RU2547678C1 - Гидроэлектростанция на дне моря - Google Patents

Гидроэлектростанция на дне моря Download PDF

Info

Publication number
RU2547678C1
RU2547678C1 RU2014116995/06A RU2014116995A RU2547678C1 RU 2547678 C1 RU2547678 C1 RU 2547678C1 RU 2014116995/06 A RU2014116995/06 A RU 2014116995/06A RU 2014116995 A RU2014116995 A RU 2014116995A RU 2547678 C1 RU2547678 C1 RU 2547678C1
Authority
RU
Russia
Prior art keywords
sea
valve
power station
compressed air
hydroelectric power
Prior art date
Application number
RU2014116995/06A
Other languages
English (en)
Inventor
Евгений Николаевич Беллендир
Александр Валерьевич Петрашкевич
Валерий Вильгельмович Петрашкевич
Петр Федорович Собкалов
Федор Петрович Собкалов
Original Assignee
Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева" filed Critical Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева"
Priority to RU2014116995/06A priority Critical patent/RU2547678C1/ru
Application granted granted Critical
Publication of RU2547678C1 publication Critical patent/RU2547678C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Изобретение относится к отрасли морской энергетики и предназначено для извлечения электрической энергии из морских волн, ветра и столба жидкости над гидротурбиной. Гидроэлектростанция включает камеру 1, в которой размещены гидротурбина 2 двустороннего действия, гидрогенератор 3, всасывающий и напорный трубопроводы 4 и 7 и емкость 8, установленную на дне 16 моря. Дополнительно смонтированы устройство для сжатия воздуха и устройство для вытяжки сжатого воздуха. Устройство для сжатия воздуха выполнено в виде трубопровода 17, соединяющего пустотелую колонну 18 с впускным клапаном 19, ресивер 20 с входным клапаном 21, задвижку 22 с электроприводом, металлическую трубу 13, размещенную в полости платформы 12, гибкую трубу 11 и емкость 8, выполненную с датчиками 9 и 10 максимального и минимального уровня воды. Устройство для вытяжки сжатого воздуха содержит дефлектор 23, металлическую трубу 13, размещенную выше платформы 12, турбогенераторный блок 25, задвижку 26 с электроприводом, металлическую трубу 13, размещенную в полости платформы 12 и емкость 8. На трубопроводе 4 установлены съемная сороудерживающая решетка 6 и задвижка 5 с электроприводом. Изобретение направлено на повышение эффективности за счет использования приспособлений для сжатия воздуха и вытяжки сжатого воздуха, обеспечивающих прямое и обратное движение морской воды из моря в емкость и из емкости обратно в море. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к отрасли морской энергетики и предназначено для извлечения электрической энергии из морских волн, ветра и столба жидкости над гидротурбиной.
Известна волновая электростанция, содержащая вертикальную трубу, врезанную в платформу, один конец которой открыт и погружен в море, а другой меньшего диаметра сообщается с атмосферой, причем в полости этой трубы закреплена турбина с генератором (Волновая электростанция Ocean-linx. www.novate.ru/blogs/040309/11568/).
Недостатком аналога является неэффективное использование сжатого воздуха для получения электрической энергии.
Наиболее близкой к предлагаемому изобретению является электростанция на дне моря, содержащая реверсивный турбинный насос с клапаном и гидрогенератор, размещенные в камере, установленной на дне моря, всасывающий трубопровод, сообщающийся с морем, напорный трубопровод, сообщающийся с емкостью, установленной на дне моря, в верхней части которой закреплена труба, сообщающаяся с атмосферой (Электростанция на морском дне, 2013. http//phys.org/news/2013-05-storage-power-seabed.html).
Недостаток прототипа заключается в больших затратах электрической энергии для работы турбины в обратном направлении при удалении воды из емкости.
Техническим результатом заявляемого изобретения является повышение эффективности за счет использования устройств для сжатия воздуха и вытяжки сжатого воздуха, обеспечивающих прямое и обратное движение морской воды из моря в емкость и из емкости обратно в море.
Для достижения указанного технического результата в гидроэлектростанции на дне моря, содержащей камеру, в которой размещены гидротурбина двустороннего действия, гидрогенератор, всасывающий и напорный трубопроводы и емкость, установленную на дне моря, дополнительно смонтированы устройство для сжатия воздуха и устройство для вытяжки сжатого воздуха, устройство для сжатия воздуха выполнено в виде трубопровода, соединяющего пустотелую колонну с впускным клапаном, ресивер с входным клапаном, задвижку с электроприводом и емкость, выполненную с датчиками максимального и минимального уровня воды, а устройство для вытяжки сжатого воздуха выполнено в виде трубопровода, соединяющей дефлектор, турбогенераторный блок, задвижку с электроприводом и емкость, на всасывающем трубопроводе установлены съемная сороудерживающая решетка и задвижка с электроприводом.
Кроме того, заявляемое решение имеет факультативные признаки, характеризующие его частные случаи, а именно:
- пустотелая колонна изготовлена из синтетического материала, стойкого к соленой воде и к обрастанию морскими организмами;
- съемная сороудерживающая решетка выполнена в виде съемной кассеты и изготовлена, например, из медно-никелевого материала;
- дефлектор выполнен в форме цилиндра с узлом вращения вокруг вертикальной оси, стабилизатором и окнами на боковой поверхности цилиндра.
