RU2552604C1 - Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации - Google Patents

Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации Download PDF

Info

Publication number
RU2552604C1
RU2552604C1 RU2014108075/28A RU2014108075A RU2552604C1 RU 2552604 C1 RU2552604 C1 RU 2552604C1 RU 2014108075/28 A RU2014108075/28 A RU 2014108075/28A RU 2014108075 A RU2014108075 A RU 2014108075A RU 2552604 C1 RU2552604 C1 RU 2552604C1
Authority
RU
Russia
Prior art keywords
gas
pressure
temperature
gas medium
container
Prior art date
Application number
RU2014108075/28A
Other languages
English (en)
Inventor
Николай Владимирович Пискунов
Василий Николаевич Козлов
Виктор Николаевич Стефанов
Татьяна Рудольфовна Пискунова
Ирина Ивановна Шляпугина
Елена Михайловна Маннанова
Original Assignee
Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом"
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом"
Priority to RU2014108075/28A priority Critical patent/RU2552604C1/ru
Application granted granted Critical
Publication of RU2552604C1 publication Critical patent/RU2552604C1/ru

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Использование: области измерительной техники для исследования параметров многокомпонентных газовых сред. Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов включает формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик. При этом анализируемые электромеханические приборы помещают в герметизированный контейнер, который оснащают датчиками давления, температуры и влажности формируемой газовой среды и помещают в климатическую камеру. Затем контейнер с электромеханическими приборами подключают к системе хроматографов и формируют в нем газовую среду с заданной совокупностью характеристик, подавая в предварительно осушенный с использованием силикагеля и отвакуумированный контейнер воздействующую на электромеханические приборы газовую смесь заданного состава, концентрации, давления и влажности из предварительно подготовленного источника газовой смеси, пропуская газовую смесь через генератор влажного газа. Далее контейнер с анализируемыми электромеханическими приборами и сформированной газовой средой нагревают в климатической камере до заданной температуры в течение заданного периода времени. Затем определение концентрации заданных газовых компонентов, температуры, давления и влажности воздействующей на электромеханические приборы газовой среды ведут динамически в режиме он-лайн с заданным промежутком времени с использованием одновременно всех подключенных к контейнеру хроматографов, а также датчиков температуры и вл

