RU2551371C1 - Способ генерации свч квантов - Google Patents

Способ генерации свч квантов Download PDF

Info

Publication number
RU2551371C1
RU2551371C1 RU2013148990/07A RU2013148990A RU2551371C1 RU 2551371 C1 RU2551371 C1 RU 2551371C1 RU 2013148990/07 A RU2013148990/07 A RU 2013148990/07A RU 2013148990 A RU2013148990 A RU 2013148990A RU 2551371 C1 RU2551371 C1 RU 2551371C1
Authority
RU
Russia
Prior art keywords
electrons
energy
electric
electron beam
field
Prior art date
Application number
RU2013148990/07A
Other languages
English (en)
Other versions
RU2013148990A (ru
Inventor
Богдан Николаевич Казьмин
Иван Васильевич Трифанов
Дмитрий Ринатович Рыжов
Людмила Ивановна Оборина
Игорь Иванович Хоменко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ)
Priority to RU2013148990/07A priority Critical patent/RU2551371C1/ru
Publication of RU2013148990A publication Critical patent/RU2013148990A/ru
Application granted granted Critical
Publication of RU2551371C1 publication Critical patent/RU2551371C1/ru

Links

Landscapes

  • Plasma Technology (AREA)
  • Electron Beam Exposure (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано в системах электропитания, связи, управления, телеметрии. Технический результат состоит в увеличении энергии взаимодействия электронов в пучке, а следовательно, мощности СВЧ-генерации и кпд системы электропитания. Способ генерации СВЧ квантов заключается в формировании электронного пучка при помощи электронной пушки с одновременной модуляцией его анодным полем электронной пушки на рабочей частоте системы электропитания, последующем сжатии электрическим полем, например, двойного электрического слоя для повышения энергии пучка и плотности заряда и дальнейшей остановки электронов при помощи барьера, состоящего из диэлектрического и электропроводящего слоев, во время которой электроны отдают энергию в виде электромагнитных квантов с параметрами, зависящими от значения корректирующего напряжения поля рабочей частоты, которым воздействуют на сжатый электронный пучок до остановки электронов. Затем электроны направляют в систему электропитания для получения электрической мощности рабочей частоты. 1 ил.

