RU2546053C1 - Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером - Google Patents

Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером Download PDF

Info

Publication number
RU2546053C1
RU2546053C1 RU2013141978/28A RU2013141978A RU2546053C1 RU 2546053 C1 RU2546053 C1 RU 2546053C1 RU 2013141978/28 A RU2013141978/28 A RU 2013141978/28A RU 2013141978 A RU2013141978 A RU 2013141978A RU 2546053 C1 RU2546053 C1 RU 2546053C1
Authority
RU
Russia
Prior art keywords
emitter
anode
photodiode
vacuum
tunneling
Prior art date
Application number
RU2013141978/28A
Other languages
English (en)
Other versions
RU2013141978A (ru
Inventor
Гариф Газизович Акчурин
Александр Николаевич Якунин
Николай Павлович Абаньшин
Георгий Гарифович Акчурин
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского"
Priority to RU2013141978/28A priority Critical patent/RU2546053C1/ru
Publication of RU2013141978A publication Critical patent/RU2013141978A/ru
Application granted granted Critical
Publication of RU2546053C1 publication Critical patent/RU2546053C1/ru

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

Изобретение относится к вакуумной микроэлектронике. Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером включает измерение фототока вакуумного фотодиода, возникающего при облучении непрерывным или импульсным оптическим излучением эмиттера при установке определенного значения ускоряющего напряжения на аноде, при этом облучают планарную поверхность наноструктурированного эмиттера лазерным пучком с длиной волны, выбранной из УФ-, видимого или ИК-диапазона при энергии фотона меньше работы выхода электронов из эмиттера, устанавливают фиксированное значение напряжения на аноде U, не превышающее значение, определяемое из заданного соотношения. Изобретение обеспечивает возможность создания сверхскоростного вакуумного туннельного фотодиода, позволяющего детектировать оптическое излучение микро- и милливаттной мощности в ультрафиолетовой, видимой, ближней и средней инфракрасной областях спектра с временным разрешением, ограниченным диапазоном в сотни фемтосекунд. 6 ил.