Description

Предлагаемое изобретение относится к области измерительной техники для исследования параметров многокомпонентных газовых сред и может быть использовано для анализа объектов, находящихся под воздействием указанных сред.
Известен способ исследования параметров многокомпонентных газовых сред с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик (патент РФ №2423674, МПК G01F 15/00, опубл. 10.07.2011 г.), согласно которому проводят измерение параметров проточных многокомпонентных газовых сред с использованием соответствующих датчиков, установленных в трубопроводе, транспортирующем указанные среды.
Известен в качестве прототипа способ исследования параметров и формирования многокомпонентных газовых сред с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик (патент РФ №2212776, МПК G01N 33/24, опубл. 27.09.2003 г. ), согласно которому осуществляют формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность с последующим определением указанных характеристик.
К недостаткам аналогов относится отсутствие возможности оперативного определения одновременно всей указанной совокупности характеристик воздействующей на объекты многокомпонентной газовой среды, по которым судят о сохранении работоспособности объектов после всех произведенных воздействий.
Задачей авторов изобретения является разработка способа определения воздействия факторов газовой среды на работоспособность электромеханических приборов, находящихся под воздействием многокомпонентной газовой среды, с максимальной точностью и одновременного определения всех характеристик указанной газовой среды в течение всего времени воздействия.
Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий.
Указанные задача и новый технический результат обеспечивается тем, что в отличие от известного способа определения воздействия факторов газовой среды на работоспособность электромеханических приборов, включающего формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик, согласно предлагаемому способу анализируемые электромеханические приборы помещают в герметизированный контейнер, который оснащают датчиками давления, температуры и влажности формируемой газовой среды и помещают в климатическую камеру, герметизированный контейнер с электромеханическими приборами подключают к системе хроматографов и формируют в нем газовую среду с заданной совокупностью характеристик, подавая в предварительно осушенный с использованием силикагеля и отвакуумированный герметизированный контейнер воздействующую на электромеханические приборы газовую смесь заданного состава, концентрации, давления и влажности из предварительно подготовленного источника газовой смеси, пропуская газовую смесь через влагогенератор, герметизированный контейнер с анализируемыми электромеханическими приборами и сформированной газовой средой нагревают в климатической камере до заданной температуры в течение заданного периода времени, определение концентрации заданных газовых компонентов, давления, температуры и влажности воздействующей на электромеханические приборы газовой среды ведут динамически в режиме он-лайн с заданным промежутком времени с использованием одновременно всех подключенных к герметизированному контейнеру хроматографов, а также датчиков температуры, влажности, давления, находящихся в герметизированном контейнере с электромеханическими приборами, определение работоспособности электромеханических приборов после воздействия сформированной газовой среды осуществляют с использованием комплекта оборудования для проверки работоспособности прибора.
Новым в предлагаемом способе является одновременное определение совокупности всех характеристик воздействующей газовой среды заданного состава, определение степени влияния характеристик газовой среды на работоспособность электромеханических приборов.
Известно в качестве прототипа устройство для реализации способа исследования параметров и формирования многокомпонентных сред с заданной совокупностью характеристик (патент РФ №2438121, МПК G01N 27/02, опубл. 27.12.2011 г.), в котором содержатся датчики для измерения температуры, давления и влажности, расхода газовой смеси, вакуумный насос для создания заданного давления многокомпонентной газовой среды, источник импульса электрического тока.
Однако в известном устройстве не предусмотрена возможность оперативного определения одновременно всей указанной совокупности характеристик воздействующих факторов газовой среды, по которым судят о сохранении работоспособности электромеханических приборов после всех произведенных воздействий.
Задачей авторов заявляемого устройства является разработка устройства определения воздействия факторов газовой среды на работоспособность электромеханических приборов, находящихся под воздействием многокомпонентной газовой среды с максимальной точностью и одновременного определения всех характеристик указанной газовой среды в течение всего времени воздействия.
Новый технический результат, обеспечиваемый при использовании предлагаемого устройства, заключается в обеспечении возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности электромеханических приборов после всех произведенных воздействий.
Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного устройства для реализации способа исследования воздействия факторов газовой среды на работоспособность электромеханических приборов, в котором содержатся датчики для измерения давления, температуры и влажности, расхода газовой смеси, вакуумный насос для создания заданного давления многокомпонентной газовой среды, источник импульса электрического тока, согласно предлагаемому устройству герметизированный контейнер с анализируемыми электромеханическими приборами и с установленными в нем датчиками температуры, влажности и давления размещен в климатической камере, герметизированный контейнер подключен посредством системы пневмомагистралей к парогенератору, соединенному с источником формируемой газовой смеси, к системе хроматографов, каждый из которых определяет концентрацию компонента из состава анализируемой газовой смеси, при этом на входных пневмомагистралях для подачи анализируемой пробы газовой смеси в систему хроматографов установлены краны-дозаторы автоматической и ручной подачи пробы анализируемой газовой смеси, сообщенные с системой пневмомагистралей побудители расхода, поддерживающие заданный расход в пневмомагистралях, при этом герметизированный контейнер соединен с системой хроматографов посредством выходных пневмомагистралей для возврата газовой среды в герметизированный контейнер.
Предлагаемые способ и устройство поясняются следующим образом. На фиг. 1 представлен общий вид установки, где 1 - климатическая камера, 2 - герметизированный контейнер, 3 - исследуемый электромеханический прибор, 4, 5 - датчики давления, температуры и влажности, 6 - навеска силикагеля-осушителя, 7 - входные пневмомагистрали, 8 - выходные пневмомагистрали, 9 - вакуумный насос, 10 - влагогенератор, 11 - комплект контрольно-измерительного оборудования, 12, 13 - приборы для измерения давления, температуры и влажности, 14 - вентиль для подачи газа в контейнер, 15 - емкость с искусственной газовой смесью, 16 - вентиль для отбора проб газа, 17 - хроматографы газовые, 18 - автоматический кран-дозатор; 19 - хроматографические разделительные колонки, 20 - детектор, 21 - шестипортовый ручной кран-дозатор, 22 - дифференциальный микроманометр, 23 - переходное устройство, 24 - вакуумный насос, 25 - вакуумметр, 26 - источник питания постоянного тока, 27 - побудитель расхода, 28 - ПЭВМ управляющая, 29 - муфельная печь, 30 - удаленная ПЭВМ, 31 - баллон с газом-носителем (гелий), 32 - баллон с газом-носителем (аргон), 33, 34 - редуктор, 35 - электрический герметизированный проходной разъем, 36 - редуктор, 37 - пробоотборник, 38, 39 - магистрали подачи газа-носителя (аргон, гелий).
Предлагаемые способ и устройство поясняются следующим образом. Включают электрическое питание климатической камеры (1), вакуумных насосов (9, 24), влагогенератора (10), комплекта контрольно-измерительного оборудования (11), измерительных приборов (12, 13), газовых хроматографов (17), дифференциальных микроманометров (22), вакуумметров (25), источников питания постоянного тока (26), ПЭВМ (28), муфельной печи (29).
В муфельной печи (29) регенерируется силикагель-осушитель из навески (6) до заданного значения влажности, после чего навеска помещается в герметизированный контейнер (2) с размещенными в нем датчиками давления (4), температуры и влажности (5), а также испытуемым электромеханическим прибором (3). Контейнер (2) осушается навеской осушителя, после чего она извлекается. С помощью вакуумного насоса (9) контейнер вакуумируют до заданного остаточного давления. Осушенный и отвакуумированный контейнер (2) устанавливают в климатическую камеру (1).
Искусственная газовая смесь путем пропускания ее через влагогенератор (10) из емкости (15) подается в герметизированный контейнер с испытуемым электромеханическим прибором, создается необходимая для испытаний газовая смесь с заданными значениями влажности, давления и концентраций воздействующих газовых компонентов.
Для контроля качественного и количественного состава газовой среды в контейнере (2) с испытуемым электромеханическим прибором (3) проводится газохроматографический анализ.
Открывают баллоны (31, 32) и с помощью редукторов (33, 34) осуществляют подачу газа-носителя по магистралям (38, 39) в хроматограф последовательно через автоматический кран-дозатор (18), газоразделительную колонку (19) и детектор (20).
Устанавливают режим работы хроматографов (17) и температурно-временной режим климатической камеры (1).
Значения температуры, влажности и давления в контейнере в процессе испытаний контролируются датчикам (4, 5) и измерительными приборами (12, 13).
Побудители расхода (27) включают с определенной дискретностью. При этом анализируемый газ из контейнера (2) с прибором (3) подается на автоматический кран-дозатор (18), а из него транзитом возвращается в контейнер (2). С помощью ПК (28) включается кран-дозатор (18), при этом проба анализируемого газа объемом от 1 до 5 см3 потоком газа-носителя переносится через разделительную колонку (19) в детектор
(20) каждого хроматографа (17), где происходит формирование электрического сигнала, который обрабатывается в ПЭВМ (28) по заложенной в него программе в виде отдельных пиков, соответствующих содержанию анализируемых газовых компонентов. После проведения каждого цикла газохроматографического анализа побудитель расхода (27) выключается, кран-дозатор (18) приводится в исходное положение.
