диаметр трубопровода по меньшей мере в 10 раз, а наклон участка перед местом установки расходомера вниз по течению потока может быть обеспечен путем вставки наклонного участка в трубопровод перед местом установки расходомера, либо путем установки расходомера в нижнем конце участка трубопровода, имеющего требуемый наклон. Данное изобретение позволяет сократить количество, частоту и длину пробок в потоке и соответственно сократить амплитуду колебаний расхода жидкости и газа. 4 з.п. ф-лы, 6 ил.

Description

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам, в частности к способам уменьшения частоты и величины пробок жидкости (слагов или объемов жидкости, перекрывающих сечение трубы) при измерении расхода жидкости и газа с помощью традиционных расходомеров.
В трубопроводах, которые транспортируют газ и жидкость в виде двухфазного потока, могут образовываться газовые или жидкостные пробки. Периодическое чередование газовых и жидкостных пробок вызывает колебания давления и, соответственно, колебания расхода жидкости и газа. Из-за значительных колебаний расхода жидкости возникают большие проблемы при измерении расхода жидкости и газа с помощью традиционных расходомеров. Точности измерений препятствует процесс пробкообразования в трубопроводах, когда в трубах резко меняется объемная доля флюидов. Пробкообразование может проявляться даже при постоянных входных расходах флюидов и приводить к сильным колебаниям выходных значений расхода и давления.
Кроме того, колебания расхода и давления в трубопроводе, транспортирующем газожидкостные смеси, может привести к возникновению трещин и разрушению трубопровода. Причины возникновения и исчезновения пробок жидкости связаны с профилем и другими характеристиками трубопроводов.
Из уровня техники известны разные способы борьбы с пробкообразованием в потоке газожидкостной смеси. Так, например, поскольку формирование пробок можно предупредить путем изменения свойств флюидов в трубопроводе, было предложено образовывать пленку с высоким поверхностным натяжением на границе раздела жидкость-газ (патент US 3112528). Предлагалось также предотвращение образования пробок путем снижения расходов газа и жидкости (патент US 005544672 A). Однако в случае добычи углеводородов, коррекция расходов или свойств флюидов, поступающих в трубопровод из скважины, как правило, технически невозможна. Предлагалось также использовать различные устройства, обеспечивающие разделение газожидкостной смеси на отдельные фазы - газ и жидкость, и осуществлять их раздельную траспортировку на некоторое расстояние с последующим соединением потоков в один (см., например, патент ЕР 1448871 В1).
Технический результат, достигаемый при реализации изобретения, заключается в сокращении количества, частоты и длины пробок в потоке и соответствующем сокращении амплитуды колебаний расхода жидкости и газа.
Указанный технический результат достигается тем, что в соответствии с предлагаемым способом определяют свойства многофазной смеси для условий, ожидаемых в трубопроводе, и определяют режимы течения для ожидаемых значений расхода. На участке трубопровода обеспечивают параметры трубопровода, уменьшающие пробкообразование, и устанавливают расходомер в конце этого участка.
В соответствии с одним из вариантов осуществления изобретения параметры трубопровода, уменьшающие пробкообразование, обеспечивают путем обеспечения наклона участка перед местом установки расходомера вниз по течению потока. При этом угол наклона и протяженность наклонного участка выбирают так, чтобы для ожидаемых значений расходов режим течения с пробкообразованием стал наименеее вероятным, то есть появлялся в малой подобласти ожидаемых расходов или не возникал вообще.
Предпочтительно протяженность наклонного участка превышает диаметр трубы по меньшей мере в 10 раз.
Наклон участка перед местом установки расходомера вниз по течению потока может быть обеспечен путем вставки наклонного участка в трубопровод перед местом установки расходомера или путем установки расходомера в нижнем конце участка трубопровода, имеющего требуемый естественный наклон.
