RU2545885C2 - Method of obtaining multi-layered coating for cutting instrument - Google Patents

Method of obtaining multi-layered coating for cutting instrument Download PDF

Info

Publication number
RU2545885C2
RU2545885C2 RU2013134891/02A RU2013134891A RU2545885C2 RU 2545885 C2 RU2545885 C2 RU 2545885C2 RU 2013134891/02 A RU2013134891/02 A RU 2013134891/02A RU 2013134891 A RU2013134891 A RU 2013134891A RU 2545885 C2 RU2545885 C2 RU 2545885C2
Authority
RU
Russia
Prior art keywords
titanium
coating
cathode
cathodes
lower layer
Prior art date
Application number
RU2013134891/02A
Other languages
Russian (ru)
Other versions
RU2013134891A (en
Inventor
Владимир Петрович Табаков
Алексей Валерьевич Чихранов
Станислав Николаевич Власов
Дамир Ильдарович Сагитов
Сергей Валерьевич Сизов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority to RU2013134891/02A priority Critical patent/RU2545885C2/en
Publication of RU2013134891A publication Critical patent/RU2013134891A/en
Application granted granted Critical
Publication of RU2545885C2 publication Critical patent/RU2545885C2/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: vacuum-plasma application of multi-layered coating is carried out. First, lower layer of nitride of titanium compound, aluminium and chrome with their ratio, wt %: titanium 70.5-79.5, aluminium 14.0-20.0, chrome 6.5-9.5 is applied. After that upper layer of titanium nitride is applied. Application of coating layers is realised by means of three cathodes, located horizontally in one plane. First cathode is made of titanium and aluminium alloy, second - from titanium with placement opposite to the first one, and third is made composite of titanium and chrome with placement between them. Lower layer is applied with use of first and third cathodes, with upper layer being applied with use of second cathode.
EFFECT: increased workability of cutting instrument.
1 tbl

Description

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.The invention relates to methods for applying wear-resistant coatings to a cutting tool and can be used in metalworking.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998, 123 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.There is a method of increasing the resistance of a cutting tool (RI), in which a wear-resistant coating (PI) of titanium nitride (TiN) is applied on its surface using a vacuum-plasma method (see Tabakov V.P. Performance of a cutting tool with wear-resistant coatings based on complex nitrides and titanium carbonitrides. Ulyanovsk: Ulyanovsk State Technical University, 1998, 123 pp.). The reasons that impede the achievement of the following technical result when using the known method include the fact that in the known method, the coatings have a relatively low hardness. As a result of this, the coating undergoes more wear and tear, cracks quickly nucleate and propagate in it, leading to the destruction of the coating, which reduces the resistance of the coated radiation.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида титана и алюминия TiAlN и верхнего слоя нитрида титана TiN, раскрытый в описании к свидетельству на полезную модель RU 27099 U1, принятый за прототип.The closest method of the same purpose to the claimed invention in terms of features is a method of applying a multilayer coating consisting of a lower layer of titanium nitride and aluminum TiAlN and an upper layer of titanium nitride TiN, disclosed in the description of the utility model certificate RU 27099 U1, adopted as a prototype.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточными твердостью и остаточными сжимающими напряжениями, а следовательно, трещиностойкостью. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.For reasons that impede the achievement of the technical result indicated below when using a known cutting tool with a coating adopted as a prototype, the multilayer coating in the known method has insufficient hardness and residual compressive stresses, and therefore, crack resistance. As a result, the coating poorly resists the processes of wear and tear and quickly collapses when cutting.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. В двухслойном покрытии нижний слой должен обладать хорошей адгезией к инструментальной основе, высокими сжимающими напряжениями, что должно препятствовать образованию и развитию трещин в покрытии. Кроме того, создание микрослоистости приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.Recently, the increase in the cost of metal-cutting tools and the tightening of requirements for precision machined parts made the problem of increasing the resistance of radiation sources even more urgent. One of the ways to increase the resistance and, as a consequence, the health of RI with a coating is to apply multilayer coatings with layers with different physical and mechanical properties. In a two-layer coating, the lower layer should have good adhesion to the tool base, high compressive stresses, which should prevent the formation and development of cracks in the coating. In addition, the creation of micro-layering leads to an increase in its hardness and fracture toughness and, as a consequence, the working capacity of RI coated.

Технический результат - повышение работоспособности РИ.The technical result is an increase in the health of RI.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас.%: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5 и верхний слой из нитрида титана, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода.The specified technical result in the implementation of the invention is achieved by applying a lower layer of nitride compounds of titanium, aluminum and chromium at their ratio, wt.%: Titanium 70.5-79.5, aluminum 14.0-20.0, chromium 6, 5-9.5 and the top layer is made of titanium nitride, and the coating layers are applied horizontally in the same plane by three cathodes, the first of which is made of an alloy of titanium and aluminum, the second is made of titanium and placed opposite to the first, and the third is made of titanium and chrome and are placed between them, pr than the lower layer is applied using the first and third cathode, and the upper layer - using the second cathode.

