RU2547988C1 - Литой композиционный материал на основе алюминиевого сплава и способ его получения - Google Patents
Литой композиционный материал на основе алюминиевого сплава и способ его получения Download PDFInfo
- Publication number
- RU2547988C1 RU2547988C1 RU2013142017/02A RU2013142017A RU2547988C1 RU 2547988 C1 RU2547988 C1 RU 2547988C1 RU 2013142017/02 A RU2013142017/02 A RU 2013142017/02A RU 2013142017 A RU2013142017 A RU 2013142017A RU 2547988 C1 RU2547988 C1 RU 2547988C1
- Authority
- RU
- Russia
- Prior art keywords
- alloy
- alti
- hours
- grain size
- composite material
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000002131 composite material Substances 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 36
- 239000000919 ceramic Substances 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 10
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 10
- 229910019015 Mg-Ag Inorganic materials 0.000 claims abstract description 9
- 238000005266 casting Methods 0.000 claims abstract description 9
- 230000032683 aging Effects 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 238000010791 quenching Methods 0.000 claims abstract description 4
- 230000000171 quenching effect Effects 0.000 claims abstract description 4
- 238000009694 cold isostatic pressing Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000000227 grinding Methods 0.000 claims abstract 2
- 229910017150 AlTi Inorganic materials 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 4
- 229910033181 TiB2 Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 2
- 229910000521 B alloy Inorganic materials 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 9
- 238000003754 machining Methods 0.000 abstract description 3
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 238000009827 uniform distribution Methods 0.000 abstract description 3
- 125000004122 cyclic group Chemical group 0.000 abstract description 2
- 238000007711 solidification Methods 0.000 abstract description 2
- 230000008023 solidification Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000000155 melt Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- -1 aluminum-titanium-boron Chemical compound 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000012758 reinforcing additive Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052861 titanite Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления циклически и термически нагруженных до 230°С деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления перспективных авиационных двигателей и газоперекачивающих аппаратов. Литой композиционный материал на основе алюминиевого сплава системы Al-Cu-Mg-Ag содержит армирующие дискретные керамические частицы оксида алюминия зернистостью 10-100 нм в количестве 0,2-10 об.% и диборида титана зернистостью 0,5-1,5 мкм в количестве, при котором содержание титана в сплаве составляет 0,1-0,2 мас.%. Способ получения ЛКМ включает получение модифицированной лигатуры Al-Ti-B путем сухой механофрикционной обработки в размольно-смесительном устройстве крупнозернистого порошка или стружки лигатуры Al-Ti-B, выбранной из ряда AlTi3B1, AlTi5B0,2, AlTi5B0,6, AlTi5B1, введения в нее в заданном количестве дискретных керамических частиц оксида алюминия зернистостью 10-100 нм, перемешивания до получения однородной консистенции, дальнейшей высокоэнергетической механической обработки полученной смеси, ее брикетирования посредством холодного изостатического прессования под давлением 200-400 МПа для достижения плотности свыше 60% от теоретической, введение полученных брикетов в расплав алюминиевого сплава системы Al-Cu-Mg-Ag, перегретый до 750-850°С, выдержку при заданной температуре в течение 20-60 минут, разливку со скоростью затвердевания не менее 70 К/сек и окончательную термообработку путем проведения гомогенизирующего отжига при 450-500°С в течение 2-24 часов, нагрева до 510-520°С с выдержкой в течение 1-5 часов, закалки в воду и последующего искусственного старения при температуре 190-250°С в течение 2-10 часов. Техническим результатом изобретения является повышение жаропрочности и трещиностойкости ЛКМ за счет равномерного распределения наноразмерных керамических частиц оксида алюминия в объеме отливки. 2 н.п. ф-лы.
Description
Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления циклически и термически нагруженных (до 230°С) деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления перспективных авиационных двигателей и газоперекачивающих аппаратов.
Известен способ получения ЛКМ на основе интерметаллидной матрицы, включающий смешивание порошков матрицеобразующего металла из группы Fe, Ni, Ti или их смеси с армирующими нейтральными частицами, выбранными из группы оксидов, карбидов, боридов; изготовление пористой заготовки; последующую реакционную пропитку алюминиевым расплавом; гомогенизационную выдержку и кристаллизацию слитка (Патент РФ №2212306, МПК7 С22С 01/10, 2003 г.).