В соответствии с другим вариантом осуществления изобретения параметры трубопровода, уменьшающие пробкообразование, обеспечивают путем изменения шероховатости внутренних стенок трубопровода перед местом установки расходомера. Изменение шероховатости внутренней стенки трубопровода перед местом установки расходомера может быть обеспечено путем вставки участка трубопровода с требуемой шероховатостью или путем обработки стенок трубопровода для обеспечения требуемой шероховатости.
В соответствии с еще одним вариантом осуществления изоберетения, параметры трубопровода, уменьшающие пробкообразование, обеспечивают путем изменения диаметра или геометрии сечения трубопровода путем вставки участка трубопровода с требуемыми параметрами.
Измеряемыми свойствами многофазной смеси являются физические свойства компонент смеси: плотность, вязкость, поверхностное натяжение и т.д.
Изобретение поясняется чертежами, где на фиг.1 приведена схема динамики значений расхода при фиксированных дебитах во время пробкообразования в трубопроводе; на фиг.2а показан профиль трубопровода до встраивания участка, уменьшающего пробкообразование, на фиг.2б - профиль трубопровода со встроенным участком, уменьшающим пробкообразование; на фиг.3 приведены экспериментальные карты режимов течения, на фиг.4 - уровень жидкости в трубопроводе и в наклонном участке трубопровода, на фиг.5 - колебания значений расхода жидкости в различных точках трубопровода с участком, уменьшающим пробкообразование, на фиг.6 - кривые пересечений расходов газа и воды на входе и выходе трубы для уменьшения пробок.
Изобретение осуществляется следующим образом. На первом этапе производится оценка значений таких свойств транспортируемой многофазной смеси, как плотность, вязкость и поверхностное натяжение флюидов, составляющих смесь, для условий, ожидаемых в трубопроводе. Эти свойства позволяют поставить эксперимент для исследования режимов течения, либо описать режимы течения средствами математического моделирования.
Второй этап заключается в изучении режимов течения по области ожидаемых значений расхода. Режим течения можно определить опытным путем (см., например, О. Shoham, Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes, Society of Petroleum Engineers (SPE), Richardson, TX, 2006, p.408; Y.V. Fairuzov, 2001, Stability Analysis of Stratified Oil/Water Flow in Inclined Pipelines, SPE Production & Facilities, 16, 1 pp.14-21) либо предсказать, исходя из теории устойчивости режимов течения (D. Bamea, Y. Taitel, 1994. Interfacial and structural stability of separated flow. Annual Reviews in Multiphase flow, G. Hetsroni, ed., pp.387-414). Режим течения обуславливает конструкцию участка трубопровода перед местом установки расходомера для уменьшения пробок: на участке трубопровода обеспечивают параметры трубопровода, уменьшающие пробкообразование, и устанавливают расходомер в конце этого участка. Уменьшение пробкообразования проявляется в сокращении длины пробок и частоты их появления в потоке.
Для участка трубопровода со сложным профилем мы рассматриваем влияние угла наклона, диаметра, шероховатости и других параметров на режим течения в конце участка. Оптимальная конструкция участка должна сокращать до минимума область расходов жидкости и газа, при которых возникают пробки. Третий этап - это непосредственно обеспечение параметров трубопровода, уменьшающих пробкообразование. Например, в соответствии с одним из вариантов осуществления изобретения, обеспечивают заданный наклон участка трубопровода перед местом установки расходомера. В частности, обеспечивают угол наклона (от 0°-10°) и протяженность наклонного участка (от 10-500 м) при диаметрах трубопровода 0.01 м - 0.5 м выбирают так, чтобы для ожидаемых значений расходов режим течения с пробкообразованием стал наименеее вероятным (появлялся в малой подобласти ожидаемых расходов, либо не возникал вообще). При этом предпочтительно протяженность наклонного участка превышает диаметр трубы как минимум в 10 раз.
Параметры трубопровода, уменьшающие пробкообразование, могут обеспечиваться путем изменения шероховатости внутренних стенок трубопровода перед местом установки расходомера. Шероховатость внутренней стенки трубопровода можно изменить путем вставки участка трубопровода с требуемой шероховатостью или путем обработки стенок трубопровода для обеспечения требуемой шероховатости.
Кроме того, параметры трубопровода, уменьшающие пробкообразование, могут быть обеспечены путем изменения диаметра или геометрии сечения трубопровода путем вставки участка трубопровода с требуемыми параметрами.