Такая структура покрытия позволяет получить более высокую твердость нижнего слоя покрытия. При этом нижний слой обладает высокими трещиностойкостью и уровнем сжимающих напряжений из-за дополнительного легирования материала слоя и наличию в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.This coating structure allows to obtain a higher hardness of the lower coating layer. Moreover, the lower layer has high crack resistance and level of compressive stresses due to additional alloying of the material of the layer and the presence in their structure of microlayers obtained by coating according to the proposed cathode arrangement.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Слои покрытия должны обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.The invention consists in the following. During cutting, cracking processes occur in the coating, leading to its destruction. Under these conditions, the coating should have a layered structure to inhibit cracks. Coating layers must have high hardness to increase wear and crack resistance. Moreover, the layers of the multilayer coating should have high bond strength between each other, which is ensured by their high affinity for each other due to the presence of common elements.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.Coated plates obtained with deviations from the indicated production technology showed lower results.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также двухслойное покрытие по предлагаемому способу.For experimental verification of the claimed method, a prototype coating was applied, as well as a two-layer coating according to the proposed method.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки "Булат-6", снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними. Камеру откачивают до давления 6,65-10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают второй катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота включают первый и третий катоды и осаждают нижний слой покрытия TiAICrN толщиной 3,0 мкм. Верхний слой покрытия TiN толщиной 3,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенном втором катоде и подаче реакционного газа - азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.The proposed coating is as follows. MK8 carbide inserts (4.7 × 12 × 12 mm in size) are washed in an ultrasonic bath, wiped with acetone, alcohol and mounted on a rotary device in the vacuum chamber of the Bulat-6 installation equipped with three cathodes located horizontally in the same plane. When applying the coating, the first cathode is used, made of an alloy of titanium and aluminum, the second is made of titanium and placed opposite to the first, and the third is made composite of titanium and chromium and placed between them. The chamber is pumped out to a pressure of 6.65-10 -3 Pa, the rotator is turned on, a negative voltage of 1.1 kV is applied to it, the second cathode is turned on, and at an arc current of 100 A, the plates are cleaned and heated to a temperature of 560-580 ° C. The focusing coil current is 0.4 A. Then, at a negative voltage of 160 V, a coil current of 0.3 A and a supply of reaction gas — nitrogen, the first and third cathodes are turned on and a lower TiAICrN coating layer is deposited with a thickness of 3.0 μm. The upper layer of the TiN coating with a thickness of 3.0 μm is applied at a negative voltage of 160 V, a current of coils of 0.3 A, and the second cathode is turned on and the reaction gas is supplied with nitrogen. Then shut off the evaporators, the supply of reaction gas, voltage and rotation of the device. After 15-20 minutes, the chamber is opened and the coated tool is removed.

Микротвердость покрытий определяли на микротвердомере "ПМТ-3" под нагрузкой 100 г.The microhardness of the coatings was determined on a PMT-3 microhardness meter under a load of 100 g.

Остаточные напряжения в покрытии определяли на рентгеновском дифрактометре "ДРОН-3М" с использованием фильтрованного Сuкα-излучения.The residual stresses in the coating were determined on a DRON-3M X-ray diffractometer using filtered Cu to α radiation.

Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S =0,4 мм/зуб, глубина резания t=1,5 мм, ширина фрезерования В=20 мм. За критерий износа была принята величина фаски износа по задней поверхности h3=0,4 мм.Durable tests of the cutting tool were carried out with symmetrical face milling of 5XNM steel blanks on a 6P12 machine. Tested carbide inserts grade MK8, processed according to the known and proposed methods. The cutting conditions were as follows: cutting speed V = 247 m / min, feed S = 0.4 mm / tooth, cutting depth t = 1.5 mm, milling width B = 20 mm. For the wear criterion, the value of the chamfer of wear along the rear surface h 3 = 0.4 mm was taken.

В таблице 1 приведены результаты испытаний РИ с полученными покрытиями.Table 1 shows the test results of RI with the obtained coatings.

Как видно из приведенных в таблице 1 данных, стойкость пластин, с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,18-1,37 раза.As can be seen from the data in table 1, the resistance of the plates with the coatings deposited by the proposed method is higher than the resistance of the plates with the coating deposited by the prototype method 1.18-1.37 times.