Description

Изобретение основано на использовании энергии электронного взаимодействия потока заряженной плазмы (электронных пучков) и может быть применено в системах электропитания, связи, управления, телеметрии и других системах мобильных аппаратов, а также в различных стационарных установках электроснабжения, связи, информационно-измерительных устройств и др.
Известен способ, реализованный в СВЧ-генераторе и принятый в качестве прототипа (Статья «СВЧ-генераторы хаотических колебаний на основе электронных пучков с виртуальным катодом». - Успехи современной радиоэлектроники, №9, 2008, с.53-55).
Известный способ генерации квантов СВЧ диапазона из электронных пучков заключается в получении электронного пучка с помощью электронной пушки, отборе энергии из электронного пучка для СВЧ-генерации путем частичного уменьшения скорости (торможения) электронного пучка.
Недостатком прототипа является использование незначительной части (порядка 20%) энергии электронного пучка, так как увеличение степени торможения электронного пучка вызывает прекращение СВЧ-генерации. Остальная часть энергии пучка поглощается коллектором, на это непроизводительно расходуется электроэнергия, существенно снижая КПД системы электропитания.
Задачей изобретения является устранение непроизводительных потерь электроэнергии, повышение мощности СВЧ-генерации и КПД системы электропитания путем более полного использования энергии электронного пучка.
Поставленная задача достигается тем, что в известном способе генерации СВЧ квантов, основанном на отборе энергии из сформированного с помощью электронной пушки электронного пучка, согласно техническому решению, одновременно с формированием электронного пучка осуществляют его модуляцию анодным полем электронной пушки на рабочей частоте системы электропитания, после чего электронный пучок для повышения энергии пучка и плотности заряда сжимают электрическим полем, например, двойного электрического слоя с дальнейшей остановкой электронов при помощи барьера, состоящего из диэлектрического и электропроводящего слоев, во время которой электроны отдают энергию в виде электромагнитных квантов с параметрами, зависящими от значения корректирующего напряжения поля рабочей частоты, которым воздействуют на сжатый электронный пучок до остановки электронов, затем электроны направляют в систему электропитания для получения электрической мощности рабочей частоты.
Предлагаемый способ осуществляют с помощью устройства, схема которого представлена на рисунке.
Устройство содержит плазмотрон 1 с электродуговым катодом Kg и анодом Ag (возможно применение плазмотрона с термокатодом, фотокатодом, индукционным катодом, катодом на основе СВЧ-разряда, оптического разряда и др. [«Энциклопедия низкотемпературной плазмы», - кн. 2, т.2, М.: «Наука/интерпериодика», 2000, с.165…169, с.301…326], электронные пушки 2 с аксиальными выходными анодами АЭП, электроды 4 сжимающего электрического поля. Электроды 4 выполнены из материала, являющегося проводником первого рода, и имеют осевую рабочую полость 5 с двойным электрическим слоем, причем входная часть рабочей полости выполнена со сходящейся конусностью, а выходная часть имеет цилиндрическую форму. Сжимающее электрическое поле, которое уплотняет электронный пучок в поперечном сечении, можно получить с помощью электрических, магнитных «квадрупольных электронных линз» (см. «Энциклопедия низкотемпературной плазмы», - кн. 2, т.2, М.: «Наука/интерпериодика», 2000, с.884…885). Кроме того, устройство содержит металлические обкладки 6, которые совместно с электродами 4 и изоляторами 7, расположенными между обкладками 6 и электродами 4, представляют собой конденсаторы C4-6, электроды 8 корректирующего напряжения, барьеры электронов 9, состоящие из диэлектрического 9дс и электропроводящего 9эс слоев, каналы 10 электромагнитных квантов СВЧ диапазона, в качестве которых могут быть применены волноводы, резонаторы, световоды и др., симметричный силовой трансформатор-преобразователь (СТП) 11, имеющий среднюю точку 12, соединенную с катодом Kg электродугового плазмотрона 1, систему электропитания 13 с циклической рабочей частотой ωp. Конденсаторы C4-6 соединены последовательно с индуктивностями L1 СТП 11, аноды АЭП электронных пушек 2 соединены с резонансными контурами L2Cp, а электроды 8 корректирующего напряжения соединены с частью обмотки индуктивности L2 СТП 11.
Работает данное устройство следующим образом. Необходимое напряжение подают на анод Ag и катод Kg плазмотрона 1, герметичный объем которого заполнен рабочей средой. Одновременно на аноды электронных пушек 2 подают переменное напряжение рабочей частоты ωp. Происходит ионизация рабочей среды электрической дугой между электродами дуги Ag и Kg в ортогонально направленном полю дуги (скрещенным с полем дуги) электрическом анодном поле АЭП электронных пушек 2, которым выводят из области электрической дуги электроны, при этом ускоряют и модулируют пучки электронов 3, воздействуя переменным напряжением Ua с циклической рабочей частотой ωp, подаваемым в противофазе на выходные аноды АЭП электронных пушек 2.