В аварийных случаях (выход из строя побудителя расхода (27), неисправность автоматического крана-дозатора (18)) газохроматографический анализ проводится вручную, путем отбора проб газа из контейнера через вентиль (16) в предварительно отвакуумированный пробоотборник (37) и подачи его с помощью ручного крана-дозатора (21) в хроматограф (17).
Перед подачей из пробоотборника (37) газа на анализ магистрали крана-дозатора (21) вакуумируются с помощью насоса (24). Измерение степени разрежения при этом определяется вакуумметром (25). Давление подаваемого газа на анализ определяется микроманометром (22).
В ходе проведения испытании и (или) после проведения всего цикла испытаний проверяют работоспособность испытуемого электромеханического прибора (3) с помощью комплекта оборудования (11) по существующим методикам.
После проведения испытаний полученные данные измерений климатических параметров внешней среды, параметров микроклимата и газовой среды в герметизированном контейнере переносятся на компьютер (30) для графической и математической обработки результатов.
Таким образом, предлагаемый способ, в отличие от известного, обеспечивает возможность оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий.
Возможность промышленной реализации предлагаемого изобретения подтверждается следующим примером.
Пример 1. Предлагаемое устройство реализовано в лабораторных условиях на опытном образце установки, изображенной на фиг. 1, где - климатическая камера, 2 - герметизированный контейнер, 3 - исследуемый электромеханический прибор, 4, 5 - датчики давления, температуры и влажности, 6 - навеска силикагеля-осушителя, 7 - входные пневмомагистрали, 8 - выходные пневмомагистрали, 9 - вакуумный насос, 10 - влагогенератор, 11 - комплект контрольно-измерительного оборудования, 12, 13 - приборы для измерения давления, температуры и влажности, 14 - вентиль для подачи газа в контейнер, 15 - емкость с искусственной газовой смесью, 16 - вентиль для отбора проб газа, 17 - хроматографы газовые, 18 - автоматический кран-дозатор; 19 - хроматографи-ческие разделительные колонки, 20 - детектор, 21 - шестипортовый ручной кран-дозатор, 22 - дифференциальный микроманометр, 23 - переходное устройство, 24 - вакуумный насос, 25 - вакуумметр, 26 - источник питания постоянного тока, 27 - побудитель расхода, 28 - ПЭВМ управляющая, 29 - муфельная печь, 30 - удаленная ПЭВМ, 31 - баллон с газом - носителем (гелий), 32 - баллон с газом - носителем (аргон), 33, 34 - редуктор, 35 - электрический герметизированный проходной разъем, 36 - редуктор, 37 - пробоотборник, 38, 39 - магистрали подачи газа-носителя (аргон, гелий).
Герметизированный контейнер (2) с размещенными в нем датчиками давления МДЦ (4), температуры и влажности HygroClip SC05 (5) и испытуемым электромеханическим прибором (3) вакуумируют с помощью вакуумного насоса 2НВР-0,1 ДМ (9). Осушенный и отвакуумированный герметизированный контейнер (2) с датчиками и испытуемым электромеханическим прибором установлен в климатическую камеру (1) HRMB-120 CRUN. Емкость 15 наполнена искусственной газовой смесью с исходными значениями концентрации компонентов.
Для создания необходимой для испытаний газовой смеси со значениями влажности (70%) и избыточного давления (0,3 кгс/см2) искусственную газовую смесь водорода (3%об.) и азота (97% об.) из емкости (15) пропускают через влагогенератор (10) Родник-4 и подают в герметизированный контейнер с испытуемым электромеханическим прибором.
Для контроля качественного и количественного состава газовой среды в испытываемом контейнере (2) с электромеханическим прибором (3) предусмотрены газохроматографы 17, наличие которых обеспечивает возможность одновременного определения множества заданных характеристик.
С помощью вентилей редукторов БАРО-50-4 (33, 34) стандартных 40-литровых баллонов с газоносителями гелием и аргоном (31, 32) осуществляют подачу газа-носителя по пневмомагистралям (38, 39) в хроматографы Цвет-800 (17) последовательно через автоматический кран-дозатор КД-234-03 (18), газоразделительную колонку (19) и детектор по теплопроводности (ДТП) (20).
Для электрического питания климатической камеры (1), хроматографов (17), ПЭВМ (28), прибора для измерения температуры и влажности (13), дифференциального микроманометра (22), вакуумметра (25) предусмотрен источник питания (26). Муфельная печь 29 предназначена для осушки силикагеля 6.
Измерительные приборы (12, 13) с датчиками (4, 5) контролируют значения температуры, влажности и давления в контейнере в процессе испытаний. Побудитель расхода 27 обеспечивает автоматическую подачу в режиме он-лайн анализируемого газа из контейнера 1 в хроматографы 17 через кран-дозатор 18, что повышает оперативность анализа. Входные магистрали 7 обеспечивают возврат отобранной из контейнера на анализ газовой смеси в контейнер, что позволяет сохранить исходные параметры газовой среды, повысить точность и достоверность конечных результатов.
