RU2553419C1 - Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций - Google Patents

Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций Download PDF

Info

Publication number
RU2553419C1
RU2553419C1 RU2013153987/11A RU2013153987A RU2553419C1 RU 2553419 C1 RU2553419 C1 RU 2553419C1 RU 2013153987/11 A RU2013153987/11 A RU 2013153987/11A RU 2013153987 A RU2013153987 A RU 2013153987A RU 2553419 C1 RU2553419 C1 RU 2553419C1
Authority
RU
Russia
Prior art keywords
projectile
nutation
frequencies
precession
values
Prior art date
Application number
RU2013153987/11A
Other languages
English (en)
Inventor
Геннадий Владимирович Рудианов
Дмитрий Геннадьевич Митрофанов
Михаил Анатольевич Переверзев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority to RU2013153987/11A priority Critical patent/RU2553419C1/ru
Application granted granted Critical
Publication of RU2553419C1 publication Critical patent/RU2553419C1/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра артиллерийских орудий противника, определяют частоты прецессии и нутации соответствующих снарядам орудий, заносят значения частот прецессии и нутации в качестве эталонных в запоминающее устройство (ЗУ) радиолокационной станции разведки огневых позиций (РСРОП), ведут разведку выпущенных снарядов с помощью РСРОП, обнаруживают и автоматически сопровождают снаряд, записывают в ЗУ РСРОП на определенном интервале времени параметров отраженных от снаряда сигналов на выходе предварительного усилителя промежуточной частоты в режиме отключенной мгновенной автоматической регулировки усиления, дополнительно проводят измерение линейной скорости снаряда на начальном участке траектории с помощью определения угловой координаты и наклонной дальности в двух последовательных моментах времени, преобразуют записанные параметры сигналов в цифровую форму, формируют спектр записанных отраженных сигналов, сравнивают выделенные значения частот прецессии и нутации с соответствующими значениями, хранящимися в базе данных ЗУ РСРОП, выявляют минимальные ошибки расхождения решения о калибре сопровождаемого снаряда, определяют калибр сопровождаемого снаряда. Изобретение позволяет повысить эффективность распознавания снаряда. 5 ил.