Description

Изобретение относится к вакуумной микроэлектронике и может быть использовано при детектировании пикосекундных лазерных импульсов в оптических линиях связи в инфракрасном диапазоне, в сверхскоростных сцинтиляционных счетчиках ядерных частиц в ультрафиолетовой области, в визуализации сверхскоростных процессов с пико- и фемтосекундным временным разрешением в видимой или ИК-области оптического спектра.
Известен способ сверхбыстродействующего детектирования импульсного оптического излучения в видимом и ИК-диапазонах с помощью полупроводниковых лавинно-пролетных фотодиодов, включающий облучение их микроразмерной поверхности оптическим пучком при условии, что энергия фотона hν больше ширины запрещенной зоны Еg в p-n-переходе, образованном планарными полупроводниками с электронным и дырочным типом проводимости и измерении фототока, пропорционального интенсивности детектируемого оптического излучения при включении фотодиода в обратном направлении при подаче напряжения в предпробойном режиме (Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1990, 668 с.).
Основным недостатком полупроводниковых лавинно-пролетных фотодиодов является работа в предпробойном режиме, так как изменение окружающей температуры даже на единицы градусов может приводить не только к изменению чувствительности фотоприемника в разы, но и к режиму пробоя и, соответственно, повреждению фотодиода. Кроме того, максимальное быстродействие таких фотоприемников, например из германия с полосой детектирования до 1800 нм, ограничено временем фотоотклика 1 нс (каталоги ведущей в мире японской оптоэлектронной фирмы “Hamamatsy” или в РФ НПО «Полюс»).
Известен способ создания сверхбыстродействующего фотодиода для детектирования импульсного оптического излучения в видимом и ИК-диапазонах с помощью полупроводниковых PIN-диодов, включающий облучение их микроразмерной поверхности оптическим пучком при условии, что энергия фотона hν больше ширины запрещенной зоны Еg в обедненной области, созданной внутри p-n-перехода полупроводника с электронным и дырочным типом проводимости и измерении фототока, пропорционального интенсивности детектируемого оптического излучения при включении фотодиода в обратном направлении при подаче напряжения (Гауэр Дж. Оптические системы связи. М.: Радио и связь, 1989, с.554). В отличие от обычных фотодиодов в обедненной области возникает сильное электрическое поле, в котором электроны и дырки, возникающие при фотоэффекте, быстро дрейфуют в электрическом поле обедненного слоя, при этом скорость дрейфа носителей заряда не больше скорости диффузии, реализуемой в обычном фотодиоде.
Известен способ создания сверхбыстродействующего фотодиода для детектирования импульсного оптического излучения в видимом и ИК-диапазонах с помощью полупроводниковых PIN-диодов (Быстродействующие p−i−n-фотодиоды для спектрального диапазона 0.9−2.4 μm. И.А. Андреев, О.Ю. Серебренникова, Г.С. Соколовский и др. // Письма в ЖТФ, 2010, том 36, вып. 9., с. 43-49).
Основным недостатком полупроводниковых PIN-диодов является значительный уровень шума, при этом предельное быстродействие не превышает 0.3 нс (каталог ведущих фирм по фотодетекторам “Hamamatsy” или НПО «Полюс»).
Известен способ создания сверхскоростного фотодетектора на основе электронно-оптического преобразователя (Щелев М.Я. Пико-фемто-атто секундная фотоэлектроника (взгляд через полувековую «лупу времени») // УФН, 2012, Т.182, №6, С. 649-656) с временным разрешением 10-12-10-13 сек. На фотокатоде при условии, что оптическое изображение преобразуется в фотоэлектронное (внешний фотоэффект) с последующим фокусированием, усилением и отклонением по выходному экрану ЭОП фотоэлектронных изображений, ограниченных в пространстве узкой щелью (стрик-камера).
Однако такие ЭОП требуют высоковольтных источников питания с субпикосекундными управляющими электрическими импульсами, дороги и сложны в эксплуатации.
Известен способ создания сверхскоростного фотодетектора на основе нанографитовой пленки при оптическом выпрямлении (детектировании) импульсного лазерного излучения (Зонов Р.Г. Исследование взаимодействия лазерного излучения с нанографитовыми пленками для создания фотоприемника на оптическом выпрямлении. Автореферат диссертации, Ижевск, 2006 г.). При прохождении мощного лазерного импульса через нелинейно-оптический кристалл возникает электрическая поляризация, изменяющаяся во времени пропорционально огибающей мощности лазерного импульса на металлических электродах на торцах кристалла.
Однако данный нелинейно-оптический способ может быть реализован только для лазерных импульсов с мегаваттной мощностью, так как эффективность нелинейного преобразования в средах с квадратичной нелинейностью, используемых для детектирования излучения, пропорциональна квадрату интенсивности и не может быть реализована для детектирования слабых оптических потоков с микро- и милливаттной оптической мощностью.