Отличительными признаками предлагаемого изобретения от указанного выше, наиболее близкого к нему, являются - монтаж дополнительных устройств для сжатия воздуха и для вытяжки сжатого воздуха, выполнение устройства для сжатия воздуха в виде трубопровода, соединяющего пустотелую колонну с впускным клапаном, ресивер с входным клапаном, задвижку с электроприводом и емкость с датчиками максимального и минимального уровня воды, выполнение устройства для вытяжки сжатого воздуха в виде трубопровода, соединяющей дефлектор, турбогенераторный блок, задвижку с электроприводом и емкость, установление на всасывающем трубопроводе съемной сороудерживающей решетки и задвижки с электроприводом.
Благодаря наличию этих признаков применение предлагаемого устройства позволяет исключить затраты электрической энергии для работы гидротурбины двустороннего действия при удалении воды из емкости и дополнительно получать электрическую энергию от турбогенераторного блока.
Предлагаемое изобретение иллюстрируется чертежами, представленными на фиг.1 и фиг.2.
На фиг.1 показан общий вид гидроэлектростанции на дне моря.
На фиг.2 - вид А сверху на стабилизатор, ресивер, пустотелую колонну и на платформу.
Гидроэлектростанция на дне моря представляет собой комплекс, состоящий из надводных и подводных сооружений.
К подводным сооружениям относится камера 1, в которой установлена гидротурбина 2 двустороннего действия, и гидрогенератор 3. На всасывающем трубопроводе 4 установлена задвижка 5 с электроприводом, съемная сороудерживающая решетка 6 выполнена в виде кассеты и изготовлена, например, из медно-никелевого материала. Напорный трубопровод 7 присоединен к емкости 8 с датчиком 9 максимального и датчиком 10 минимального уровней воды. К емкости 8 присоединена гибкая труба 11, выше днища платформы 12 она металлическая 13, и является общей для устройств сжатия воздуха и вытяжки сжатого воздуха.
К надводным сооружениям относится платформа 12, установленная на тросах 14 с якорями 15 на дне 16 моря, на которой размещены устройства для сжатия воздуха и вытяжки сжатого воздуха. Устройство для сжатия воздуха в виде трубопровода 17 соединяет пустотелую колонну 18, один конец которой открыт и погружен в море, а другой закрыт и имеет впускной клапан 19, ресивер 20 с входным клапаном 21 и задвижку 22 с электроприводом. Устройство для вытяжки сжатого воздуха размещено на металлической части трубы 13 и включает: дефлектор 23 с узлом вращения 24 вокруг вертикальной оси, турбогенераторный блок 25 и задвижку 26 с электроприводом. Дефлектор 23 выполнен в форме цилиндра с узлом вращения 24 вокруг вертикальной оси, стабилизатором 27 и окнами 28 на боковой поверхности цилиндра.
Работа гидроэлектростанции на дне моря осуществляется следующим образом.
Рассмотрим работу устройства для сжатия воздуха в виде трубопровода 17, которое установлено на платформе 12, и при помощи тросов 14 крепится к якорям 15 на дне 16 моря. Высокая волна поступает внутрь пустотелой колонны 18 и выдавливает воздух (волна работает как поршень насоса), впускной клапан 19 закрывается, входной клапан 21 ресивера 20 открывается, сжатый воздух накапливается в ресивере 20. В период низкой волны входной клапан 21 закрывается сжатым воздухом в ресивере 20, а выпускной клапан 19 открывается под действием атмосферного давления, которое больше разряженного давления в пустотелой колонне 18. Открываются задвижки 22 и 5, сжатый воздух из ресивера 20 поступает в емкость 8 с датчиками 9 и 10 максимального и минимального уровней воды и выдавливает морскую воду из емкости 8 по напорному трубопроводу 7, при этом вода вращает рабочее колесо гидротурбины 2, гидрогенератор 3 вырабатывает электрическую энергию, вода через съемную сороудерживающую решетку 6 поступает в море.
Процесс продолжается до тех пор, пока уровень воды в емкости 8 не достигнет минимального значения, и сигнал от датчика 10 не закроет задвижку 22 и одновременно откроет задвижку 26.
Работа устройства для вытяжки сжатого воздуха. Исходное положение: задвижки 5, 22 и 26 с электроприводами закрыты, емкость 8 заполнена атмосферным воздухом. Начало работы: задвижка 26 открыта; задвижка 5 открыта. Морская вода проходит через съемную сороудерживающую решетку 6, поступает во всасывающий трубопровод 4, раскручивает рабочее колесо гидротурбины 2, гидрогенератор 3 вырабатывает электрическую энергию, вода по напорному трубопроводу 7 поступает в емкость 8 и выдавливает воздух по гибкой трубе 11 и далее по ее металлической 13 части он поступает в турбогенераторный блок 25, который вырабатывает электрическую энергию, далее воздух выходит в атмосферу через окна 28 дефлектора 23, который, вращаясь (узел 24), автоматически ориентируется при помощи стабилизатора 27 навстречу набегающему потоку воздуха. При обтекании цилиндра дефлектора 23 у его окон 28 образуется пониженное давление, которое увеличивает эффективность процесса вытяжки воздуха. Процесс вытяжки воздуха заканчивается, когда уровень воды омывает датчик 9 максимального уровня воды, закрываются задвижка 5 и задвижка 26 с электроприводами.
Процессы сжатия воздуха и вытяжки сжатого воздуха повторяются и обеспечивают выработку электрической энергии, используя энергию давления столба жидкости над камерой 1 и воспроизводимую волновую и ветровую энергию.
Предлагаемая гидроэлектростанция на дне моря позволяет исключить затраты электрической энергии для работы реверсивной турбины в обратном направлении при удалении воды из емкости и дополнительно получить электрическую энергию от турбогенераторного блока приспособления для вытяжки сжатого воздуха.