Description

Изобретение относится к методам радиолокационного распознавания целей и может быть использовано при планировании отражения артиллерийского удара (обстрела), при выборе методов предотвращения потерь от артиллерийских ударов, при организации мер противодействия артиллерийскому обстрелу.
Известен способ распознавания классов стреляющих систем (В.М. Боголюбов, И.В. Лахник, А.А. Бобкин. Конструкция и эксплуатация комплексов командирских машин управления. МО РФ, 2005. УДК 358.6.Б74.К64, с. 26-44), реализованный в изделии 1Л219М «Зоопарк». В данном изделии при автосопровождении снаряда (ракеты, мины) по рассчитанным горизонтальным составляющим скорости и ускорения в середине интервала наблюдения определяется значение баллистической функции. По величине и знаку баллистической функции определяется принадлежность наблюдаемой баллистической цели к одному из классов: гаубицы, минометы, реактивные системы залпового огня, тактические ракеты на пассивном участке, тактические ракеты на активном участке, активно-реактивные снаряды (АРС) и активно-реактивные мины (АРМ).
Недостатком данного способа является то, что он не предполагает распознавание калибра снаряда, что не позволяет по информации распознавания детально оценить состав группировки противника.
Известно устройство распознавания стреляющих систем (Патент РФ №2231084. Устройство распознавания стреляющих систем. МПК G01S 13/00. Опубл. 20.06.2004. Бюл. №17), основанный на использовании дополнительных признаков распознавания: признак возрастания (убывания) скорости полета снаряда и ее величина в средней точке участка наблюдения. Недостатком данного устройства является невозможность распознавания калибра снаряда.
Известно устройство распознавания стреляющих систем (Патент РФ №2295739. Устройство распознавания стреляющих систем. МПК G01S 13/52. Опубл. 20.03.2007. Бюл. №8), сущность которого заключается в том, что вместо анализа величины средней скорости снаряда анализируются дополнительно введенные признаки распознавания. К ним относятся значения параметров траектории в средней точке участка наблюдения: значение ускорения в средней точке, значение баллистической функции в средней точке, значение баллистического коэффициента, значение отношения баллистической функции к скорости в средней точке, значение отношения ускорения к скорости в средней точке.
Однако и это устройство обладает недостатком, а именно оно не позволяет распознавать калибры применяемых снарядов.
Известен способ распознавания стреляющих систем противника по калибру нарезных орудий (Барабаш Ю.Л., Братченко Г.Д., Гончарук А.А. Методика и результаты математического моделирования радиолокационного распознавания нарезных орудий в РЛС разведки огневых позиций. Сборник научных трудов Военного института Киевского национального университета им. Т.Г. Шевченко. Выпуск №2. Киев: ВИКНУ, 2006). Суть данного метода заключается в анализе спектра радиолокационных сигналов, отраженных от вращающегося снаряда при его облучении. Используемые радиолокационные сигналы являются узкополосными. Суть способа заключается в следующем. В полете снаряд осуществляет сложное вращение, которое является совокупным проявлением прецессии и нутации (Чернозубов, Кириченко В.Д., Разин И.И., Михайлов К.В. Внешняя баллистика. Часть II. М:. Военная артиллерийская инженерная академия имени Ф.Э. Дзержинского. 1954). Угол прецессии (ξ) - двугранный угол между вертикальной плоскостью, проходящей через касательную к траектории полета снаряда и плоскостью, проходящей через ось снаряда и касательную к траектории (так называемая плоскость сопротивления). Угол нутации (δ) - это угол между осью снаряда и касательной к траектории полета снаряда.
Частоты прецессии и нутации - это производные по времени соответствующих углов поворота (угловые скорости), измеряемые числом оборотов за секунду [об/с]. Значения частот прецессии и нутации зависят от индивидуальных характеристик типа снаряда, т.е. от осевого и экваториального моментов инерции и начальной частоты вращения снаряда. Так, круговая частота прецессии согласно [Чернозубов, Кириченко В.Д., Разин И.И., Михайлов К.В. Внешняя баллистика. Часть II. М:. Военная артиллерийская инженерная академия имени Ф.Э. Дзержинского. 1954] определяется выражением
Figure 00000001
где C - осевой момент инерции; A - экваториальный момент инерции; ωвр0 - начальная круговая частота вращения снаряда при выходе из канала ствола.
Частота нутации fнут определяется выражением
Figure 00000002
где σ - переменная, зависящая от распределения давления атмосферы по высоте, характеристик снаряда и скорости снаряда. Для устойчивых снарядов σ 0,6
Figure 00000003
[Вентцель Д.А., Шапиро Я.М. Внешняя баллистика. Часть II. М.: Государственное издательство оборонной промышленности, 1939].
Начальная частота вращения снаряда fвр0, в свою очередь, рассчитывается по известной формуле
Figure 00000004
где V0 - начальная скорость снаряда; η - относительная длина хода нарезов в стволе (в калибрах); d - калибр орудия.
Относительная длина хода нарезов - это расстояние в калибрах (далее по тексту используется сокращение «клб»), на котором нарез совершает полный оборот.
Очевидно, что, измеряя каким-либо способом частоты прецессии и нутации (истинные или круговые), можно определить калибр снаряда. По сущности технического решения наиболее близким к предлагаемому способу является способ распознавания, предложенный в (Барабаш Ю.Л., Братченко Г.Д., Гончарук А.А. Методика и результаты математического моделирования радиолокационного распознавания нарезных орудий в РЛС разведки огневых позиций. Сборник научных трудов Военного института Киевского национального университета им. Т.Г. Шевченко. Выпуск №2. Киев: ВИКНУ, 2006), и выбранный за прототип.
В прототипе измерение частот прецессии и нутации производится радиолокационным способом. Радиолокационная станция (РЛС) разведки огневых позиций (РОП) обнаруживает и берет на автоматическое сопровождение по угловым координатам и дальности выпущенный противником орудийный снаряд. Отраженные снарядом сигналы каждого периода повторения РЛС преобразуются в цифровую форму, раскладываются (разделяются) на квадратурные составляющие Re и Im. Далее массив комплексных параметров отражений от сопровождаемого снаряда подвергается спектральной обработке. Эта обработка выполняется в цифровом виде, т.е. с помощью преобразования Фурье с массивом записанных квадратурных (комплексных) данных. Результат обработки, имеющий вид вектора спектральных параметров, анализируется с целью выделения составляющих (гармоник), соответствующих частотам прецессии и нутации.