Известен способ создания сверхскоростного вакуумного фотодетектора на основе металлического наноструктурированного острийного эмиттера при детектировании фемтосекундых лазерных импульсов гигаваттной мощности с длиной волны 800 нм (S. Tsujino, P. Beaud, E. Kirk, T. Vogel, H. Sehr, J. Gobrecht, and A. Wrulich. Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses. APPLIED PHYSICS LETTERS. 2008, 92, 193501). Возникновение фотоотклика связывается с нелинейным трехфотонным процессом в случае, если выполняется условие, что
3·hν=3·hс/λ=3·1240/λ>А, (1)
где hν - энергия фотона в эВ; А - работа выхода электронов из металла в эВ; λ - длина волны детектируемого излучения в нм, то существует вероятность фотоэффекта при гигаваттных уровнях оптической мощности.
Однако данный нелинейно-оптический способ фотодетектирования может быть реализован только для лазерных импульсов с гигаваттной мощностью, так как сечение трехфотонного нелинейного процесса для детектирования излучения, пропорционально 10-54·Е4 (Е - напряженность электрического поля в В/см), т.е. квадрату интенсивности оптического излучения, и, конечно, не может быть реализован для детектирования слабых оптических потоков с микро- и милливаттной оптической мощностью.
Наиболее близким к предлагаемому является способ создания сверхскоростного вакуумного фотодиода, включающий облучение фотоэмиттера оптическим излучением УФ- или видимого диапазона, при этом облучаемая поверхность эмиттера представляет металл или его сплавы с определенной работой выхода электронов А (эВ), измерение значения фототока, пропорционального интенсивности детектируемого оптического излучения при подаче ускоряющего напряжения на анод (Фотоэмиссионные приемники излучения. Левин Г.Э., Степанов Б.М., Шефов А.С., Справочник по лазерам. Под ред. А.М. Прохорова. М.: Советское радио, 1978, Т.2, с. 158-174; http://www.hamamatsu.com/us/en/product/category/3100/3001/index.html. Photomultiplier Tubes. Construction and Operating Characteristics. Connections to External Circuits).
В соответствии с законом фотоэффекта (классическое соотношение Эйнштейна) туннелирование электронов из поверхности облучаемого фотоэмиттера в вакуум происходит при условии, если энергия фотона hν больше работы выхода А (эВ) электронов из эмиттера, определяемого разностью вакуумного уровня E0 и уровня Ферми EF в энергетическом распределении электронов, при этом - А=E0-EF (Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников, М.: Наука, 1990, 668 с.). Фотоэмиттер (фотокатод) обычно состоит из полупроводниковых материалов (в частности, соединений щелочных металлов с сурьмой и/или другими неметаллами), имеющих низкую работу выхода.
Основным недостатком таких сверхбыстродействующих вакуумных фотодиодов, так называемых ФЭК, является существование красной границы фотоэффекта вследствие того, что работа выхода А электронов из металлов может изменяться от 6 до 1.8 электрон-вольт (Зи С. Физика полупроводниковых приборов, М.: Мир, 1984, 456 с.) и поэтому максимальная длина волны, для которой наблюдается фотоэффект, определяется соотношением λ(нм)≤1240/А(эВ), т.е. уже в ближней инфракрасной области классический фотоэффект не наблюдается. Типичное быстродействие вакуумных фотодетекторов обусловлено конечным временем пролета фотоэлектронов от эмиттера до анода в одноэлектродных системах и временной задержки τ в системе динодов в вакуумных фотоэлектронных умножителях, в которых пространственное расстояние фотоэмиттер - анод составляет до 10 см, при этом величина τ может составлять значение от единиц микросекунд до десятков наносекунд. Наиболее быстродействующий одноэлектронный вакуумный фотодиод (ФЭК) имеет предельное быстродействие, которое ограничено десятками пикосекунд, однако при этом их фоточувствительность такова, что реально такие фотодетекторы используются только для детектирования мощных мегаваттных лазерных импульсов.
Задачей изобретения является возможность создания сверхскоростного вакуумного туннельного фотодиода, позволяющего детектировать оптическое излучение микро- и милливаттной мощности в ультрафиолетовой, видимой, ближней и средней инфракрасной областях спектра с временным разрешением, ограниченным диапазоном в сотни фемтосекунд.
Технический результат заключается в возможности детектирования сверхкоротких оптических импульсов длительностью менее 1 пс.
Поставленная задача решается тем, что в способе создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером, включающем измерение фототока вакуумного фотодиода, возникающего при облучении непрерывным или импульсным оптическим излучением эмиттера при установке определенного значения ускоряющего напряжения на аноде, согласно решению облучают планарную поверхность наноструктурированного эмиттера лазерным пучком с длиной волны, выбранной из УФ-, видимого или ИК- диапазона при энергии фотона меньше работы выхода электронов из эмиттера, устанавливают фиксированное значение напряжения на аноде U, не превышающее значение, определяемое из соотношения:
Umax≤103(А-1240/λ)2∙Z/β (2),
при этом быстродействие τ фотодиода при выбранном расстоянии эмиттер - анод Z определяется из соотношения:
τ≤1.68·10-12Z/U1/2 (3),
где
τ - время быстродействия туннельного фотодиода (в сек);