Система вакуумирования, состоящая из крана-дозатора 1908-Л319 (21), дифференциального микроманометра ОМ6 (22), переходного устройства типа А1908-Л321 (23), вакуумного насоса 2НВР-0,1 ДМ (24), вакуумметра ВТ-6 (25) и источника питания Б5-46 (26) для микроманометра (22), служит для проведения газохроматографического анализа в аварийных случаях (выход из строя побудителя расхода (27), неисправность автоматического крана-дозатора (18)) путем ручной подачи сформированной в контейнере газовой среды.
Для отбора проб газа из контейнера в пробоотборник (37) и подачи его с помощью ручного крана-дозатора (21) в хроматограф (17) имеется вентиль (16).
Магистрали крана-дозатора (21) перед подачей анализируемого газа из пробоотборника (37) в хроматографы 17 вакуумируются с помощью насоса (24). Измерение степени разрежения определяется вакуумметром (25). Давление подаваемого газа на анализ определяется микроманометром (22).
Как показал пример реализации предлагаемого устройства, его использование обеспечивает достижение нового технического результата, заключающегося в обеспечении возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий.
Пример 2. Предлагаемый способ осуществлен в лабораторных условиях на опытном образце установки, изображенной на фиг. 1.
Герметизированный контейнер (2) с размещенными в нем датчиками давления МДД (4), температуры и влажности HygroClip SC05 (5) и испытуемым электромеханическим прибором (3), например, аккумулятором, глубоко осушается навеской силикагеля КСМГ по ГОСТ 3956-76 (6), предварительно регенерированного в муфельной печи SNOL (29), после чего навеска извлекается. С помощью вакуумного насоса 2НВР-0,1 ДМ (9) контейнер вакуумируется. Осушенный и отвакуумированный герметизированный контейнер (2) с датчиками и испытуемым электромеханическим прибором (аккумулятором) устанавливается в климатическую камеру (1) HRMB-120 CRUN.
Из емкости (15) искусственная газовая смесь заданного состава из водорода (3% об.) и азота (97% об.) путем пропускания ее через влагогенератор (10) Родник-4 подается в герметизированный контейнер с испытуемым электромеханическим прибором и создается необходимая для испытаний газовая смесь со значениями влажности (70%) и избыточного давления (0,3 кгс/см2).
Для контроля качественного и количественного состава газовой среды в испытываемом контейнере (2) с электромеханическим прибором (3) проводится газохроматографический анализ.
Открывают вентили редукторов БАРО-50-4 (33, 34) стандартных 40-литровых баллонов с газоносителями гелием и аргоном (31, 32), и осуществляют подачу газа-носителя по пневмомагистралям (38, 39) в хроматограф Цвет-800 (17) последовательно через автоматический кран-дозатор КД-234-03 (18), газоразделительную колонку (19) и детектор по теплопроводности (ДТП) (20).
Включают электрическое питание климатической камеры (1), хроматографов (17), ПЭВМ (28), прибора для измерения температуры и влажности (13), дифференциального микроманометра (22), вакуумметра (25), источника питания (26).
Устанавливается режим работы хроматографов (17) и температурно-временной режим климатической камеры (1) (33°C).
Значения температуры, влажности и давления в контейнере в процессе испытаний контролируются датчикам (4, 5) и измерительными приборами (12, 13).
Проба анализируемого газа объемом от 1 до 5 см3 потоком газа-носителя переносится через разделительную колонку (19) в детектор (20) каждого хроматографа (17), где происходит формирование электрического сигнала, который обрабатывается в ПЭВМ (28) по заложенной в него программе «Цвет-Аналитик» в виде отдельных пиков, соответствующих содержанию анализируемых газовых компонентов.
Для проведения газохроматографического анализа в аварийных случаях (выход из строя побудителя расхода (27), неисправность автоматического крана-дозатора (18)) монтируется система вакуумирования ручной подачи сформированной газовой среды, состоящая из крана-дозатора 1908-Л319 (21), дифференциального микроманометра ОМ6 (22), переходного устройства типа А1908-Л321 (23), вакуумного насоса 2НВР-0,1 ДМ (24), вакуумметра ВТ-6 (25) и источника питания Б5-46 (26) для микроманометра (22). Анализ проводится вручную путем отбора проб газа из контейнера через вентиль (16) в предварительно вакуумированный сосуд (37) и подачи его с помощью ручного крана-дозатора (21) в хроматограф (17).
Перед подачей из сосуда (37) газа на анализ магистрали крана-дозатора (21) вакуумируются с помощью насоса (24). Измерение степени разрежения при этом определяется вакуумметром (25). Давление подаваемого газа на анализ определяется микроманометром (22).
В ходе проведения испытаний и (или) после проведения всего цикла испытаний проверяют работоспособность электромеханического прибора (3), характеризующуюся наличием рабочих параметров - номинальных тока, напряжения и полярности, с помощью его комплекта оборудования - мультиметра (11) по традиционным методикам.
После проведения испытаний, полученные данные измерений климатических параметров внешней среды, микроклимата и газовой среды в герметизированном контейнере переносят на компьютер (30) для графической и математической обработки.
Таким образом, как показал пример реализации предлагаемого способа, его использование обеспечивает достижение нового технического результата, заключающегося в обеспечении возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий.