Затем пучки сжимают в радиальном сечении электрическим полем Er в рабочей полости 5. Так как напряженность электрического поля двойного электрического слоя в 102…103 раз больше напряженности поля электронного пучка (см. Большой энциклопедический словарь, физика, - М.: «Большая российская энциклопедия», 1998, с.144), то плотность заряда, энергия электронного взаимодействия, создаваемая силами Кулона и Лоренца, и мощность электронного пучка повышается в dвх/dвых раз, где dвх и dвых - диаметры, соответственно, входного и выходного отверстий рабочей полости 5, имеющей двойной электрический слой.
После этого на электронные пучки воздействуют электрическим полем, созданным на электроде 8 корректирующим напряжением (Uк), снимаемым с части обмотки L2. Коррекцией напряжения Uк можно управлять параметрами СВЧ квантов, например длиной волны λСВЧ.
Известно (Л.А. Сена «Единицы физических величин и их размерности», М.: «Наука», 1977, с.259…262), что λСВЧ=h·ϑe/e·Uк,
где λСВЧ - длина волны кванта, h - постоянная Планка, ϑe - скорость электронов в пучке, которая определяется по формуле: ϑe=(2·e·Ua/me)1/2, где Ua - напряжение анода АЭП, mе - масса электрона, e - заряд электрона, Uк - корректирующее напряжение.
Останавливают электроны пучка с помощью барьера электронов 9, представляющего собой плотную среду, не пропускающую (задерживающую) электроны, но прозрачную для генерируемых электромагнитных квантов СВЧ. Барьер электронов выполнен в виде диэлектрического слоя 9дс (им могут быть твердые диэлектрики с малой диэлектрической проницаемостью, например стекло кварцевое, полиэтилен и др.) и электропроводящего слоя 9эс, нанесенного на поверхность диэлектрического слоя 9дс. Каждый остановленный электрон отдает полученную в корректирующем поле электрода 8 энергию (e·Uк) в виде электромагнитного кванта с длиной волны λСВЧ, поступающего в соответствующий канал 10 (резонатор, волновод, световод и др.). По электропроводящему слою 9эс, активированному электронами пучка 3, электроны переходят на электрод 8 и далее в электрическую цепь L2, превращая конвекционный ток электронного пучка IеП в ток электропроводимости IЭЦ цепи L2, работающей в режиме резонанса токов совместно с конденсатором Cp. Оставшаяся часть полученной электроном в анодном поле АЭП электронной пушки 2 энергии e(Ua-Uk) отдается полю корректирующего напряжения и возвращается через электрод 8, цепь L2 СТП 11 в систему электропитания 13 в виде мощности SЭЦ=(Ua-Uk)2/ZЭЦ, где ZЭЦ - сопротивление электрической цепи системы электропитания 13, трансформированное СТП 11 в электрическую цепь L2, которая работает в режиме резонанса токов с конденсатором Cp.
Электроды 4 и металлические обкладки 6 с изоляторами 7 являются конденсаторами C4-6, получающими заряд сжимаемых пучков 3 через емкость двойного электрического слоя, т.к. C4-6 соединены последовательно с электрической емкостью двойного электрического слоя на поверхности рабочей полости 5. При последовательном соединении электрических емкостей их заряды одинаковы. Поэтому напряжение U4-6 на конденсаторах C4-6 будет в CДЭС/C4-6 раз больше потенциала двойного электрического слоя в рабочей полости 5, что составляет 3…4 порядка.
U4-6=qДЭС/C4-6=UДЭС·CДЭС/C4-6.
Это напряжение подают на обмотку L1 СТП 11 и создают резонанс напряжений, чтобы ωpL1=(ωpC4-6)-1.
Мощность, передаваемая через этот конденсатор в электрическую цепь силового трансформатора 11, равна:
Figure 00000001
При смене полярности полуволны напряжения Ua на выходном аноде АЭП электронной пушки 2, под действием положительной полуволны напряжения, образуется электронный пучок, и получают электрическую мощность в другом плече симметричной электрической цепи СТП 11. Происходит двухполупериодное преобразование конвекционного тока и энергии электронного пучка в электрическую мощность рабочей частоты системы электропитания 13.
Совершив работу в электрической цепи, электроны приходят на катод электрической дуги Kg, где рекомбинируют катионы в атомы и молекулы рабочей среды, вновь подвергаемой ионизации электрической дугой, для очередного цикла генерации СВЧ квантов по предлагаемому способу и получения электрической мощности рабочей частоты ωp в системе электропитания 13.
Таким образом, предлагаемый способ генерации электромагнитных квантов СВЧ дает возможность создавать кванты в диапазоне длин волн λСВЧ изменением Uk от Uk→0 до Uk=Ua. Неиспользованную на генерацию квантов энергию электронного пучка путем двухполупериодного преобразования в режиме резонанса токов в цепи L2 и резонанса напряжений в электрической цепи L1 превращают в электрическую мощность системы электропитания 13, повышая КПД системы электропитания.
Кроме того, сжатие электронного пучка двойным электрическим слоем в рабочей полости 5, за счет сил Кулона и сил Лоренца, увеличивает энергию взаимодействия электронов в пучке, которую также преобразуют в соответствующую мощность с помощью цепи L1 СТП 11, увеличивая мощность СВЧ-генерации и КПД системы электропитания 13. Эту дополнительно получаемую мощность можно использовать для электропитания других устройств мобильного аппарата.