Известен также способ получения композиционного материала (патент РФ №2202643, оп. 20.04.2003), включающий:
а) высокоэнергетическую механическую обработку стружки металла матричного состава с частицами оксида алюминия размером 8-12 мкм в количестве 10-25 об.%,
б) холодное двустороннее прессование полученной смеси до получения 80% относительной плотности;
в) горячую пропитку расплавом алюминия спрессованных брикетов.
Общим недостатком предложенных изобретений является то, что данные способы изготовления не позволяют получать сложные фасонные изделия, обладающие комплексом механических свойств (жаропрочность, трещиностойкость) для изготовления лопаток вентилятора и ступеней компрессора низкого давления авиационных двигателей и газоперекачивающих аппаратов. Кроме того, данные способы отличаются низкой технологичностью: большая длительность процесса, большие энергозатраты, необходимость применения сложного дорогостоящего оборудования.
Известен способ получения сплава на основе алюминия (патент РФ №2177047, оп. 20.12.2001), который основан на механическом замешивании в расплав порошка из тугоплавких частиц оксидов металлов размером 0,001-0,1 мкм в количестве 1-15 мас.%. Предлагаемый способ механического замешивания отличается низкой технологичностью по причине агломерации частиц, что проявляется в резком повышении вязкости и потери жидкотекучести расплава при введении армирующией добавки, что приводит к неравномерному распределению частиц и анизотропии механических свойств по сечению получаемых изделий.
В качестве прототипа был выбран ЛКМ на основе алюминиевого сплава Al+3% Mg и способ его получения (патент RU №2353475 С2, оп. 27.04.2009). В качестве армирующих дискретных керамических частиц он содержит карбид кремния (SiC) с зернистостью 30-50 мкм в количестве 3-5 или 15-19 мас.%. Способ получения данного ЛКМ включает смешивание в размольно-смесительном устройстве порошков матричного компонента из алюминиевого сплава Al+3% Mg и армирующих дискретных керамических частиц карбида кремния, брикетирование смеси под давлением 28-35 МПа и введение полученных брикетов в расплав алюминиевого сплава Al+3% Mg при температуре 850±10°С в количестве, необходимом для получения заданной концентрации армирующих дискретных керамических частиц в указанном расплаве, после чего проводят выдержку в течение 20-30 мин для протекания процессов распределения керамических частиц по объему расплава указанного алюминиевого сплава, затем осуществляют перемешивание и разливку.
Недостатки прототипа (патент RU №2353475 С2, оп. 27.04.2009) заключаются в следующем:
1. Данный способ не позволяет ввести и зафиксировать титан в матричном твердом растворе, который понижает скорость диффузии основных легирующих элементов. Понижение скорости диффузии элементов оказывает положительное влияние на устойчивость к коагуляции наноразмерных частиц Ω-фазы (Al2Cu). Алюминиевые сплавы системы Al-Cu-Mg-Ag являются термоупрочняемыми сплавами, значительное дисперсионное упрочнение которых происходит в результате выделения дисперсных интерметаллидных частиц Ω-фазы (Al2Cu) при искусственном старении. Коагуляция частиц Ω-фазы при повышенной температуре (до 200°С) является основных фактором ухудшающим жаропрочность получаемых изделий из данных сплавов.
2. Способ получения ЛКМ основан на использовании в качестве армирующего компонента дискретных керамических частиц карбида кремния (SiC) с зернистостью 30-50 мкм. Данные достаточно крупные керамические частицы являются концентраторами напряжений при циклическом нагружении, что негативно сказывается на трещиностойкости получаемых изделий, которые невозможно будет использовать для изготовления циклически и термически нагруженных деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления. Задачей группы изобретений является устранение недостатков прототипа путем разработки способа получения ЛКМ с улучшенными свойствами жаропрочности и трещиностойкости, используемого для изготовления циклически и термически нагруженных деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления.
Технический результат заключается в том, что предложенный способ получения ЛКМ отличается относительно высокой технологичностью и позволяет ввести и равномерно распределить наноразмерные керамические частицы оксида алюминия в объеме отливки.
Поставленная задача решена следующим образом:
В известный способ, включающий смешивание в размольно-смесительном устройстве порошков матричного компонента и дискретных керамических частиц, брикетирование смеси, введение полученных брикетов в расплав алюминиевого сплава, выдержку в течение для протекания процессов распределения керамических частиц по объему расплава указанного алюминиевого сплава и разливку, введены следующие новые признаки.