Claims (2)

1. Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов, включающий формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик, отличающийся тем, что анализируемые электромеханические приборы помещают в герметизированный контейнер, который оснащают датчиками давления, температуры и влажности формируемой газовой среды и помещают в климатическую камеру, герметизированный контейнер с электромеханическими приборами подключают к системе хроматографов и формируют в нем газовую среду с заданной совокупностью характеристик, подавая в предварительно осушенный с использованием силикагеля и отвакуумированный герметизированный контейнер воздействующую на электромеханические приборы газовую смесь заданного состава, концентрации, давления и влажности из предварительно подготовленного источника газовой смеси, пропуская газовую смесь через генератор влажного газа, герметизированный контейнер с анализируемыми электромеханическими приборами и сформированной газовой средой нагревают в климатической камере до заданной температуры в течение заданного периода времени, определение концентрации заданных газовых компонентов, температуры, давления и влажности воздействующей на электромеханические приборы газовой среды ведут динамически в режиме он-лайн с заданным промежутком времени с использованием одновременно всех подключенных к герметизированному контейнеру хроматографов, а также датчиков температуры, влажности, давления, находящихся в герметизированном контейнере с электромеханическими приборами, определение работоспособности электромеханических приборов после воздействия сформированной газовой среды осуществляют с использованием комплекта оборудования для проверки работоспособности прибора.
2. Устройство для реализации способа определения воздействия факторов газовой среды на работоспособность электромеханических приборов по п. 1, включающее датчики для измерения давления, температуры и влажности газовой смеси, вакуумный насос, отличающийся тем, что герметизированный контейнер с электромеханическими приборами и с установленными в нем датчиками температуры, влажности и давления размещен в климатической камере, герметизированный контейнер подключен посредством системы пневмомагистралей к парогенератору, соединенному с источником формируемой газовой смеси, к системе хроматографов, каждый из которых определяет концентрацию компонента из состава анализируемой газовой смеси, при этом на входных пневмомагистралях для подачи анализируемой газовой смеси в системе хроматографов установлены краны-дозаторы автоматической и ручной подачи пробы анализируемой газовой смеси, система пневмомагистралей сообщена с побудителем расхода, поддерживающего заданный расход в пневмомагистрали, при этом герметизированный контейнер соединен с системой хроматографов посредством выходной пневмомагистрали для возврата газовой среды в герметизированный контейнер.
RU2014108075/28A 2014-03-03 2014-03-03 Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации RU2552604C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014108075/28A RU2552604C1 (ru) 2014-03-03 2014-03-03 Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014108075/28A RU2552604C1 (ru) 2014-03-03 2014-03-03 Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2552604C1 true RU2552604C1 (ru) 2015-06-10

