RU2551353C1 - Релятивистский магнетрон - Google Patents

Релятивистский магнетрон Download PDF

Info

Publication number
RU2551353C1
RU2551353C1 RU2013151340/07A RU2013151340A RU2551353C1 RU 2551353 C1 RU2551353 C1 RU 2551353C1 RU 2013151340/07 A RU2013151340/07 A RU 2013151340/07A RU 2013151340 A RU2013151340 A RU 2013151340A RU 2551353 C1 RU2551353 C1 RU 2551353C1
Authority
RU
Russia
Prior art keywords
resonators
microwave
communication channel
antenna
distance
Prior art date
Application number
RU2013151340/07A
Other languages
English (en)
Other versions
RU2013151340A (ru
Inventor
Игорь Игоревич Винтизенко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2013151340/07A priority Critical patent/RU2551353C1/ru
Application granted granted Critical
Publication of RU2551353C1 publication Critical patent/RU2551353C1/ru
Publication of RU2013151340A publication Critical patent/RU2013151340A/ru

Links

Images

Landscapes

  • Microwave Tubes (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4), излучающую антенну (6), расположенную во внешнем канале связи (5) на расстоянии nλ+λ/4 от одного из резонаторов (2), и разрядник (7), расположенный на расстоянии kλ/4 от оси антенны (6), где n - целое число; λ - длина волны в волноводе; k - нечетное число. Технический результат - увеличение мощности выходных СВЧ-импульсов, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров системы. 2 ил.