1) Крупнозернистый порошок или стружку лигатуры алюминий-титан-бор (Al-Ti-B), выбранной из ряда AlTi3B1, AlTi5B0,2, AlTi5B0,6, AlTi5B1 (ГОСТ Р 53777-2010), исходя из требуемого соотношения объемной доли частиц TiB2 и наночастиц Al2O3 в готовом ЛКМ, подвергают сухой механофрикционной обработке в размольно-смесительном устройстве, благодаря чему происходит измельчение крупных частиц лигатуры.
2) В получаемый мелкодисперсный порошок лигатуры Al-Ti-B вводят дискретные керамические частицы оксида алюминия (Al2O3) с зернистостью 10-100 нм и перемешивают до получения однородной консистенции. Полученную смесь подвергают высокоэнергетической механической обработке, позволяющей провести механическое легирование порошка лигатуры частицами Al2O3. Количество смешиваемых порошков определяют расчетным путем для достижения 0,2-10 об.% армирующего компонента Al2O3, 0,1-0,2 мас.% титана в химическом составе готового ЛКМ.
3) Затем смесь порошков подвергают брикетированию посредством холодного изостатического прессования под давлением 200-400 МПа, что позволяет достичь свыше 60% от теоритической плотности смеси. Наиболее целесообразным видом брикетов являются прутки с диаметром 9,5 мм и длиной 300-500 мм, так как такие размеры брикетов позволяют вводить их в расплав, используя стандартное литейное оборудование.
4) В перегретый до 750-850°С расплав алюминиевого сплава системы Al-Cu-Mg-Ag вводят полученные брикеты модифицированной лигатуры Al-Ti-B, выдерживают при заданной температуре 20-60 мин для протекания процессов распределения дискретных керамических частиц по объему расплава и растворения интерметаллидных частиц титанита алюминия (Al3Ti), содержащихся в лигатуре, проводят разливку со скоростью затвердевания не менее 70 К/сек. Быстрое охлаждение расплава обеспечивает поглощение частиц Al2O3 фронтом кристаллизации. Перед введением брикетов лигатуры возможен их подогрев до температур 100-650°С, что позволяет уменьшить переохлаждение матричного расплава и ускорить усвоение лигатуры. Количество вводимых в расплав брикетов определяют расчетным путем для достижения заданных массовых соотношений армирующих и легирующих компонентов в готовом изделии (см. п.2).
5) Получаемые отливки подвергают окончательной термообработке, включающей гомогенизационный отжиг при 450-500°С в течение 2-24 часов, нагрев до 510-520°С с выдержкой в течение 1-5 часов, закалку в воду и последующее искусственное старение при температурах 190-250°С в течение 2-10 часов до достижения максимальной прочности получаемых изделий. Гомогенизационный отжиг приводит к равномерному распределению основных легирующих элементов матричного Al-Cu-Mg-Ag сплава по объему ЛКМ. Дисперсионное упрочнение за счет выделения частиц Ω-фазы (Al2Cu) в Al-Cu-Mg-Ag сплаве достигается после закалки и последующего искусственного старения на максимальную прочность.
Введение модифицированной лигатуры позволяет получить композиционный материал с более мелкой и однородной структурой, а также улучшенными свойствами жаропрочности (время до разрушения при температуре 230°С и нагрузке 250 МПа более 90 часов) и трещиностойкости (скорость роста усталостной трещины при ΔК=31,6 МПа/√m при комнатной температуре менее 4 мм/цикл). Это достигается введением в ЛКМ титана, который понижает скорость диффузии элементов, оказывая положительное влияние на устойчивость к коагуляции наноразмерных частиц Ω-фазы (Al2Cu). Алюминиевые сплавы системы Al-Cu-Mg-Ag являются термоупрочняемыми сплавами, значительное дисперсионное упрочнение которых происходит в результате выделения дисперсных интерметаллидных частиц Ω-фазы (Al2Cu) при искусственном старении. Коагуляция частиц Ω-фазы при повышенной температуре (до 200°С) является основным известным фактором, ухудшающим жаропрочность получаемых изделий из данных сплавов. К тому же равномерное распределение наноразмерных керамических частиц оксида алюминия в объеме отливки приводит к дополнительному улучшению эксплуатационных свойств получаемых изделий. Частицы диборида титана уменьшают размер зерна алюминиевой матрицы при литье и подавляют зернограничное проскальзывание в готовом изделии, которое неизбежно развивается в данных сплавах при повышенных температурах.