Family

ID=53294997

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014108075/28A RU2552604C1 (ru) 2014-03-03 2014-03-03 Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2552604C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663310C1 (ru) * 2017-10-03 2018-08-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров
RU2747030C1 (ru) * 2020-09-08 2021-04-23 Вячеслав Сергеевич Перфильев Камера для исследований физических, климатических и атмосферных явлений

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234837A (en) * 1989-04-06 1993-08-10 Charbonnages De France Pseudo-continuous process for interrogating a combustible gas detector
RU95101299A (ru) * 1995-01-30 1996-12-20 Конструкторско-технологический институт вычислительной техники СО РАН Способ определения состава газовой смеси
RU2438121C1 (ru) * 2010-07-30 2011-12-27 Цестос Инвестментс Лимитед Способ определения параметров газовой среды и устройство для его реализации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234837A (en) * 1989-04-06 1993-08-10 Charbonnages De France Pseudo-continuous process for interrogating a combustible gas detector
RU95101299A (ru) * 1995-01-30 1996-12-20 Конструкторско-технологический институт вычислительной техники СО РАН Способ определения состава газовой смеси
RU2438121C1 (ru) * 2010-07-30 2011-12-27 Цестос Инвестментс Лимитед Способ определения параметров газовой среды и устройство для его реализации

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663310C1 (ru) * 2017-10-03 2018-08-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров
RU2747030C1 (ru) * 2020-09-08 2021-04-23 Вячеслав Сергеевич Перфильев Камера для исследований физических, климатических и атмосферных явлений

Similar Documents

Publication Publication Date Title
CN107884306B (zh) 一种吸附测试方法和装置
US20110197649A1 (en) Self-calibrating gas sensor
KR100731146B1 (ko) 수소 저장체의 수소 저장 성능 평가 장치
CN101498648B (zh) 一种拉伸试验用的多功能原位电化学测量装置
CN109668824A (zh) 模拟天然气管道内腐蚀环境的高速湿气腐蚀环路实验装置
CN102165310A (zh) 带有空气入口的氢传感器
CN204389458U (zh) 一种用于分析六氟化硫分解产物的气相色谱分析仪
CN105717065B (zh) 非甲烷总烃的连续监测装置及其工作方法
CN107850508A (zh) 用于检验密封产品的密闭度的方法和用于检测泄漏的设备
US7850918B2 (en) Multiple sample gas sorption tester
Herzig et al. An experimental set-up to analyse the oxygen consumption of elastomers during ageing by using a differential oxygen analyser
CN103988073A (zh) 确定气体中碳氢化合物含量的测量仪器和方法
JP2016521361A5 (ru)
RU2552604C1 (ru) Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов и устройство для его реализации
KR101274469B1 (ko) 압력코어 자동제어 감압 실험장비
CN111175430A (zh) 静态容量法多组分竞争性吸附分析仪
CN203881641U (zh) 多因素影响下的煤的瓦斯放散初速度研究试验台
CN106288556B (zh) 一种含油率的获取装置、获取方法及空调系统
CN205719955U (zh) 非甲烷总烃的连续监测装置
US20140352413A1 (en) Moisture transmission testing instrument
US10591936B2 (en) Devices, systems and methods for purging and loading sorbent tubes
CN205620426U (zh) 元素分析仪和固体自动进样器在线连接使用的漏检排查帽
CN104390831A (zh) 一种高温下甲基丙烯酸气态标准样品的制备方法与装置
RU2558650C1 (ru) Способ определения параметров газовой среды в герметизированном контейнере с электромеханическими приборами и устройство для его реализации
RU2563762C2 (ru) Способ измерения концентрации частиц аэрозоля и устройство для его осуществления