U - разность потенциала эмиттер -анод (в вольтах);
Z - расстояние эмиттер-анод (в микронах);
β - усиление локальной напряженности электростатического поля на эмиттере (безразмерная величина);
А - работа выхода электронов с поверхности эмиттера (в электрон-вольтах);
1240/λ=hс/λ=hν - энергия фотона, в эВ, облучающего эмиттер и вызывающего туннельный фотоэмиссионный ток;
λ - детектируемая длина волны оптического излучения (в нм);
h - постоянная Планка;
с - скорость света.
Изобретение поясняется чертежами.
На фиг. 1 изображен фрагмент туннельного фотодиода с эмиттером на основе полевой эмиссионной структуры планарно-торцевого типа с нанолезвием из α-углерода (1), анода из молибдена (2), измеренный с помощью сканирующей электронной микроскопии.
На фиг. 2 представлена схема энергетических уровней системы «металл-вакуум» в сильном электростатическом поле при поглощении фотона с энергией hν электроном эмиттера при условии, что hν≤ А, т.е. энергия фотона меньше работы выхода электрона из эмиттера; где (3) - форма потенциального барьера «металл-вакуум» в сильном электростатическом поле при учете потенциала Шоттки (4).
На фиг. 3 представлена расчетная зависимость уменьшения высоты потенциального барьера«металл-вакуум» от напряженности электростатического поля на эмиттере при значении работы выхода электронов из него, равной 5 эВ.
На фиг. 4 представлена экспериментальная вольт-амперная характеристика разработанного вакуумного туннельного фотодиода при лазерном облучении с длиной волны λ=473 нм (энергия фотона 2.62 эВ) углеродного наноразмерного эмиттера с работой выхода 5 эВ для двух уровней лазерной мощности, отличающихся на порядок (В и С) и темнового автоэмиссионного тока (D) от изменения ускоряющего напряжения на аноде при расстоянии эмиттер-анод 1 микрон.
На фиг. 5 представлена экспериментальная зависимость туннельного фотоэмиссионного тока фотомикродиода от уровня детектируемой лазерной мощности W/W0 с длиной волны 473 нм для трех значений ускоряющего поля при напряжении: U=21.6 (G), 30.1 (H), 39.5 V (K).
На фиг. 6 представлена экспериментальная осциллограмма переменной составляющей фототока при облучении вакуумного туннельного фотодиода импульсным излучением полупроводникового лазера с длиной волны 650 нм.
Позициями на чертежах обозначены:
1 - фотоэмиттер в виде 3D пространственно наноградиентной структуры с заданным коэффициентом усиления локальной напряженности электростатического поля β;
2 - анод диода, расположенный на расстоянии Z от граничной поверхности эмиттера;
3 - форма потенциального барьера «металл-вакуум» в сильном электростатическом поле;
4 - потенциал сил зеркального изображения (потенциал Шоттки).
Фотодиод представляет собой совокупность эмиттерных гребенок, состоящих из последовательности пространственно-периодических микролезвий с острием кромки длиной 200 нм и толщиной 20 нм с коэффициентом усиления локальной напряженности электростатического поля β не менее 100-200, расстояние между эмиттером и анодом формируется в диапазоне
Figure 00000001
1-3 мкм, а максимальная разность потенциалов «лезвие эмиттера-анод» Umax не превышает 100 вольт при максимальной спектральной полосе детектируемого оптического излучения. Каждая эмиттерная гребенка через полосковую линию с волновым сопротивлением 50 Ом и планарным 50 Ом сопротивлением соединена с общей «нулевой» шиной.
Способ осуществляется следующим образом.
Оптическое излучение, выбранное из спектрального диапазона от ультрафиолетового до инфракрасного, фокусируется на поверхность фотоэмиттера 1 вакуумного фотодиода, как показано на фиг. 1. Фотоэмиттер 1 сформирован на основе 3D пространственно наноградиентной структуры, заданной коэффициентом усиления локальной напряженности электростатического поля β. На анод 2 подается положительное напряжение, которое изменяется от нуля до значения, не превышающего Umax в соответствии с соотношением (2), при этом возникает туннельный фотоэмиссионный ток JPh, экспоненциально возрастающий с ростом напряжения, устанавливается его оптимальное значение по сравнению с уровнем темнового автоэмиссионного тока, порог возникновения которого существенно выше по напряжению (см. фиг. 4). Для измерения импульсной (переменной) составляющей туннельного фотоэмиссионного тока в электрическую цепь фотоэмиттера включено нагрузочное сопротивление, падение напряжение на котором измеряется с помощью сверхскоростного осциллографа или спектроанализатора. Нагрузочное планарное сопротивление должно быть согласовано с входным волновым сопротивлением измерительного прибора.