Далее приведен пример осуществления изобретения с помощью технологии Vx для измерений объемных долей флюидов на участке трубопровода. Расходомер Vx Phasetester оценивает объемную долю флюидов в сечении по измерениям перепада давления в трубке Вентури и инерпретации плотности смеси по гамма-излучению (http://www.slb.com/~/media/Files/testing/product_sheets/multiphase/phasetester_ps.pdf). Расходомер можно применять в определенной области расходов газа и жидкости, в частности область применимости прибора не включает малые дебиты жидкости. На фиг.1 показана область объемных расходов, в которой работают устройства по технологии Vx, и схема динамики значений расхода при фиксированных дебитах во время пробкообразования в трубопроводе.
При фиксированных дебитах флюидов на входе в трубопровод, пробкообразование приводит к сильным колебаниям расходов флюидов на удалении от входа. При этом расходы могут выходить за область применимости прибора. Изобретение направлено на уменьшение пробок и стабилизацию значений расхода в пределах области применимости.
Допустим, нужны измерения для воздуховодяного потока в трубопроводе диаметром 10 см. Флюиды втекают в расходомер при стандартных условиях. Сначала собирают информацию о свойствах флюида (плотность, вязкость, поверхностное натяжение).
Предположим, что расходомер расположен в точке 1. Участок трубопровода 1-3 имеет наклон вверх по потоку (фиг.2а). По картам режимов течения определяют область дебитов флюидов, в которой образуются пробки. Карты режимов можно получить экспериментально. Для этого необходимо взять реплику участка 1-3 и провести в ней серию прокачек флюидов с постоянными дебитами. Режим течения на выходе регистрируют при фиксированных дебитах, например, визуально через стеклянную вставку в трубе. Режим отмечают на карте режима в точке, соответствующей фиксированным дебитам. Допустим, выбранный участок имеет наклон - 0.25°. На карте режимов течения (фиг.3) видно, что объемные расходы газа от 0.1 до 1 м/с всегда приводят к появлению пробок (слагов). На фиг.3 квадраты - зарегистированный режим с гладкой поверхностью раздела фаз, треугольники - зарегистрированный режим с волнами на поверхности раздела фаз, круги - зарегистрирован режим пробкообразования. Воздуховодяной поток с наклоном вверх, согласно карте, благоприятствует пробкообразованию. Воздуховодяной поток, согласно карте, уменьшает пробкообразование в области, отмеченной пунктиром.
Однако ситуация изменится, если на участке 1-3 обеспечить наклон 5° вниз по потоку (Фиг.4, Фиг.5). Таким образом, при изменении профиля с 1-3 на 1-2-3 течение в трубе изменит пробковый режим на расслоенный для скоростей газа от 0.1 до 1 м/с. Расслоенный режим позволит улучшить точность измерений. Эта область обозначена пунктиром на картах режимов течения на Фиг.3. Оценку по затуханию возмущений можно сделать на основе работ по линейной устойчивости многофазных течений (D. Bamea, Y. Taitel, 1994. Interfacial and structural stability of separated flow. Annual Reviews in Multiphase flow, G. Hetsroni, ed., pp.387-414).
Для затухания приходящих в точку 2 пробок отведем 100 м. Имеем конструкцию трубы 1-2-3 (Фиг.2б), уменьшающую пробки, при которой участок трубопровода от точки 1 до 2 длиной 100 м имеет угол наклона вниз по потоку.
Также при проектировании трубопровода можно использовать математическое моделирование. Математическая модель многофазного течения в трубопроводе, заканчивающегося наклонным участком, позволяет оценить затухание колебаний в точке 1 (Фиг.5, Фиг.6). Фиг.5 показывает колебания расхода в различных точках трубопровода. На Фиг.6 приведен кросплот расходов в начале и в конце участка, уменьшающего пробкообразование. Амплитуда колебаний сокращается в 2 раза, и удается избежать низких и отрицательных дебитов жидкости.
Третий этап заключается в обеспечении наклона заключается в обеспечении наклона вниз в нужной точке. Наклон может быть обеспечен путем монтажа наклонного участка в линию трубопровода. Исходный трубопровод и его состояние после монтажа проиллюстрированы на Фиг.2. Возможно провести обследование трубопровода и выявить существующий участок с углом наклона 5° вниз, протяженностью 100 м. В нижней части этого участка устанавливают расходомер.