Description

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации коротких сверхмощных СВЧ-импульсов. Использование излучения СВЧ для таких применений, как тестирование радиоэлектронной аппаратуры, дальняя радиолокация с высоким пространственным разрешением, стерилизация и др. требует создания приборов максимальной мощности.
Известно устройство - релятивистский магнетрон, состоящий из многорезонаторного анодного блока с одним или несколькими волноводными выводами мощности [Винтизенко И.И., Новиков С.С. Релятивистские магнетронные СВЧ-генераторы с внешней связью резонаторов. Журнал технической физики, 2010, том 80, вып. 11, с. 95-104]. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. В качестве источников питания релятивистских магнетронов используются сильноточные электронные ускорители или линейные индукционные ускорители. В таких приборах анодный блок заземлен, а на катод подается импульс отрицательной полярности длительностью 50-1000 нс, амплитудой до 1000 кВ. Катод выполняется из металла или графита и работает в режиме взрывной электронной эмиссии. Ток, снимаемый с катода, может достигать десятков килоампер. В скрещенных радиальном электрическом поле между катодом и анодным блоком и аксиальном магнитном поле, создаваемом магнитной системой, электроны, эмитированные под действием взрывной электронной эмиссии, осуществляют движение в двух направлениях. Как в классическом магнетроне электроны, вращаясь азимутально в «спицах», отдают потенциальную энергию в энергию СВЧ-излучения и осуществляют радиальный дрейф к анодному блоку. Релятивистский магнетрон имеет один или несколько волноводных выводов мощности из резонаторов анодного блока, проходящих между катушками магнитного поля, выполненных в виде пары Гельмгольца. Выводы СВЧ-мощности связаны между собой посредством одного или нескольких волноводных каналов связи.
Канал связи запитывается от резонаторов релятивистского магнетрона с двух сторон бегущими СВЧ-волнами. В результате в течение импульса излучения образуется стоячая электромагнитная волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, должна составлять mλ+λ/2, где m - целое число. В этом случае поступающая от противоположного резонатора волна окажется в фазе с колебаниями в резонаторе (для анодного блока с указанным числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна, расположенная в канале связи, эффективно излучала в течение действия импульса СВЧ-излучения, она должна находиться в пучности стоячей волны, т.е. на расстоянии qλ/2 от резонатора, где q - целое число.
Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны) длина внешнего канала связи должна быть mλ, где m - целое число. Для расположения антенны в пучности стоячей волны она должна находиться во внешнем канале связи на расстоянии qλ/2 (q - целое число) от одного из резонаторов.
По сравнению с релятивистским магнетроном с одним выводом СВЧ-мощности применение каналов связи позволяет увеличить эффективность работы прибора, улучшить спектральные характеристики СВЧ-излучения, повысить стабильность амплитудно-временных характеристик генерируемых импульсов. Выходная мощность релятивистских магнетронов с внешними каналами связи составляет 200 - 500 МВт при длительности импульса излучения от десятков до сотен наносекунд.
Известно также устройство релятивистский магнетрон, к которому подключено устройство СВЧ-компрессии (СВЧ-компрессор) [Диденко А.Н., Винтизенко И.И., Мащенко А.И. и др. Резонансная компрессия СВЧ-импульсов на выходе релятивистского магнетрона. Доклады Академии Наук, 1999, т. 366, №5, с. 619-621]. Устройство состоит из многорезонаторного анодного блока с одним выводом мощности. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. К выводу мощности релятивистского магнетрона посредством волноводного тракта или ферритового вентиля подключен СВЧ-компрессор. СВЧ-компрессор состоит из СВЧ-резонатора, СВЧ-разрядника, диафрагмы с отверстием связи, нагрузки и излучающей антенны вывода электромагнитного излучения в свободное пространство. Принцип работы компрессора основан на накоплении высокочастотной энергии в резонаторе от импульсного СВЧ-источника и быстром ее выводе в виде более коротких и мощных СВЧ-импульсов, чем поступающие в резонатор [Диденко А.Н., Юшков Ю.Г. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984. 112 с.]. Пиковая мощность излучения может быть увеличена в W раз в соответствии с соотношением
W = ηк t1/t2,
где ηк - КПД устройства компрессии,
t1 и t2 - длительности импульсов на входе и выходе компрессора соответственно. Указанное устройство принимаем за прототип.
Данный метод основан на накоплении энергии в высокодобротном резонаторе, где интенсивности полей могут многократно превышать интенсивность поля в исходном импульсе и ее последующем быстром выводе в нагрузку с помощью разрядника (коммутатора), модулирующего добротность резонатора. Для переключения резонатора в режим вывода СВЧ-энергии создается высоковольтный разряд с высокой концентрацией электронов. Появление плазмы приводит к резкому изменению картины стоячих волн, что обеспечивает быстрый вывод энергии из резонатора в антенну. Разряд может создаваться как в кварцевой трубке, так и непосредственно в объеме резонатора. При этом плазма может образовываться непосредственно под действием электромагнитных полей (самопробой) либо инициироваться внешним источником высокого напряжения.