Поскольку на поверхности снаряда имеются неоднородности (например, следы от нарезов на ведущем пояске) и отдельно расположенные рассеивающие центры (например, носовая часть снаряда), то вследствие вращения снаряда в полете отраженные сигналы должны быть модулированы по амплитуде и частоте. Сравнивая измеренные значения частот прецессии и нутации с имеющимися в заранее подготовленной базе данных, принимается решение о принадлежности стреляющего орудия к той или иной системе, к тому или иному калибру.
Рассмотрим спектры сигналов, отраженных от различных снарядов.
Спектры отраженных сигналов построены методом моделирования с использованием алгоритма быстрого преобразования Фурье (БПФ). На графиках спектров для наглядности по оси абсцисс текущее значение количества отсчетов спектра делится на 2E (максимальное значение количества отсчетов, т.е. общее число отсчетов), т.е. ось абсцисс оказывается проградуированной в значениях частоты - герцах.
На фиг. 1 и 2 показаны спектры сигналов, отраженных от снарядов калибра 122 миллиметра (фиг. 1) и 152 миллиметра (фиг. 2) при использовании полного заряда. Снаряд калибра 122 мм принадлежит гаубице М-30 образца 1938 года. Относительная длина хода нарезов в этом орудии была равна η=20 клб. Использовался полный заряд (Таблицы стрельбы 122-мм гаубицы образца 1938 г. М:. Военное издательство Народного комиссариата обороны. 1943), (Таблицы стрельбы 152-мм гаубицы образца 1943 г. М:. Военное издательство Министерства обороны СССР. 1968). Начальная скорость полета снаряда была равна V0=515 м/с, а частота вращения fвр=211 Гц.
В результате анализа спектра (фиг. 1) можно заключить, что частота прецессии fпрец данного снаряда равна fпрец=10,5 Гц, а частота нутации - соответственно fнут=73,5 Гц.
Снаряд калибра 152 мм принадлежит гаубице образца 1943 года. Относительная длина хода нарезов в этом орудии была равна η=23 клб. Заряд полный. Начальная скорость полета снаряда была равна V0=508 м/с, а частота вращения fвр=145 Гц. В результате анализа спектра (фиг. 2) можно заключить, что частота прецессии fпрец данного снаряда равна fпрец=7,2 Гц, а частота нутации - соответственно fнут=50,4 Гц.
Сравнение показывает, что частоты прецессии и нутации одного снаряда существенно отличаются от соответствующих частот другого. Данный факт позволяет производить спектральным образом распознавание калибров указанных снарядов, а значит, и калибров используемых орудий.
Предложенный способ можно признать эффективным только при наличии априорных сведений о типах используемых зарядов. В этом состоит основной недостаток способа (Барабаш Ю.Л., Братченко Г.Д., Гончарук А.А. Методика и результаты математического моделирования радиолокационного распознавания нарезных орудий в РЛС разведки огневых позиций. Сборник научных трудов Военного института Киевского национального университета им. Т.Г. Шевченко. Выпуск №2. Киев: ВИКНУ, 2006).
Этот существенный недостаток можно более детально пояснить следующим образом. При близких по величине начальных скоростях снарядов, действительно, частоты прецессии и нутации разных снарядов будут отличаться, поскольку моменты инерции, относительные длины хода нарезов, а также калибры орудий различны. В то же время, каждое артиллерийское орудие может использовать несколько номеров (типов) заряда. С изменением заряда изменяется и начальная скорость вылета из ствола, что приводит к изменению частот прецессии и нутации. При этом области частот вращения, прецессии и нутации могут пересекаться, что не позволяет отличать один снаряд (его калибр) от другого.
Так, при начальной скорости V0=346 м/с снаряда калибра 122 мм с частотой вращения fвр=142 Гц его частоты прецессии и нутации составляют соответственно fпрец=7,1 Гц и fнут=49,7 Гц (фиг. 3), что практически совпадает с аналогичными величинами снаряда калибра 152 мм при его начальной скорости вылета из канала ствола V0=508 м/с (фиг. 2).
Из вышеизложенного следует, что имея информацию только о частотах прецессии и нутации, невозможно определить калибр орудия (снаряда), поскольку артиллерийские системы применяют различные заряды, обуславливающие широкий диапазон начальных скоростей вылетающих снарядов. При этом диапазоны начальных скоростей V0 различных артиллерийских систем в значительной мере пересекаются.
Задачей предлагаемого изобретения является обеспечение возможности распознавания калибра стреляющего артиллерийского орудия независимо от используемого номера заряда за счет учета дополнительного фактора в виде скорости полета снаряда.
Технический результат достигается тем, что дополнительно проводят измерение линейной скорости νi снаряда в i-й момент времени на начальном участке траектории, для чего после взятия снаряда на автоматическое сопровождение в два последовательные момента времени определяют его угловые координаты и наклонную дальность, измеренные сферические координаты пересчитываются в прямоугольные декартовы координаты, в результате формируются массивы координат X, Y и Z, зафиксированных в i-е моменты времени, для уменьшения флюктуационных ошибок измерения производят сглаживание результатов измерений методом скользящего среднего, аналогично рассчитывают сглаженные координаты снаряда yc и zc, рассчитывают проекции νxi, νyi, νzi, вектора скорости снаряда на оси абсцисс x, ординат y и аппликат z, определяют полное значение вектора скорости снаряда νi, и учитывают величину νi при выборе из всего банка эталонных данных о частотах прецессий и нутаций только тех, которые соответствуют измеренной скорости полета снаряда, и только выбранные данные о частотах прецессий и нутаций используют для определения калибра сопровождаемого снаряда.
Описываемый способ поясняется следующими чертежами.