Claims (4)

1. Гидроэлектростанция на дне моря, включающая камеру, в которой размещены гидротурбина двустороннего действия, гидрогенератор, всасывающий и напорный трубопроводы и емкость, установленную на дне моря, отличающаяся тем, что на ней дополнительно смонтированы устройство для сжатия воздуха и устройство для вытяжки сжатого воздуха, устройство для сжатия воздуха выполнено в виде трубопровода, соединяющего пустотелую колонну с впускным клапаном, ресивер с входным клапаном, задвижку с электроприводом и емкость, выполненную с датчиками максимального и минимального уровня воды, а устройство для вытяжки сжатого воздуха выполнено в виде трубопровода, соединяющей дефлектор, турбогенераторный блок, задвижку с электроприводом и емкость, на всасывающем трубопроводе установлены съемная сороудерживающая решетка и задвижка с электроприводом.
2. Гидроэлектростанция на дне моря по п. 1, отличающаяся тем, что пустотелая колонна изготовлена из синтетического материала, стойкого к соленой воде и к обрастанию морскими организмами.
3. Гидроэлектростанция на дне моря по п. 1, отличающаяся тем, что съемная сороудерживающая решетка выполнена в виде съемной кассеты и изготовлена, например, из медно-никелевого материала.
4. Гидроэлектростанция на дне моря по п. 1, отличающаяся тем, что дефлектор выполнен в форме цилиндра с узлом вращения вокруг вертикальной оси, стабилизатором и окнами на боковой поверхности цилиндра.
RU2014116995/06A 2014-04-25 2014-04-25 Гидроэлектростанция на дне моря RU2547678C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014116995/06A RU2547678C1 (ru) 2014-04-25 2014-04-25 Гидроэлектростанция на дне моря