Claims (2)
1. Литой композиционный материал на основе алюминиевого сплава системы Al-Cu-Mg-Ag, содержащий армирующие дискретные керамические частицы оксида алюминия и диборида титана, характеризующийся тем, что он содержит частицы оксида алюминия зернистостью 10-100 нм в количестве 0,2-10 об.% и диборида титана зернистостью 0,5-1,5 мкм в количестве, при котором содержание титана в сплаве составляет 0,1-0,2 мас.%.
2. Способ получения литого композиционного материала на основе алюминиевого сплава системы Al-Cu-Mg-Ag, содержащего армирующие дискретные керамические частицы оксида алюминия и диборида титана, включающий получение модифицированной лигатуры Al-Ti-B путем сухой механофрикционной обработки в размольно-смесительном устройстве крупнозернистого порошка или стружки лигатуры Al-Ti-B, выбранной из ряда AlTi3B1, AlTi5B0,2, AlTi5B0,6, AlTi5B1, введения в нее в заданном количестве дискретных керамических частиц оксида алюминия зернистостью 10-100 нм, перемешивания до получения однородной консистенции, дальнейшей высокоэнергетической механической обработки полученной смеси, ее брикетирования посредством холодного изостатического прессования под давлением 200-400 МПа для достижения плотности свыше 60% от теоритической, введение полученных брикетов в расплав алюминиевого сплава системы Al-Cu-Mg-Ag, перегретый до 750-850°С, выдержку при заданной температуре в течение 20-60 минут, разливку со скоростью затвердевания не менее 70 К/сек и окончательную термообработку путем проведения гомогенизирующего отжига при 450-500°С в течение 2-24 часов, нагрева до 510-520°С с выдержкой в течение 1-5 часов, закалки в воду и последующего искусственного старения при температуре 190-250°С в течение 2-10 часов.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2013142017/02A RU2547988C1 (ru) | 2013-09-16 | 2013-09-16 | Литой композиционный материал на основе алюминиевого сплава и способ его получения |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2013142017/02A RU2547988C1 (ru) | 2013-09-16 | 2013-09-16 | Литой композиционный материал на основе алюминиевого сплава и способ его получения |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| RU2547988C1 true RU2547988C1 (ru) | 2015-04-10 |
| RU2013142017A RU2013142017A (ru) | 2015-04-10 |
Family
ID=53282202
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2013142017/02A RU2547988C1 (ru) | 2013-09-16 | 2013-09-16 | Литой композиционный материал на основе алюминиевого сплава и способ его получения |
Country Status (1)
| Country | Link |
|---|---|
| RU (1) | RU2547988C1 (ru) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2682740C1 (ru) * | 2017-12-22 | 2019-03-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е.Алексеева" (НГТУ) | Состав композиционного материала на основе алюминиевого сплава |
| CN115369276A (zh) * | 2022-08-15 | 2022-11-22 | 哈尔滨工业大学(威海) | 一种SiC和TiB2双相增强铝基复合材料及其制备方法 |
| CN116445771A (zh) * | 2023-04-20 | 2023-07-18 | 上海交通大学 | 一种多主元合金颗粒增强铝基复合材料及其制备方法 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112877558B (zh) * | 2020-12-28 | 2022-05-20 | 湖南文昌新材科技股份有限公司 | 加压均匀分散陶瓷颗粒制备复合材料的装置及方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5856025A (en) * | 1987-05-13 | 1999-01-05 | Lanxide Technology Company, L.P. | Metal matrix composites |