На фиг. 1 изображен спектр сигналов, отраженных от снарядов калибра 122 миллиметра при стрельбе на полном заряде (гаубица М-30 образца 1938 года). Начальная скорость полета снаряда равна V0=515 м/с, частота вращения fвр=211 Гц.
На фиг. 2 изображен спектр сигналов, отраженных от снарядов калибра 152 миллиметра при стрельбе на полном заряде (гаубица образца 1943 года). Начальная скорость полета снаряда равна V0=508 м/с, частота вращения fвр=145 Гц.
На фиг. 3 изображен спектр сигналов, отраженных от снарядов калибра 122 миллиметра (гаубица М-30 образца 1938 года). Начальная скорость полета снаряда равна V0=346 м/с, частота вращения fвр=142 Гц.
Способ осуществляют следующим образом.
1. По результатам предварительно проведенных экспериментальных стрельб (или по результатам исследований записей отражений от снарядов в период недавнего локального военного конфликта) для каждого калибра артиллерийских орудий определяются скорости разных снарядов на начальных участках траектории, а также частоты прецессии и нутации, соответствующие этим орудиям на начальных участках траектории. Указанные данные заблаговременно заносятся в цифровом виде в запоминающее устройство (ЗУ) РЛС РОП.
2. При наличии данных разведки о типах артиллерийских орудий, планируемых противником для применения, из полного массива скоростей и частот прецессий и нутаций снарядов разных орудий исключаются те, которые не могут быть использованы противником в условиях сложившейся обстановки.
1. РЛС РОП ведет разведку в указанном секторе (в направлении противника), обнаруживает и берет на автосопровождение снаряд на начальном участке траектории.
2. В два последовательные момента времени с интервалом в 1 секунду определяются угловые координаты и дальность до взятого на автоматическое сопровождение снаряда. Их величины фиксируются в ЗУ РЛС РОП.
3. На интервале сопровождения длительностью 3 с отраженные сигналы с выхода предварительного усилителя промежуточной частоты (ПУПЧ) в режиме отключенной мгновенной автоматической регулировки усиления (МАРУ) переводятся в цифровую форму, подвергаются фазовому детектированию, квадратурной обработке, после чего записываются в виде массива А комплексных данных в ОЗУ РЛС РОП.
4. По результатам траекторных измерений определяются мгновенные скорости сопровождаемого снаряда. Скорости рассчитываются траекторным методом. Для этого измеренные сферические координаты по известным формулам пересчитываются в прямоугольные координаты. В результате формируются массивы координат x, y, z, зафиксированных в соответствующие i-е моменты времени:
X={x1, x2, …, xi, …, xN};
Y={y1, y2, …, yi, …, yN};
Z={z1, z2, …, zi, …, zN},
где индекс i соответствует i-му моменту времени.
Для уменьшения флюктуационных ошибок производится сглаживание измерений, например, методом скользящего среднего. Сглаженные координаты хс определяются:
Figure 00000005
Аналогично формируются сглаженные координаты снаряда yc и zc.
5. Рассчитываются проекции νxi, νyi, νzi скоростей снаряда на оси абсцисс x, ординат y и аппликат z по формулам:
Figure 00000006
где Δt - время между измерениями соответствующей сглаженной координаты снаряда в (i+1)-й и i-й моменты времени.
6. Определяется модуль νi мгновенной скорости снаряда в i-й момент времени (на основе ранее рассчитанных данных) по формуле:
Figure 00000007
7. Производится цифровой спектральный анализ записанных отраженных сигналов методом БПФ с массивом А квадратурных данных об отражениях от снаряда. Количество элементов массива А в каждой квадратуре должно быть 2N, где N - целое положительное число (рекомендуемое число N=9, 10 или 11). Производится БПФ-преобразование данного массива. При этом формируется спектр отражений от снаряда из 2N отсчетов.
8. Для полученного спектра, записанного в ОЗУ РЛС РОП в виде массива А1, определяется уровень порога П как среднее арифметическое модульных значений всех элементов массива А1.
9. В спектре снаряда, записанном в ОЗУ в виде массива А1, определяются превысившие уровень порога П локальные максимумы, которые принимаются за частоты прецессии (меньшая) и нутации (большая).
10. Рассчитанное значение скорости снаряда νi, а также выделенные при анализе спектра частоты прецессии fпрец и нутации fнут сравниваются с соответствующими значениями, хранящимися в базе данных ОЗУ РЛС РОП, и по результатам сравнения по критерию минимума ошибки расхождения (максимума совпадения) принимается решение о калибре снаряда.
Для многих орудий отечественного и даже зарубежного производства сведения о скоростях вылета снаряда и частотах прецессии и нутации являются априори известными, что облегчает создание массива данных для распознавания калибра орудия. Примерами могут являться таблицы стрельбы 122-мм гаубицы М-30 образца 1938 года или 152-мм гаубицы образца 1943 года (Таблицы стрельбы 122-мм гаубицы образца 1938 г. М:. Военное издательство Народного комиссариата обороны. 1943. Таблицы стрельбы 152-мм гаубицы образца 1943 г. М:. Военное издательство Министерства обороны СССР. 1968) Подобные таблицы прилагаются к каждому орудию. На фиг. 4 и фиг. 5 приведены выписки из таблиц стрельбы этих двух типов орудий, куда дополнительно включены частоты прецессии и нутации на начальном участке траектории, рассчитанные по формулам 1 и 2.
Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций является легко реализуемым в РЛС РОП с цифровой обработкой сигналов, поскольку не предполагает изменения приемопередающих трактов РЛС, а основывается лишь на введении дополнительных алгоритмов преобразования принимаемой радиолокационной информации.
Преимущество предлагаемого способа заключается в обеспечении возможности распознавания калибра стреляющего артиллерийского орудия независимо от используемого номера заряда за счет учета дополнительного фактора в виде скорости полета снаряда.
Применение в изд. 1Л219М «Зоопарк» и подобном ему изделии предложенного алгоритма распознавания позволит без дополнительных затрат предоставить оператору РЛС ценную информацию о калибре орудия противоборствующей стороны. Это позволит точнее вырабатывать требования к количеству и типу расходуемых боеприпасов при постановке задачи на поражение разведанной цели, что обеспечит снижение расхода боеприпасов при стрельбе на поражение разведанной цели.