Claims (5)

1. Способ повышения точности измерений расхода многофазной смеси в трубопроводе в соответствии с которым:
- определяют свойства многофазной смеси для условий, ожидаемых в трубопроводе,
- определяют режимы течения в трубопроводе для ожидаемых значений расхода,
- перед местом установки расходомера обеспечивают наклон участка трубопровода вниз по течению потока, при этом угол наклона и протяженность наклонного участка выбирают так, чтобы для ожидаемых значений расходов режим течения с пробкообразованием стал наименее вероятным, и устанавливают расходомер в конце этого участка.
2. Способ по п. 1, в соответствии с которым свойствами многофазной смеси являются плотность, вязкость и поверхностное натяжение.
3. Способ по п. 1, в соответствии с которым протяженность наклонного участка превышает диаметр трубопровода по меньшей мере в 10 раз.
4. Способ по п. 1, в соответствии с которым наклон участка перед местом установки расходомера вниз по течению потока обеспечивают путем вставки наклонного участка в трубопровод перед местом установки расходомера.
5. Способ по п. 1, в соответствии с которым наклон участка перед местом установки расходомера вниз по течению потока обеспечивают путем установки расходомера в нижнем конце участка трубопровода, имеющего требуемый наклон.
RU2013146562/28A 2013-10-18 2013-10-18 Способ повышения точности измерений расхода многофазной смеси в трубопроводе RU2554686C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2013146562/28A RU2554686C2 (ru) 2013-10-18 2013-10-18 Способ повышения точности измерений расхода многофазной смеси в трубопроводе
US14/513,169 US20150107328A1 (en) 2013-10-18 2014-10-13 Method for Improving Accuracy of Multiphase Mixture Flowrate Measurement in A Pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013146562/28A RU2554686C2 (ru) 2013-10-18 2013-10-18 Способ повышения точности измерений расхода многофазной смеси в трубопроводе

Publications (2)

Publication Number Publication Date
RU2013146562A RU2013146562A (ru) 2015-04-27
RU2554686C2 true RU2554686C2 (ru) 2015-06-27

Family

ID=52824980

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013146562/28A RU2554686C2 (ru) 2013-10-18 2013-10-18 Способ повышения точности измерений расхода многофазной смеси в трубопроводе

Country Status (2)