| RU2159823C2 (ru) * | 1995-03-31 | 2000-11-27 | Мерк Патент Гмбх | Металлические композиционные материалы на основе алюминиевых сплавов, армированных керамическими частицами tib2 |
| RU2177047C1 (ru) * | 2000-07-18 | 2001-12-20 | Открытое акционерное общество "КОРПОРАЦИЯ "КОМПОМАШ" | Способ получения сплава на основе алюминия |
| RU2353475C2 (ru) * | 2007-03-20 | 2009-04-27 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Литой композиционный материал на основе алюминиевого сплава и способ его получения |
| US8017072B2 (en) * | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
-
2013
- 2013-09-16 RU RU2013142017/02A patent/RU2547988C1/ru active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5856025A (en) * | 1987-05-13 | 1999-01-05 | Lanxide Technology Company, L.P. | Metal matrix composites |
| RU2159823C2 (ru) * | 1995-03-31 | 2000-11-27 | Мерк Патент Гмбх | Металлические композиционные материалы на основе алюминиевых сплавов, армированных керамическими частицами tib2 |
| RU2177047C1 (ru) * | 2000-07-18 | 2001-12-20 | Открытое акционерное общество "КОРПОРАЦИЯ "КОМПОМАШ" | Способ получения сплава на основе алюминия |
| RU2353475C2 (ru) * | 2007-03-20 | 2009-04-27 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Литой композиционный материал на основе алюминиевого сплава и способ его получения |
| US8017072B2 (en) * | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2682740C1 (ru) * | 2017-12-22 | 2019-03-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е.Алексеева" (НГТУ) | Состав композиционного материала на основе алюминиевого сплава |
| CN115369276A (zh) * | 2022-08-15 | 2022-11-22 | 哈尔滨工业大学(威海) | 一种SiC和TiB2双相增强铝基复合材料及其制备方法 |
| CN115369276B (zh) * | 2022-08-15 | 2023-06-06 | 哈尔滨工业大学(威海) | 一种SiC和TiB2双相增强铝基复合材料及其制备方法 |
| CN116445771A (zh) * | 2023-04-20 | 2023-07-18 | 上海交通大学 | 一种多主元合金颗粒增强铝基复合材料及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2013142017A (ru) | 2015-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108080644B (zh) | 一种高强韧化金属基复合材料的粉末冶金制备方法 | |
| WO2011023059A1 (zh) | 多元高强耐热铝合金材料及其制备方法 | |
| CN104004942B (zh) | 一种TiC颗粒增强镍基复合材料及其制备方法 | |
| RU2547988C1 (ru) | Литой композиционный материал на основе алюминиевого сплава и способ его получения | |
| CN105861904B (zh) | 一种B4C/Al复合材料的制备方法 | |
| CN108421985A (zh) | 一种制备氧化物弥散强化中熵合金的方法 | |
| CN103205585B (zh) | 一种细化高硅铝硅合金组织中初晶硅的方法 | |
| CN114921735B (zh) | 改善铸造用高Nb-TiAl合金力学性能的热调控方法 | |
| CN116441531A (zh) | 一种纳米陶瓷增强中熵合金复合材料及其制备方法 | |
| CN103981391B (zh) | 硼酸镁晶须与碳化硅粒子增强铝基复合材料及制备方法 | |
| CN109261971A (zh) | 一种用于改善纳米CuAl2/Al2O3增强铝基复合材料均匀性的变速球磨混粉方法 | |
| CN109536775A (zh) | 一种高温钛合金及其制备方法 | |
| CN117230341A (zh) | 改善镁稀土基复合材料中微米级AlN颗粒团聚的方法 | |
| CN112662918A (zh) | Al2O3-TiC颗粒增强铝基复合材料及其制备方法 | |
| RU2323991C1 (ru) | Литой композиционный материал на основе алюминиевого сплава и способ его получения | |
| Sheng et al. | Effect of solution treatment on the texture and tensile properties of Mg2B2O5W/2024Al composite | |
| CN108165780B (zh) | 一种Ni-Cr-Al-Fe系高温合金的制备方法 | |
| CN114277297A (zh) | 一种耐热性能提高的镁基复合材料及其制备方法 | |
| CN115927935B (zh) | 一种Al-Cu-Mg-Ag-Si-Sc高耐热性铝合金及其制备方法 | |
| CN118957346A (zh) | 一种实现强韧协同提升的纳米AlN颗粒增强镁基复合材料及其制备方法 | |
| CN110229977A (zh) | 一种颗粒增强高铝硅基复合材料的制备方法 | |
| CN101235453B (zh) | 一种自强化高锌耐热镁合金 | |
| RU2177047C1 (ru) | Способ получения сплава на основе алюминия | |
| WO2011032435A1 (zh) | 以C变质的Cr-RE高强耐热铝合金材料及其制备方法 | |
| CN108018453B (zh) | 一种w/b4c多相复合材料及熔炼制备方法 |