Claims (1)

  1. Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций, включающий проведение экспериментальных стрельб, исследование записей отражений от снарядов для каждого калибра артиллерийских орудий противника, определение по результатам данных исследований частот прецессии и нутации, соответствующих снарядам этих орудий, занесение значений частот прецессии и нутации в качестве эталонных в запоминающее устройство радиолокационной станции разведки огневых позиций, ведение разведки воздушных объектов, т.е. выпущенных снарядов с помощью радиолокационной станции разведки огневых позиций, обнаружение и взятие на автоматическое сопровождение снаряда, запись в запоминающем устройстве радиолокационной станции разведки огневых позиций на определенном интервале времени параметров отраженных от снаряда сигналов на выходе предварительного усилителя промежуточной частоты в режиме отключенной мгновенной автоматической регулировки усиления, преобразование записанных параметров сигналов, а именно их амплитуды и фазы в цифровую форму, фазовое детектирование и квадратурную обработку записанных сигналов, запись данных сигналов их в виде массива А комплексных данных в запоминающее устройство радиолокационной станции разведки огневых позиций, формирование спектра записанных отраженных сигналов методом быстрого преобразования Фурье из массива А квадратурных данных об отражениях от снаряда, для чего используют количество элементов каждой квадратуры, равное 2N, где N - целое положительное число, например 9, 10 или 11, формирование цифрового спектра отражений от снаряда из 2N элементов в виде массива А1, в котором каждому элементу соответствует своя амплитуда и фаза, определение уровня порога П для полученного спектра как среднего арифметического амплитудных значений всех элементов массива А1, определение в полученном спектре снаряда локальных максимумов, превысивших уровень порога П, определение спектральной составляющей прецессии как меньший по частоте локальный максимум, превысивший порог П, определение спектральной составляющей нутации как больший по частоте локальный максимум, определение значения частот прецессии fпрец и нутации fнут как частоты точек, соответствующих максимальным амплитудам соответствующих спектральных составляющих, сравнение выделенных значений частот прецессии fпрец и нутации fнут с соответствующими значениями, хранящимися в базе данных запоминающего устройства радиолокационной станции разведки огневых позиций, принятие по результатам сравнения с эталонными значениями частот прецессий и нутаций по критерию минимума ошибки расхождения решения о калибре сопровождаемого снаряда, отличающийся тем, что дополнительно проводят измерение линейной скорости νi снаряда в i-й момент времени на начальном участке траектории, для чего после взятия снаряда на автоматическое сопровождение в два последовательные момента времени определяют его угловые координаты и наклонную дальность, измеренные сферические координаты пересчитываются в прямоугольные координаты, в результате формируются массивы координат X, Y и Z, зафиксированных в i-е моменты времени, для уменьшения флюктуационных ошибок измерения производят сглаживание результатов измерений методом скользящего среднего, то есть рассчитывают сглаженные координаты снаряда хс, yc и zc, рассчитывают проекции νxi, νyi, νzi вектора скорости снаряда на оси абсцисс x, ординат y и аппликат z, определяют полное значение вектора скорости снаряда νi, и учитывают величину νi при выборе из всего банка эталонных данных о частотах прецессий и нутаций те, которые соответствуют измеренной скорости полета снаряда, и на основе выбранных данных о частотах прецессий и нутаций определяют калибр сопровождаемого снаряда.
RU2013153987/11A 2013-12-04 2013-12-04 Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций RU2553419C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153987/11A RU2553419C1 (ru) 2013-12-04 2013-12-04 Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153987/11A RU2553419C1 (ru) 2013-12-04 2013-12-04 Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Publications (1)