Country Link
US (1) US20150107328A1 (ru)
RU (1) RU2554686C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2149361C1 (ru) * 1997-07-30 2000-05-20 Андрушкевич Сергей Владимирович Система для измерения расхода жидкости
EA003655B1 (ru) * 1999-11-08 2003-08-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и система для подавления и контроля образования пробок в потоке многофазовой текучей среды
EP1448871A1 (en) * 2001-10-12 2004-08-25 Alpha Thames Limited Multiphase fluid conveyance system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544672A (en) * 1993-10-20 1996-08-13 Atlantic Richfield Company Slug flow mitigation control system and method
NO313677B1 (no) * 2000-12-06 2005-10-24 Abb Research Ltd Slug kontrollering
FR2822191B1 (fr) * 2001-03-19 2003-09-19 Inst Francais Du Petrole Methode et dispositif pour neutraliser par injection controlee de gaz, la formation de bouchons de liquide au pied d'un riser se raccordant a une conduite d'acheminement de fluides polyphasiques
GB2422016B (en) * 2005-01-06 2007-03-07 Schlumberger Holdings System and method for measuring flow in a pipeline
EP1945902B1 (en) * 2005-09-19 2009-07-15 Bp Exploration Operating Company Limited Device for controlling slugging
BRPI0811528B1 (pt) * 2007-05-16 2018-08-28 Statoil Asa método para controle de líquidos em tubulações de fluido multifase
US20100132800A1 (en) * 2008-12-01 2010-06-03 Schlumberger Technology Corporation Method and apparatus for controlling fluctuations in multiphase flow production lines
BR112012004565A2 (pt) * 2009-09-01 2019-09-24 Ngltech Sdn Bhd "aparelho supressor de lama pesada e conjunto de estabilização de óleo cru e processo para tal"
US8555978B2 (en) * 2009-12-02 2013-10-15 Technology Commercialization Corp. Dual pathway riser and its use for production of petroleum products in multi-phase fluid pipelines
US20150013536A1 (en) * 2013-07-11 2015-01-15 Multiphase Engineering Corporation Gas Removal System for Offshore and Onshore Oil and Liquid Product Pipelines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2149361C1 (ru) * 1997-07-30 2000-05-20 Андрушкевич Сергей Владимирович Система для измерения расхода жидкости
EA003655B1 (ru) * 1999-11-08 2003-08-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и система для подавления и контроля образования пробок в потоке многофазовой текучей среды
EP1448871A1 (en) * 2001-10-12 2004-08-25 Alpha Thames Limited Multiphase fluid conveyance system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Руководство по эксплуатации расходомера «Днепр-7» РЭ 4213-079-00236494-98, 2002 г. Руководство по эксплуатации «Расходомеры – счетчики ультразвуковые ИРВИС – РС4 - Ультра» ИРВИС 9100.0000.00 РЭ4. Руководство по эксплуатации МСТИ.400726.001 РЭ «Расходомер – счетчик жидкости ультразвуковой КАРАТ - РС», Екатеринбург. *
статья "Подавление пробок в трубопроводах с многофазным течением за счет активного использования установленной на поверхности задвижки. Опыт эксплуатации и экспериментальные результаты", труды 11-й Международной конференции по многофазному течению, San Remo, Italy, июнь 2003. *

Also Published As

Publication number Publication date
RU2013146562A (ru) 2015-04-27
US20150107328A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
US10126156B2 (en) Device and method for online measurement of gas flowrate and liquid flowrate of wet gas in horizontal pipe
EP3289319B1 (en) Multiphase flow meters and related methods
US7987733B2 (en) Determination of density for metering a fluid flow
RU2542587C2 (ru) Многофазный расходомер и способ измерения пленки жидкости
Pan et al. Gas flow rate measurement in low-quality multiphase flows using Venturi and gamma ray
US8973433B2 (en) Dual differential pressure multiphase flow meter
US20190339102A1 (en) Critical flow nozzle flowmeter for measuring respective flowrates of gas phase and liquid phase in multiphase fluid and measuring method thereof
US11504648B2 (en) Well clean-up monitoring technique
US20100138168A1 (en) Apparatus and a method of measuring the flow of a fluid
WO2013190093A2 (en) A predictive flow assurance assessment method and system
Spedding et al. Three phase oil-water-gas horizontal co-current flow: I. Experimental and regime map
Kjolaas et al. Experiments for low liquid loading with liquid holdup discontinuities in two-and three-phase flows
US9605987B2 (en) Method and apparatus for accurately measuring individual components of a multiphase fluid using separately measured Reynolds number
US9671267B2 (en) Method and apparatus for accurately measuring individual components of a multiphase fluid using separately measured reynolds number and emulsion type of liquid phase
Felder et al. Self-aeration and flow resistance in high-velocity flows down spillways with microrough inverts
US10670575B2 (en) Multiphase flow meters and related methods having asymmetrical flow therethrough
RU2554686C2 (ru) Способ повышения точности измерений расхода многофазной смеси в трубопроводе
Carollo et al. Sequent depth ratio of B-jumps on smooth and rough beds
Ogden et al. Sedimentation Effects on triangular short-crested flow-measurement weirs
Chan et al. Flow regimes of a surcharged plunging dropshaft-tunnel system
JP5924556B2 (ja) 多相流流量計
CN106197942B (zh) 一种气液混流实验装置
Tonkonog et al. Experience of Application of Different Multiphase Metering Technologies for Cold Production and High Viscosity Oil Systems
Arubi et al. Gamma radiation methods in characterizing horizontal and vertical multiphase flow
Kjeldby et al. Expansion instabilities in long risers: small scale experiments and simulations

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191019