Claims (1)

  1. Способ генерации СВЧ квантов, основанный на отборе энергии из сформированного с помощью электронной пушки электронного пучка, отличающийся тем, что одновременно с формированием электронного пучка осуществляют его модуляцию анодным полем электронной пушки на рабочей частоте системы электропитания, после чего электронный пучок для повышения энергии пучка и плотности заряда сжимают электрическим полем, например, двойного электрического слоя с дальнейшей остановкой электронов при помощи барьера, состоящего из диэлектрического и электропроводящего слоев, во время которой электроны отдают энергию в виде электромагнитных квантов с параметрами, зависящими от значения корректирующего напряжения поля рабочей частоты, которым воздействуют на сжатый электронный пучок до остановки электронов, затем электроны направляют в систему электропитания для получения электрической мощности рабочей частоты.
RU2013148990/07A 2013-11-01 2013-11-01 Способ генерации свч квантов RU2551371C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013148990/07A RU2551371C1 (ru) 2013-11-01 2013-11-01 Способ генерации свч квантов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013148990/07A RU2551371C1 (ru) 2013-11-01 2013-11-01 Способ генерации свч квантов

Publications (2)

Publication Number Publication Date
RU2013148990A RU2013148990A (ru) 2015-05-10
RU2551371C1 true RU2551371C1 (ru) 2015-05-20

Family

ID=53283446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013148990/07A RU2551371C1 (ru) 2013-11-01 2013-11-01 Способ генерации свч квантов

Country Status (1)

Country Link
RU (1) RU2551371C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880647A (en) * 1995-08-25 1999-03-09 Lg Electronics, Inc. High frequency signal generator using superconducting quantum interference device
RU90587U1 (ru) * 2009-09-14 2010-01-10 Закрытое Акционерное Общество "Время-Ч" Квантовый водородный стандарт частоты
RU2408978C1 (ru) * 2009-07-13 2011-01-10 Открытое акционерное общество "Российский институт радионавигации и времени" Квантовый стандарт частоты на газовой ячейке с лазерной оптической накачкой
WO2011020021A1 (en) * 2009-08-14 2011-02-17 Rundquist Victor F Microwave furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880647A (en) * 1995-08-25 1999-03-09 Lg Electronics, Inc. High frequency signal generator using superconducting quantum interference device
RU2408978C1 (ru) * 2009-07-13 2011-01-10 Открытое акционерное общество "Российский институт радионавигации и времени" Квантовый стандарт частоты на газовой ячейке с лазерной оптической накачкой
WO2011020021A1 (en) * 2009-08-14 2011-02-17 Rundquist Victor F Microwave furnace
RU90587U1 (ru) * 2009-09-14 2010-01-10 Закрытое Акционерное Общество "Время-Ч" Квантовый водородный стандарт частоты

Also Published As

Publication number Publication date
RU2013148990A (ru) 2015-05-10

Similar Documents

Publication Publication Date Title
US2222901A (en) Ultra-short-wave device
RU2310964C1 (ru) Способ и устройство для передачи электрической энергии
Peters Negative ion sources for high energy accelerators
RU2341860C2 (ru) Способ и устройство для передачи электрической энергии (варианты)
Condon Forced oscillations in cavity resonators
Song et al. A compact low jitter high power repetitive long-pulse relativistic electron beam source
US5159241A (en) Single body relativistic magnetron
US2407298A (en) Electron discharge apparatus
RU2343584C1 (ru) Клистрон
RU2551371C1 (ru) Способ генерации свч квантов
RU2553574C2 (ru) Способ свч-генерации на основе электронных пучков
Zhang et al. Simulations of the self-focused pseudospark-sourced electron beam in a background ion channel
Carter Acceleration technologies for charged particles: an introduction
Adler et al. Excitation and amplification of cyclotron waves and thermal orbits in the presence of space charge
US3873930A (en) Magnetically insulated capacitor, process for electrostatic energy storage and its applications
CN113099601A (zh) 一种低能重离子加速器及加速方法
RU2541162C1 (ru) Генератор свч квантов на основе электронных пучков
Song et al. A repetitive high-current pulsed accelerator—TPG700
RU2578207C2 (ru) Способ получения электроэнергии
RU2239255C2 (ru) Супер-релтрон
Dubey et al. Power and Efficiency Enhancement of the Reltron Using Dual RF Output Cavities
Onishchenko et al. The wake-field excitation in plasma-dielectric structure by sequence of short bunches of relativistic electrons
JP6171126B2 (ja) 高周波型荷電粒子加速器
RU128057U1 (ru) Ускоритель электронов
US2611882A (en) Electron discharge device

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161102