Publication Number Publication Date
RU2553419C1 true RU2553419C1 (ru) 2015-06-10

Family

ID=53295346

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153987/11A RU2553419C1 (ru) 2013-12-04 2013-12-04 Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Country Status (1)

Country Link
RU (1) RU2553419C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155066A (zh) * 2017-06-28 2017-09-12 努比亚技术有限公司 一种拍摄方法、设备及计算机存储介质
CN107884760A (zh) * 2017-11-10 2018-04-06 北京电子工程总体研究所 一种空间自由飞行目标的惯量比提取方法
CN115453514A (zh) * 2022-08-03 2022-12-09 西安电子工程研究所 一种火炮外弹道初速测量雷达视线修正方法
RU2809361C1 (ru) * 2023-02-28 2023-12-11 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Способ проведения баллистических испытаний с составлением таблиц стрельбы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036289A1 (de) * 1997-02-14 1998-08-20 Daimler-Benz Aerospace Ag Verfahren zur zielklassifizierung
US7154433B1 (en) * 2003-01-16 2006-12-26 The United States Of America As Represented By The Secretary Of The Army Method and device for the detection and track of targets in high clutter
RU106756U1 (ru) * 2011-03-10 2011-07-20 Игорь Юнусович Насибуллин Автоматизированный звукометрический комплекс
RU2500000C2 (ru) * 2011-10-19 2013-11-27 ОАО "Научно-производственное объединение "Стрела" Устройство распознавания стреляющих систем