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014116995/06A RU2547678C1 (ru) 2014-04-25 2014-04-25 Гидроэлектростанция на дне моря

Publications (1)

Publication Number Publication Date
RU2547678C1 true RU2547678C1 (ru) 2015-04-10

Family

ID=53296429

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014116995/06A RU2547678C1 (ru) 2014-04-25 2014-04-25 Гидроэлектростанция на дне моря

Country Status (1)

Country Link
RU (1) RU2547678C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU684153A1 (ru) * 1977-12-21 1979-09-05 Babintsev Ivan A Волнова энергетическа установка
JPS5638571A (en) * 1979-09-06 1981-04-13 P Ii Kenkyusho:Kk Wave-activated power plant utilizing resonance pipe
WO2010022474A1 (en) * 2008-09-01 2010-03-04 Oceanlinx Ltd Improvements in ocean wave energy extraction
CN102108933A (zh) * 2011-03-21 2011-06-29 中国水利水电科学研究院 一种参数共振的近岸波能发电系统
KR20120121179A (ko) * 2011-04-26 2012-11-05 한국해양대학교 산학협력단 파력 발전용 방파제 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU684153A1 (ru) * 1977-12-21 1979-09-05 Babintsev Ivan A Волнова энергетическа установка
JPS5638571A (en) * 1979-09-06 1981-04-13 P Ii Kenkyusho:Kk Wave-activated power plant utilizing resonance pipe
WO2010022474A1 (en) * 2008-09-01 2010-03-04 Oceanlinx Ltd Improvements in ocean wave energy extraction
CN102108933A (zh) * 2011-03-21 2011-06-29 中国水利水电科学研究院 一种参数共振的近岸波能发电系统
KR20120121179A (ko) * 2011-04-26 2012-11-05 한국해양대학교 산학협력단 파력 발전용 방파제 구조

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A storage power plant on the seabed. http://phys.org/news/2013-05-storage-power-seabed.html. *

Similar Documents

Publication Publication Date Title
US11566610B2 (en) Wave-powered generator
CN103867422A (zh) 一种柔性伸缩缸海洋潮汐泵水装置
RU2547678C1 (ru) Гидроэлектростанция на дне моря
RU86959U1 (ru) Устройство для сбора и удаления плавающих жидких веществ
RU2019140562A (ru) Способ производства электроэнергии
RU2019140561A (ru) Способ производства электроэнергии
RU2019140519A (ru) Способ производства электроэнергии
RU2019140523A (ru) Способ производства электроэнергии
RU2019140175A (ru) Способ производства электроэнергии
RU2019140563A (ru) Способ производства электроэнергии
RU2019140170A (ru) Способ производства электроэнергии
RU2019140524A (ru) Способ производства электроэнергии
RU2019140558A (ru) Способ производства электроэнергии
RU2019138928A (ru) Способ производства электроэнергии
RU2019138927A (ru) Способ производства электроэнергии
RU2019140559A (ru) Способ производства электроэнергии
RU2019138940A (ru) Способ производства электроэнергии
RU2019140560A (ru) Способ производства электроэнергии
RU2019140091A (ru) Способ производства электроэнергии
RU2019138962A (ru) Способ производства электроэнергии
RU2019140522A (ru) Способ производства электроэнергии
RU2019140520A (ru) Способ производства электроэнергии
RU2019140546A (ru) Способ производства электроэнергии
RU2020104111A (ru) Способ производства электроэнергии
RU2019140551A (ru) Способ производства электроэнергии