В основе способа создания сверхскоростного и сверхширокополосного вакуумного туннельного фотодиода в УФ-, видимой и ИК спектральной области на основе наноструктурного эмиттера лежит обнаруженный авторами туннельный фотоэффект при энергиях фотонов, существенно меньших работы выхода электрона из эмиттера, который может наблюдаться в случае формирования сильного электростатического поля в межэлектродном промежутке «эмиттер-анод». Физический механизм обнаруженного авторами туннельного фотоэффекта в сильных электростатических полях заключается в возможности управления вероятностью туннелирования неравновесных фотоэлектронов, возникающих вследствие поглощения фотонов с энергией hν, и их квантовое туннелирование через потенциальный барьер «металл-вакуум» 3 при уменьшении его высоты и ширины с помощью сильного электростатического поля при учете эффекта Шоттки 4 (О возможности управления красной границей туннельного фотоэффекта в углеродных наноразмерных структурах в широком диапазоне длин волн - от ультрафиолетового до инфракрасного. Г.Г. Акчурин, А.Н. Якунин, Н.П. Абаньшин, Б.И. Горфинкель, Г.Г. Акчурин. Письма в ЖТФ, 2013, том 39, вып. 12, c. 8-16). Соответствующие расчеты изменения высоты потенциального барьера от напряженности электростатического поля представлены на фиг. 3.
Использование предложенной модели для оценки влияния сильных электростатических полей с напряженностью в диапазоне 107-108 В/cм показало, что высотой и шириной потенциального барьера можно эффективно управлять, уменьшая их в несколько раз с повышением напряженности поля вплоть до режима возникновения фото- и автоэмиссионого электрического пробоя. Использование модифицированной модели полевой электронной эмиссии Фаулера-Нордгейма (Fowler R.H., Nordheim L., Electron Emission in Intense Electric Fields //Proc. Roy. Soc. Lond. 1928. A119. P. 173-181), учитывающей изменение уровня Ферми для неравновесных фотоэлектронов, позволяет получить соотношение, определяющее изменение энергетического расстояния от уровня Ферми до вершины потенциального барьера для неравновесных электронов, поглотивших энергию фотонов hν
Δφ=А-hν-(е3βU/Z)1/2, (5)
где е - заряд электрона; β - форм-фактор усиления локальной напряженности электростатического поля; U - разность потенциалов внешнего электростатического поля на зазоре Z эмиттер-анод.
Выражение (5) позволяет оценить те значения напряженности полей F=β U/Z, соответствующих вероятности туннелирования неравновесных фотоэлектронов электронов, стремящихся к 1, что соответствует в случае оптического облучения эмиттера с энергией фотона hν условию фотоэмиссионного пробоя. Из соотношения (5) нетрудно получить выражение для максимально допустимого напряжения на аноде, соответствующего максимальному быстродействию вакуумного туннельного фотодиода:
Umax≤103(А-1240/λ)2·Z/β (6)
Рассматривая движение электронов в вакуумных электронно-лучевых приборах и используя закон сохранения энергии в случае нерелятивистского приближения (напряжение U менее 104 вольт), нетрудно получить выражение для скорости электронов
υ=(2eU/m)1/2=5,93·105U1/2 (м/c) (7)
из которого, используя соотношение (6), получаем выражение для оценки времени пролета электрона между эмиттером и анодом τ при известном расстоянии между ними Z,
τ=Z/υ≤1.68·10-12Z/U1/2,
Результаты апробации данного способа были экспериментально протестированы на устройстве при измерении вольт-амперных фотоэмиссионных характеристик при облучении углеродного наноразмерного эмиттера лазерным излучением в синей спектральной области с длиной волны излучения λ=473 нм и темновой автоэмиссионной характеристики представлены на фиг. 4. На фиг. 4. представлена зависимость туннельного фотоэмиссионного тока при лазерном облучении с длиной волны λ=473 нм (энергия фотона 2.62 эВ) углеродного наноразмерного эмиттера, с работой выхода 5 эВ для двух уровней лазерной мощности, отличающихся на порядок (В и С), и темнового автоэмиссионного тока (D) от изменения ускоряющего напряжения на аноде вакуумного микродиода при расстоянии эмиттер - анод Z=1 микрон.
Линейность туннельного фотоэмиссионного тока подтверждается экспериментальными результатами, представленными на фиг. 5, где показана ватт-амперная характеристика, измеренная модуляционным методом, которая близка к линейной, что свидетельствует о наблюдении однофотонного туннельного фотоэмиссионого эффекта. Нелинейность начинает проявляться лишь при уровне лазерной мощности P/P0>0.6 (плотность оптической мощности 120 Вт/cм2).
Экспериментально детектировалось оптическое светодиодное излучение УФ (380 нм) и фиолетовой областей (405 нм), светодиодное излучение ближнего ИК-диапазона с длинами волны 840 и 950 нм (фотодиод АЛ-107), а также излучением суперлюминесцентного диода с λ=1550 нм.
Для подтверждения возможности измерения оптических импульсов фотоэмиттер вакуумного туннельного фотодиода облучался излучением полупроводникового лазера с длиной волны 650 нм милливаттной мощности, прошедшего механический обтюратор, и результаты измерений представлены на Фиг.6. Кроме потенциально минимального значения постоянной времени вакуумного туннельного фотодиода, определяемого соотношением (3), при экспериментальном измерении форма переменной составляющей фототока определяется постоянной времени RC в электрической цепи эмиттера, при этом в случае определения минимальной постоянной времени (максимального быстродействия) вакуумного туннельного фотодиода нагрузочное сопротивление R должно быть согласовано с входным волновым сопротивлением сверхскоростного осциллографа или анализатора спектра, типичное значение которого составляет 50 Ом.