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036289A1 (de) * 1997-02-14 1998-08-20 Daimler-Benz Aerospace Ag Verfahren zur zielklassifizierung
US7154433B1 (en) * 2003-01-16 2006-12-26 The United States Of America As Represented By The Secretary Of The Army Method and device for the detection and track of targets in high clutter
RU106756U1 (ru) * 2011-03-10 2011-07-20 Игорь Юнусович Насибуллин Автоматизированный звукометрический комплекс
RU2500000C2 (ru) * 2011-10-19 2013-11-27 ОАО "Научно-производственное объединение "Стрела" Устройство распознавания стреляющих систем

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155066A (zh) * 2017-06-28 2017-09-12 努比亚技术有限公司 一种拍摄方法、设备及计算机存储介质
CN107884760A (zh) * 2017-11-10 2018-04-06 北京电子工程总体研究所 一种空间自由飞行目标的惯量比提取方法
CN115453514A (zh) * 2022-08-03 2022-12-09 西安电子工程研究所 一种火炮外弹道初速测量雷达视线修正方法
CN115453514B (zh) * 2022-08-03 2024-05-10 西安电子工程研究所 一种火炮外弹道初速测量雷达视线修正方法
RU2809361C1 (ru) * 2023-02-28 2023-12-11 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Способ проведения баллистических испытаний с составлением таблиц стрельбы

Similar Documents

Publication Publication Date Title
RU2553419C1 (ru) Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций
US8294609B2 (en) System and method for reduction of point of origin errors
Zhuravlev et al. Method for determining coefficient power error of front resistance missile by means station outwardly trajectory measurements
RU2571530C1 (ru) Способ повышения эффективности стрельбы из вооружения самоходных объектов
RU2231084C2 (ru) Устройство распознавания стреляющих систем
RU2243482C1 (ru) Способ стрельбы боевой машины по цели и система для его реализации
RU2595813C1 (ru) Способ стрельбы ракетами и артиллерийскими снарядами с лазерными полуактивными головками самонаведения и в телеметрическом исполнении
RU2676301C1 (ru) Способ стрельбы зенитными снарядами
RU2484419C1 (ru) Способ управления характеристиками поля поражения осколочно-фугасной боевой части ракеты и устройство для его осуществления
Zheng et al. Research on design and Evaluation method of antimissile early warning and Detection Plan
RU2332634C1 (ru) Способ функционирования информационно-вычислительной системы ракеты и устройство для его осуществления
RU2499218C1 (ru) Способ защиты объекта от средств воздушного нападения и система для его осуществления
RU2292523C2 (ru) Способ функционирования информационно-вычислительной системы ракеты и устройство для его осуществления
RU2558407C2 (ru) Способ определения наклонной дальности воздушной цели по ее установленной скорости
RU2769035C1 (ru) Боевое снаряжение ракеты
RU2783662C1 (ru) Способ формирования команды на пуск защитного боеприпаса
Wu et al. The damaging probability model for ahead launched by rapid anti-aircraft gun
RU2234044C2 (ru) Способ стрельбы боевой машины по цели и система для его реализации
Magier et al. The Estimation of the Drag Shape for Supersonic Mortar Projectiles
RU2784492C1 (ru) Способ доставки полезной нагрузки на воздушный объект
RU2816756C1 (ru) Автономный способ определения начальной скорости артиллерийского снаряда с дистанционным подрывом в воздухе
RU2758248C1 (ru) Устройство для формирования каталога результатов моделирования процесса функционирования средств противовоздушной обороны
Зозуля et al. ANALYSIS OF DEVICES AND SYSTEMS FOR MEASURING MUZZLE VELOCITY
Hao et al. Multiple Projectile Power Situation Model: Damage Assessment Method for Terminal Sensitive Projectile With Laser Detection Sensors
Totev et al. Effects of Contactless Suppressors on Accuracy in Shooting

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151205