На основе этого метода создана экспериментальная установка. Релятивистский магнетрон работает на частоте 2840 МГц и имеет мощность излучения до 200 МВт при длительности импульсов ~ 120 нс и частоте повторения 10 Гц. Компрессор изготовлен из волноводов сечением 7,2×3,4 см и представляет собой двойной волноводный тройник с симметричными короткозамкнутыми боковыми плечами. Возбуждение резонансной системы компрессора осуществляется через отверстие связи в широкой стенке волновода. Вывод энергии производится через Н-плечо тройника после срабатывания в режиме самопробоя газоразрядного СВЧ-коммутатора, расположенного от короткозамкнутой стенки на расстоянии четверти длины волны в волноводе. Минимальная длительность сформированных импульсов определяется временем двойного пробега волны с групповой скоростью вдоль одного из плеч тройника.
В процессе исследований релятивистского магнетрона с СВЧ-компрессором было установлено, что длительность процесса накопления энергии в резонаторе зависит от длины входного волноводного тракта между релятивистским магнетроном и компрессором. При длине тракта, равной 3 м, повышение напряженности поля в резонаторе продолжалось не более 30 нс. Примерно через такое же время во входных СВЧ-импульсах, регистрируемых в тракте от РМ, начинался спад амплитуды и сильная амплитудно-частотная модуляция. После срабатывания коммутатора на выходе компрессора регистрировались импульсы с пиковой мощностью до 480 МВт и длительностью ~ 5 нс на уровне половинной мощности. В этом случае импульсная мощность магнетрона не превышала 120 МВт.
После увеличения длины волноводного тракта до 10 м длительность импульсов от магнетрона в тракте и процесс возбуждения резонатора достигли 120 нс. Когда включался разрядник компрессора, из резонатора выводились СВЧ-импульсы длительностью ~ 5 нс с пиковой мощностью до 1100 МВт, при этом мощность выходных импульсов релятивистского магнетрона составляла 180 МВт.
Анализ результатов работы релятивистского магнетрона показал, что при питании резонатора СВЧ-компрессора от релятивистского магнетрона, как и от обычного классического магнетрона, требуется организовывать между ними определенную связь и уменьшать отраженную от диафрагмы резонатора волну в начальный период его возбуждения для эффективного затягивания частоты генератора высокодобротным накопительным резонатором компрессора. Это можно сделать при использовании развязывающих устройств: длинного волноводного тракта или включением в цепь связи между магнетроном и компрессором ферритового вентиля, позволившего устранить отраженную волну.
Таким образом, в данном устройстве осуществляется компрессии СВЧ-импульсов на выходе релятивистского магнетрона с увеличением мощности в 6 раз при частоте следования импульсов 10 Гц. Однако использование длинного (10 м) волноводного тракта приводило к значительным весогабаритным показателям установки, дополнительным потерям энергии при транспортировке СВЧ-энергии от релятивистского магнетрона до СВЧ-компрессора. Использование же ферритового вентиля снижало надежность устройства, поскольку используемый дорогостоящий промышленный вентиль не был рассчитан на работу с импульсами СВЧ-излучения мощностью в сотни мегаватт и быстро выходил из строя.
Задачей предлагаемого изобретения является увеличение мощности выходных СВЧ-импульсов релятивистского магнетрона, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров и стоимости системы.
Технический результат заключается в уменьшении потерь СВЧ-энергии при компрессии, устранении элементов, создающих отраженные волны, увеличении надежности и снижении стоимости устройства за счет удаления из схемы развязывающих элементов, таких как волновод или ферритовый вентиль.
Указанный результат достигается тем, что релятивистский магнетрон с внешним каналом связи содержит многорезонаторный анодный блок с расположенным на оси взрывоэмиссионным катодом, внешнюю магнитную систему. Противоположные резонаторы анодного блока связаны волноводным внешним каналом связи. От прототипа он отличается тем, что во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число, λ - длина волны в волноводе) от одного из резонаторов установлена излучающая антенна и на расстоянии kλ/4 (k - нечетное число) от оси антенны расположен разрядник.
В предлагаемом устройстве внешний канал связи между резонаторами анодного блока исполняет роль резонатора СВЧ-компрессора. Роль диафрагмы с отверстием связи выполняет щель связи в стенках резонаторов анодного блока. В приборе-прототипе СВЧ-компрессор представлял собой отдельное устройство, связанное с релятивистским магнетроном длинным волноводным трактом или ферритовым вентилем.
Изобретение иллюстрируется фиг.1 и фиг.2. На фиг.1 показан релятивистский магнетрон, который имеет многорезонаторный анодный блок 1 с резонаторами 2. Количество резонаторов равно N/2=р, где р=4 - четное число. Коаксиально анодному блоку 1 установлен взрывоэмиссионный катод 3. Резонаторы 2 анодного блока 1 соединены между собой внешним каналом связи 5. Магнитная система 4 создает магнитное поле. Катод 3 с помощью катододержателя (на фиг.1 и фиг.2 не показан) связан с высоковольтным фланцем источника питания (на фиг.1 и фиг.2 не показан), от которого подается отрицательный импульс напряжения. В волноводном канале связи 5 для анодного блока 1 с числом резонаторов N/2=р, где р - четное число во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ+λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ+λ/2. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.
Для анодного блока с числом резонаторов N/2=р, где р=3 - нечетное число (фиг.2) во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ-λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.