Claims (1)

  1. .
    Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером, включающий измерение фототока вакуумного фотодиода, возникающего при облучении непрерывным или импульсным оптическим излучением эмиттера при установке определенного значения ускоряющего напряжения на аноде, отличающийся тем, что облучают планарную поверхность наноструктурированного эмиттера лазерным пучком с длиной волны, выбранной из УФ-, видимого или ИК-диапазона при энергии фотона меньше работы выхода электронов из эмиттера, устанавливают фиксированное значение напряжения на аноде U, не превышающее значение, определяемое из соотношения:
    Umax≤103(А-1240/λ)2·Z/β,
    при этом быстродействие τ фотодиода при выбранном расстоянии эмиттер - анод Z определяется из соотношения:
    τ≤1.68·10-12Z/U1/2,
    где
    τ - время быстродействия туннельного фотодиода (в сек);
    U - разность потенциала эмиттер - анод (в вольтах);
    Z - расстояние эмиттер - анод (в микронах);
    β - усиление локальной напряженности электростатического поля на эмиттере (безразмерная величина);
    А - работа выхода электронов с поверхности эмиттера (в электрон-вольтах);
    1240/λ=hс/λ=hν - энергия фотона, в эВ, облучающего эмиттер и вызывающего туннельный фотоэмиссионный ток;
    λ - детектируемая длина волны оптического излучения (в нм);
    h - постоянная Планка;
    с - скорость света.
RU2013141978/28A 2013-09-13 2013-09-13 Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером RU2546053C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013141978/28A RU2546053C1 (ru) 2013-09-13 2013-09-13 Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013141978/28A RU2546053C1 (ru) 2013-09-13 2013-09-13 Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером

Publications (2)

Publication Number Publication Date
RU2013141978A RU2013141978A (ru) 2015-03-20
RU2546053C1 true RU2546053C1 (ru) 2015-04-10

Family

ID=53285524

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013141978/28A RU2546053C1 (ru) 2013-09-13 2013-09-13 Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером

Country Status (1)

Country Link
RU (1) RU2546053C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914491A (en) * 1994-02-17 1999-06-22 Salokatve; Arto Detector for detecting photons or particles, method for fabricating the detector, and measuring method
WO2005017973A2 (en) * 2003-08-18 2005-02-24 Nanosource, Inc. Semiconductor avalanche photodetector with vacuum or gaseous gap electron acceleration region
RU2413328C1 (ru) * 2010-01-11 2011-02-27 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления многоострийного эмиссионного катода
WO2013004514A1 (en) * 2011-07-01 2013-01-10 Paul Scherrer Institut Field emission cathode structure and driving method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914491A (en) * 1994-02-17 1999-06-22 Salokatve; Arto Detector for detecting photons or particles, method for fabricating the detector, and measuring method
WO2005017973A2 (en) * 2003-08-18 2005-02-24 Nanosource, Inc. Semiconductor avalanche photodetector with vacuum or gaseous gap electron acceleration region
RU2413328C1 (ru) * 2010-01-11 2011-02-27 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления многоострийного эмиссионного катода
WO2013004514A1 (en) * 2011-07-01 2013-01-10 Paul Scherrer Institut Field emission cathode structure and driving method thereof

Also Published As

Publication number Publication date
RU2013141978A (ru) 2015-03-20

Similar Documents

Publication Publication Date Title
US10748730B2 (en) Photocathode including field emitter array on a silicon substrate with boron layer
Divochiy et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths
Adams et al. Timing characteristics of large area picosecond photodetectors
Lacaita et al. Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors
Cova et al. A semiconductor detector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution
Zappa et al. Solid-state single-photon detectors
Spinelli et al. Avalanche detector with ultraclean response for time-resolved photon counting
Nagai et al. Characterization of a large area silicon photomultiplier
TW202006964A (zh) 可見光無線通信用的受光裝置
Fukasawa et al. High speed HPD for photon counting
Adamo et al. Signal to Noise Ratio of silicon photomultipliers measured in the continuous wave regime
El-Hajje et al. On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices
RU2546053C1 (ru) Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером
Wang et al. Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection
Najafi et al. Ultrafast imaging of surface-exclusive carrier dynamics in silicon
Garming et al. Ultrafast scanning electron microscopy with sub-micrometer optical pump resolution
RU2523097C1 (ru) Сверхширокополосный вакуумный туннельный фотодиод для детектирования ультрафиолетового, видимого и инфракрасного оптического излучения и способ для его реализации
Losovoi et al. 200-femtosecond streak camera: development and dynamic measurements
CN207894829U (zh) 像增强型全光固体超快成像探测器
Suyama et al. Development of a multi-pixel photon sensor with single-photon sensitivity
Nadeev et al. Comparison of an avalanche photodiode and a photomultiplier tube as photodetectors of near-infrared radiation in the photon-counting mode
Barbarino et al. Another step towards photodetector innovation: The first 1-inch industrial VSiPMT
Jendrysik et al. Characterization of the first prototypes of Silicon Photomultipliers with bulk-integrated quench resistor fabricated at MPI semiconductor laboratory
Khosropour et al. On the response time of thin-film silicon lateral metal-semiconductor-metal photodetectors
Fukasawa et al. Multichannel HPD for high-speed single photon counting

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170914