RU2549906C1 - Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза - Google Patents

Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза Download PDF

Info

Publication number
RU2549906C1
RU2549906C1 RU2014108752/04A RU2014108752A RU2549906C1 RU 2549906 C1 RU2549906 C1 RU 2549906C1 RU 2014108752/04 A RU2014108752/04 A RU 2014108752/04A RU 2014108752 A RU2014108752 A RU 2014108752A RU 2549906 C1 RU2549906 C1 RU 2549906C1
Authority
RU
Russia
Prior art keywords
active component
precursors
carrier
temperature
catalysts
Prior art date
Application number
RU2014108752/04A
Other languages
English (en)
Inventor
Юлия Сергеевна Котолевич
Светлана Сергеевна Сигаева
Павел Григорьевич Цырульников
Андрей Николаевич Загоруйко
Сергей Алексеевич Лопатин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН)
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН), Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН)
Priority to RU2014108752/04A priority Critical patent/RU2549906C1/ru
Application granted granted Critical
Publication of RU2549906C1 publication Critical patent/RU2549906C1/ru

Links

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к способу приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой. Предложенный способ включает перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой не ниже 200оС со скоростью, обеспечивающей рост его температуры не менее 10оС в минуту. Данный способ позволяет получать катализаторы с высокой активностью, а также обеспечивает легкую и надежную регулируемость процесса приготовления. 3 з.п. ф-лы, 1 табл., 6 пр.