Предлагаемый релятивистский магнетрон содержит, как и прототип, многорезонаторный анодный блок 1 с резонаторами 2, связанными внешним каналом 5. Коаксиально анодному блоку установлен взрывоэмиссионный катод 3. Магнитная система 4 создает магнитное поле. Во внешнем канале связи 5 установлена излучающая антенна 6. Однако ее место расположения кардинально отличается от ее расположения в магнетронах с внешним каналом связи (прибор-аналог 1). В предлагаемом устройстве излучающая антенна установлена во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов (в приборе аналоге 1 антенна установлена на расстоянии nλ+λ/2). На расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Длина канала связи соответствует длине канала связи в приборе аналоге и зависит от количества резонаторов анодного блока (N/2 - четное или нечетное число).
Предлагаемое устройство за счет использования внешнего канала связи в качестве резонатора СВЧ-компрессора позволяет получить большую эффективность в сравнении с прибором-прототипом за счет сокращения потерь энергии, устранения отражений, уменьшения количество элементов, существенно снизить весогабаритные характеристики и стоимость, повысить надежность работы устройства.
Устройство работает следующим образом. Предварительно включается магнитная система 4, работающая в непрерывном или импульсном режимах. В момент достижения максимального магнитного поля источник питания формирует импульс отрицательной полярности (амплитуда напряжения 100-1000 кВ и ток 1-40 кА в зависимости от типа источника). Высоковольтный импульс подается на катод 3. В промежутке катод 3 - многорезонаторный анодный блок 1 создается высокая напряженность электрического поля, вызывающая развитие взрывной электронной эмиссии [Литвинов Е.А. и др. Автоэмиссионные и взрывоэмиссионные процессы при вакуумных разрядах. Успехи физических наук. Москва, 1983, т. 139, с. 265-302]. В скрещенных радиальном электрическом и аксиальном магнитном полях происходит образование электронных «спиц» пространственного заряда и процесс передачи энергии электронов в энергию СВЧ-излучения осуществляется так же, как в классическом магнетроне. Вывод СВЧ-излучения из резонаторов 2 анодного блока 1 осуществляется через щели в стенках резонаторов в волноводный внешний канал связи 5.
Внешний канал связи 5 запитывается с двух сторон бегущими от резонаторов СВЧ-волнами. В результате в течение импульса излучения образуется стоячая волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, как и в приборе-прототипе, должна составлять (n+m)λ+λ|2, где n, m - целые числа. В этом случае поступающая от противоположного резонатора волна окажется в фазе с волной в резонаторе (для анодного блока с таким числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна 6 не излучала в процессе накопления энергии резонатором (внешним каналом связи), ее следует расположить в нуле стоячей волны, а именно на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.
Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны), длина внешнего канала связи 5 должна быть (n+m)λ, где n, m - целые числа. Для расположения антенны 6 в нуле стоячей волны она должна находиться во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.
Как в первом, так и во втором случаях на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 располагается разрядник 7. При включении разрядника происходит вывод энергии из резонатора (канала связи) за счет резкого изменения связи резонатора с излучающей антенной. Включение разрядника может происходить в режиме самопробоя под действием нарастающего электрического поля запасаемых в резонаторе СВЧ-колебаний, а также при подаче высоковольтного импульса от внешнего генератора импульсов высокого напряжения.
Примером конкретного выполнения может служить релятивистский магнетрон 10-см диапазона длин волн с восемью резонаторами лопаточного типа с выходной мощностью до 300 МВт, разработанный и применяемый в Физико-техническом институте Томского политехнического университета. Схема прибора соответствует приведенной на фиг.1.
Внутренний диаметр анодного блока, выполненного из нержавеющей стали, составляет 43 мм, глубина резонаторов 21,5 мм, длина 72 мм. Графитовый катод имеет диаметр 20 мм. Канал связи соединяет противоположно расположенные резонаторы. Волновод 5 изготовлен из отрезка медного прямоугольного волновода, внутренним сечением 72х34 мм. Длина волны излучения магнетрона на π-виде колебаний 9,85 см. Тогда длина волны в волноводе 13,55 см. При работе релятивистского магнетрона на π-виде колебаний на длине канала должно укладываться (n+m+0,5)λ длин волн для того, чтобы волна, пришедшая от противоположного резонатора, была в фазе с колебаниями резонатора. Таким образом, длина канала связи составляет 169,4 см (12,5 λ). Чтобы антенна не излучала при возбуждении π-вида колебаний в процессе накопления энергии, она размещается симметрично от резонаторов, т.е. по оси канала связи. На расстоянии 3λ/4=10,2 см от оси антенны расположен управляемый разрядник, срабатывающий при подаче высоковольтного импульса (15 кВ) от внешнего источника (на фиг.2 не показан). Добротность резонатора по результатам «холодных» измерений составила ~200.
Ожидаемый коэффициент усиления выходной мощности заявляемого релятивистского магнетрона ~5, выходная мощность ~1,5 ГВт, длительность выходного импульса, равная времени двойного пробега электромагнитной волны по резонатору СВЧ-компрессора длиной 89,8 см, ~9-10 нс.

Claims (1)

  1. Релятивистский магнетрон, содержащий многорезонаторный анодный блок, коаксиальный с ним взрывоэмиссионный катод, внешнюю магнитную систему, излучающую антенну, расположенную во внешнем канале связи на расстоянии nλ+λ/4 от одного из резонаторов, и разрядник, расположенный на расстоянии kλ/4 от оси антенны, где n - целое число; λ - длина волны в волноводе; k - нечетное число.
RU2013151340/07A 2013-11-20 2013-11-20 Релятивистский магнетрон RU2551353C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013151340/07A RU2551353C1 (ru) 2013-11-20 2013-11-20 Релятивистский магнетрон

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013151340/07A RU2551353C1 (ru) 2013-11-20 2013-11-20 Релятивистский магнетрон

Publications (2)

Publication Number Publication Date
RU2551353C1 true RU2551353C1 (ru) 2015-05-20
RU2013151340A RU2013151340A (ru) 2015-05-27

Family

ID=53284797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013151340/07A RU2551353C1 (ru) 2013-11-20 2013-11-20 Релятивистский магнетрон

Country Status (1)

Country Link
RU (1) RU2551353C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511251B2 (en) * 2005-12-21 2009-03-31 Lg Electronics Inc. Magnetron having choke filter configured to intercept external leakage
RU2388101C1 (ru) * 2008-12-18 2010-04-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Релятивистский магнетрон с волноводными каналами связи резонаторов
EP1870923B1 (en) * 2006-06-19 2010-12-01 Toshiba Hokuto Electronics Corporation Magnetron
RU2422938C1 (ru) * 2010-03-22 2011-06-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Релятивистский магнетрон с волноводными выводами мощности

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511251B2 (en) * 2005-12-21 2009-03-31 Lg Electronics Inc. Magnetron having choke filter configured to intercept external leakage
EP1870923B1 (en) * 2006-06-19 2010-12-01 Toshiba Hokuto Electronics Corporation Magnetron
RU2388101C1 (ru) * 2008-12-18 2010-04-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" Релятивистский магнетрон с волноводными каналами связи резонаторов
RU2422938C1 (ru) * 2010-03-22 2011-06-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Релятивистский магнетрон с волноводными выводами мощности

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Диденко А.Н., Винтизенко И.И., Мащенко А.И. и др. Резонансная компрессия СВЧ-импульсов на выходе релятивистского магнетрона. Доклады Академии Наук, 1999, т. 366, N5, с. 619-621. *

Also Published As

Publication number Publication date
RU2013151340A (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
Ju et al. An improved X-band triaxial klystron amplifier for gigawatt long-pulse high-power microwave generation
Ling et al. A Ku-band coaxial relativistic transit-time oscillator with low guiding magnetic field
Song et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator
Sayapin et al. $ S $-Band Relativistic Magnetron Operation With Multichannel Radial Outputs of the Microwave Power
Kim et al. Three-dimensional particle-in-cell simulation study of a frequency tunable relativistic magnetron
RU2551353C1 (ru) Релятивистский магнетрон
Loza et al. Increase in the average radiation power of a plasma relativistic microwave generator
Rostov et al. High-efficiency relativistic generators of nanosecond pulses in the millimeter-wavelength range
RU2422938C1 (ru) Релятивистский магнетрон с волноводными выводами мощности
Elfrgani et al. Millimeter wave overmoded relativistic backward wave oscillator
Condron et al. Linear accelerator x-ray sources with high duty cycle
RU2118041C1 (ru) Устройство для получения мощных ультракоротких свч импульсов
Dubey et al. Power and Efficiency Enhancement of the Reltron Using Dual RF Output Cavities
Bekhovskaya et al. The use of a high-current electron beam in plasma relativistic microwave oscillators
Guzilov 6 kW L-band pulsed MBK with broad frequency band of 15%
Ginzburg et al. Production of ultra-short high-power microwave pulses in Čerenkov backward-wave systems
Sayapin et al. Stabilized operation of a microwave compressor driven by relativistic S-band magnetron
CN114783850B (zh) 一种c波段全腔提取相对论磁控管
Sayapin et al. Charging of the traveling wave resonator of the microwave compressor by a relativistic S-band magnetron
RU2337426C1 (ru) Релятивистский магнетрон с внешними каналами связи резонаторов
CN114301432B (zh) 一种高能量效率的宽带电磁脉冲产生系统
Yalandin et al. Highly effective, repetitive nanosecond-range Ka-band BWO
Kekez HPM formation in air and SF 6/Argon mixture
Polevin et al. Spontaneous pulse width limitation in S-band two-sectional vircator
RU2535924C1 (ru) Свч генератор с виртуальным катодом коаксиального типа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161121