Description

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций. Изобретение может найти применение в процессах производства ценных химических продуктов и полупродуктов, а также при переработке и утилизации газообразных и жидких отходов.
Поверхностный термосинтез является эффективным и перспективным способом производства катализаторов. Известен способ приготовления оксидных катализаторов глубокого окисления органических веществ кислородом воздуха путем пропитки носителя водным раствором нитратов переходных металлов и мочевины с последующей сушкой и прокаливанием в режиме самораспространения тепловой волны (патент РФ №2039601). Способ позволяет наносить оксидные активные компоненты на неорганический волокнистый носитель (например, на материалы из кварцевых, кремнеземных и базальтовых волокон). Недостатком этого способа является то, что он применим только к узкому спектру возможных активных компонентов - к оксидам переходных металлов (кобальт, никель, хром, железо), а также ограниченному числу носителей.
Наиболее близким к предлагаемому является способ приготовления нанесенных катализаторов методом поверхностного самораспространяющегося термосинтеза активного компонента катализатора из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в одном, либо в разных соединениях, и которые наносятся на носитель из их растворов, расплавов или суспензий (патент РФ №2234979, прототип). С помощью этого способа возможно нанесение широкого спектра различных металлов, их оксидов и их смесей на различные носители, в частности на керамические пористые носители, пористые металлы и на микроволокнистые (в том числе - на стекловолокнистые) носители. Недостатком этого способа являются трудная регулируемость скорости распространения теплового фронта и максимальной температуры тепловой волны, что приводит к недостаточной дисперсности и дефектности образующихся активных частиц и, вследствие этого, к пониженной активности синтезируемых катализаторов.
Авторы поставили перед собой задачу разработки способа приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза (ИПТ), обеспечивающего более высокую активность катализаторов, а также более легкую и надежную регулируемость самого процесса приготовления.
Поставленная задача решается тем, что в способе приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, носитель с нанесенными на него предшественниками перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками не менее 10°C в минуту.
Предшественники активного компонента наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой при температурах не более 120°C. Импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г. При этом в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп периодической системы Д.И. Менделеева. В состав предшественников в качестве топливных добавок (восстановителей) могут входить органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.
Более высокая активность синтезируемых катализаторов объясняется большей дисперсностью и дефектностью активного компонента в результате импульсного поверхностного термосинтеза. Определяющим при этом является сочетание температуры термосинтеза, времени контакта с высокотемпературной зоной и скорости нагрева исходного носителя с нанесенными на него предшественниками активного компонента.
Перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой ниже 200°C нецелесообразно, поскольку при этом скорость твердофазного горения и, следовательно, разложения и окисления предшественников активного компонента на поверхности носителя будет слишком низка для практического применения. При этом повышение температуры носителя с нанесенными на него предшественниками активного компонента менее 10°C в минуту также нецелесообразно, поскольку может приводить к синтезу активного компонента с неоптимальными показателями дисперсности и дефектности и, соответственно, с худшими каталитическими свойствами.
С помощью предложенного способа можно наносить разнообразные активные компоненты на гибкие микроволокнистые носители, что расширяет возможности создания принципиально новых каталитических систем с улучшенными инженерными свойствами для различных применений. Предложенный способ также характеризуется низким энергопотреблением, экологичностью, низкой трудоемкостью, возможностью создания производств катализаторов любого масштаба: от лабораторного до промышленного.
Активность катализаторов в процессах глубокого окисления CO и CH4 характеризовали температурой достижения 50%-ной степени превращения T50%. Испытания проводились в проточной установке, нагрев осуществляли в интервале температур 50-450°C, скорость 1-2°C/мин. Состав реакционной смеси для процесса окисления CO: 1 об.% CO, 20 об.% O2, остальное азот. Состав реакционной смеси для процесса окисления CH4: 1 об.% CH4, 20 об.% O2, остальное азот. Расход реакционной смеси в обоих случаях составил 100, 300 или 1000 мл/мин.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Кремнеземную стеклоткань сатинового плетения КС-11-13 при комнатной температуре пропитывают по влагоемкости раствором предшественника - ацетата меди, содержащего 0,015 г/мл Cu. Затем образец сушат при 120°C в течение 1 ч. Затем аналогичным образом пропитывают раствором топливной добавки - глюкозы с концентрацией 0,213 г/мл. Синтез катализатора осуществляют методом ИПТ (ТТЭН=550°C, τТЭН=10 мин). Полученный катализатор содержит 1,0 мас.% Cu/KC-11-13.
Пример 2
Аналогичен примеру 1, но на поверхность стеклоткани КС-151-ЛА наносят сначала вторичный носитель - 7% γ-Al2O3 из алюмозоля (по патенту РФ 2455067). Носитель по влагоемкости пропитывают раствором предшественника - нитрата палладия, содержащего 0,008 г/мл Pd, раствором глюкозы с концентрацией 0,068 г/мл. Полученный катализатор содержит 0,5 мас.% Pd/7 мас.% γ-Al2O3/КС-151-ЛА.
Пример 3
Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором предшественника активного компонента - гексахлорплатиновой кислоты, содержащего 0,008 г/мл Pt. Полученный катализатор содержит 0,2 мас.% Pt/ 7 мас.%. γ-Al2O3/КС-151-ЛА.
Пример 4
Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором гексахлорплатиновой кислоты с содержанием 0,02 г/мл Pt. Полученный катализатор содержит 0,5 мас.% Pt/ 7 мас.% γ-Al2O3/КС-151-ЛА.
Пример 5
Аналогичен примеру 1, но в качестве предшественника активного компонента используют раствор ацетата марганца с содержанием 0,06 г/мл Mn. Полученный катализатор содержит 5,0 мас.% Mn/KC-11-13.
Пример 6
Пример по прототипу. Катализатор по составу носителя, содержанию топливной добавки и составу предшественника активного компонента (H2[Pt(Cl)6]×6H2O) аналогичен примеру 4, но синтез проводится методом ПСТ - поверхностного самораспространяющегося термосинтеза. Полученный катализатор содержит 0,5 мас.% Pt/7 мас.% γ-Al2O3/КС-151-ЛА.
Данные по составам катализаторов согласно приведенным примерам 1-6 и результатам исследования их каталитических свойств в реакциях окисления СО и СРЦ представлены в Таблице.
Как следует из таблицы, катализаторы, приготовленные предлагаемым способом импульсного поверхностного термосинтеза, по активности превышают образец сравнения по прототипу, полученный методом поверхностного самораспространяющегося термосинтеза, наиболее активными являются образцы на основе платины и палладия.
Figure 00000001

Claims (4)

1. Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой, отличающийся тем, что носитель с нанесенными на него предшественниками активного компонента перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками активного компонента не менее 10°C в минуту.
2. Способ по п.1, отличающийся тем, что в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп таблицы Д.И. Менделеева.
3. Способ по п.2, отличающийся тем, что импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г.
4. Способ по любому из пп.1-3, отличающийся тем, что в состав предшественников активного компонента в качестве топливных добавок (восстановителей) входят органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.
RU2014108752/04A 2014-03-06 2014-03-06 Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза RU2549906C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014108752/04A RU2549906C1 (ru) 2014-03-06 2014-03-06 Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014108752/04A RU2549906C1 (ru) 2014-03-06 2014-03-06 Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза

Publications (1)

Publication Number Publication Date
RU2549906C1 true RU2549906C1 (ru) 2015-05-10

Family

ID=53293761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014108752/04A RU2549906C1 (ru) 2014-03-06 2014-03-06 Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза

Country Status (1)

Country Link
RU (1) RU2549906C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624216C1 (ru) * 2016-06-02 2017-07-03 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Микроволокнистый носитель для катализаторов и способ его приготовления

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2234979C1 (ru) * 2003-02-14 2004-08-27 Институт катализа им. Г.К. Борескова СО РАН Способ приготовления нанесенных катализаторов

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2234979C1 (ru) * 2003-02-14 2004-08-27 Институт катализа им. Г.К. Борескова СО РАН Способ приготовления нанесенных катализаторов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОНЧАРОВ В.Б. И ДР., Радиационно-термический синтез нанопорошков металлов, оксидов и нанесенных катализаторов, ТРУДЫ VII МЕЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ "РАДИАЦИОННО-ТЕРМИЧЕСКИЕ ЭФФЕКТЫ И ПРОЦЕССЫ В НЕОРГАНИЧЕСКИХ МАТЕРИАЛАХ", Томск, 2010, стр.68-73. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624216C1 (ru) * 2016-06-02 2017-07-03 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Микроволокнистый носитель для катализаторов и способ его приготовления

Similar Documents

Publication Publication Date Title
Valentini et al. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts
Dai Environmental catalysis: a solution for the removal of atmospheric pollutants
Choudhary et al. Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gases
KR20110055082A (ko) 암모니아의 선택산화 촉매 및 이의 제조방법
Patil et al. Au sensitized La–CeO2 catalyst coated ceramics monoliths for toluene catalysis application
Li et al. Pd–Co coating onto cordierite monoliths as structured catalysts for methane catalytic combustion
Branco et al. Conversion of methane over bimetallic copper and nickel actinide oxides (Th, U) using nitrous oxide as oxidant
RU2549906C1 (ru) Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза
CA2961855A1 (en) Process for removing oxidisable gaseous compounds from a gas mixture by means of a platinum-containing oxidation catalyst
CN108620123A (zh) 一种以Mn为活性金属、以Nd为助剂的中低温脱硝催化剂及其制备方法
CN112044448A (zh) 一种VOCs催化燃烧整体金属泡沫催化剂及其制备与应用
Cant et al. Formation and reactions of isocyanic acid during the catalytic reduction of nitrogen oxides
CN106475128A (zh) 一种工业废气净化催化剂的制备方法
Salem et al. NO conversion in presence of O2, H2O and SO2: Improvement of a Pt/Al2O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8
Wögerbauer et al. Ir/H-ZSM-5 Catalysts in the Selective Reduction of NO x with Hydrocarbons
Leerat et al. Lean-burn NO x Reduction by Propene over Gold Supported on Alumina Catalysts Derived from the Sol–Gel Method
RU2192307C1 (ru) Катализатор, носитель катализатора, способы их получения (варианты) и способ очистки отходящих газов от оксидов азота
Sazama et al. Selective catalytic reduction of NOx by hydrocarbons enhanced by hydrogen peroxide over silver/alumina catalysts
Palma et al. Honeycomb V2O5-CeO2 Catalysts for H2S abatement from biogas by direct selective oxidation to sulfur at low temperature
Hackel et al. Kinetics of reduction and oxidation reactions for application in catalytic gas–particle-filters
Serban et al. New water‐tolerant supported molten indium catalyst for the selective catalytic reduction of nitric oxide by ethanol
Jędrzejczyk et al. Design of structured reactor for biogas exhaust abatement
RU2480281C1 (ru) Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота
JPH06178937A (ja) 窒素酸化物除去触媒及び除去方法
KR101400608B1 (ko) 암모니아를 질소로 전환하는 선택적 산화 촉매와 그 제조방법 및 이를 이용하여 암모니아를 선택적으로 산화시키는 방법

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210307