Figure 00000001
Figure 00000001

Claims (1)

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас. %: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5 и верхний слой из нитрида титана, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода. A method of obtaining a multilayer coating for a cutting tool, including vacuum-plasma deposition of a multilayer coating, characterized in that the lower layer is made of nitride compounds of titanium, aluminum and chromium in their ratio, wt. %: titanium 70.5-79.5, aluminum 14.0-20.0, chromium 6.5-9.5 and the top layer of titanium nitride, and the coating layers are applied by three cathodes lying horizontally in the same plane, the first of which are made of an alloy of titanium and aluminum, the second is made of titanium and placed opposite to the first, and the third is made composite of titanium and chromium and placed between them, the lower layer being applied using the first and third cathodes, and the upper layer using the second cathode.
RU2013134891/02A 2013-07-23 2013-07-23 Method of obtaining multi-layered coating for cutting instrument RU2545885C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013134891/02A RU2545885C2 (en) 2013-07-23 2013-07-23 Method of obtaining multi-layered coating for cutting instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013134891/02A RU2545885C2 (en) 2013-07-23 2013-07-23 Method of obtaining multi-layered coating for cutting instrument

Publications (2)

Publication Number Publication Date
RU2013134891A RU2013134891A (en) 2015-01-27
RU2545885C2 true RU2545885C2 (en) 2015-04-10

Family

ID=53281339

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013134891/02A RU2545885C2 (en) 2013-07-23 2013-07-23 Method of obtaining multi-layered coating for cutting instrument

Country Status (1)

Country Link
RU (1) RU2545885C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639189C1 (en) * 2017-03-10 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multi-layer coating for cutting tool
RU2641440C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2641441C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2641438C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2643758C1 (en) * 2017-03-10 2018-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2681584C1 (en) * 2017-11-14 2019-03-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multi-layer coating for cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400609A1 (en) * 2002-09-04 2004-03-24 Seco Tools Ab Precipitation hardened wear resistant coating
EP1452621A2 (en) * 2002-09-04 2004-09-01 Seco Tools Ab Composite structured wear resistant coating
RU2306365C1 (en) * 2006-06-06 2007-09-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of application of multi-layer coat for cutting tools
RU2311490C1 (en) * 2006-06-06 2007-11-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of production of the multilayer coating for the cutting tool
RU2311489C1 (en) * 2006-06-06 2007-11-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of deposition of the multilayer coating for the cutting tools
US20110058912A1 (en) * 2008-03-07 2011-03-10 Seco Tools Ab THERMALLY STABILIZED (Ti,Si)N LAYER FOR CUTTING TOOL INSERT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400609A1 (en) * 2002-09-04 2004-03-24 Seco Tools Ab Precipitation hardened wear resistant coating
EP1452621A2 (en) * 2002-09-04 2004-09-01 Seco Tools Ab Composite structured wear resistant coating
RU2306365C1 (en) * 2006-06-06 2007-09-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of application of multi-layer coat for cutting tools
RU2311490C1 (en) * 2006-06-06 2007-11-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of production of the multilayer coating for the cutting tool
RU2311489C1 (en) * 2006-06-06 2007-11-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of deposition of the multilayer coating for the cutting tools
US20110058912A1 (en) * 2008-03-07 2011-03-10 Seco Tools Ab THERMALLY STABILIZED (Ti,Si)N LAYER FOR CUTTING TOOL INSERT

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639189C1 (en) * 2017-03-10 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multi-layer coating for cutting tool
RU2641440C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2641441C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2641438C1 (en) * 2017-03-10 2018-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2643758C1 (en) * 2017-03-10 2018-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multilayer coating for cutting tool
RU2681584C1 (en) * 2017-11-14 2019-03-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for production of multi-layer coating for cutting tool

Also Published As

Publication number Publication date
RU2013134891A (en) 2015-01-27

Similar Documents

Publication Publication Date Title
RU2545885C2 (en) Method of obtaining multi-layered coating for cutting instrument
RU2545955C2 (en) Method of producing sandwiched coating for cutting tool
RU2545972C2 (en) Method to produce multi-layer coating for cutting tool
RU2558310C2 (en) Method for obtaining multi-layer coating for cutting tool
RU2548854C2 (en) Method of producing sandwiched coating for cutting tool
RU2553765C1 (en) Method for multi-layer coating obtaining for cutting tool
RU2553766C1 (en) Method for multi-layer coating obtaining for cutting tool
RU2553772C1 (en) Method for multi-layer coating obtaining for cutting tool
RU2585564C1 (en) Method for production of multi-layer coating for cutting tool
RU2557864C2 (en) Method for obtaining multi-layered coating for cutting tool
RU2548859C2 (en) Method of producing sandwiched coating for cutting tool
RU2548553C2 (en) Method for obtaining multi-layered coating for cutting tool
RU2548856C2 (en) Method of producing sandwiched coating for cutting tool
RU2561612C2 (en) Method of producing sandwiched coating for cutting tool
RU2558313C2 (en) Method for obtaining multi-layered coating for cutting tool
RU2566220C1 (en) Procedure for cutting tool multi-layer coating
RU2553771C1 (en) Method for obtaining multi-layered coating for cutting tool
RU2554268C1 (en) Method for multi-layer coating obtaining for cutting tool
RU2616720C1 (en) Method of producing sandwiched coating for cutting tool
RU2622537C1 (en) Method of producing multi-layer coating for cutting tool
RU2558312C2 (en) Method of producing sandwiched coating for cutting tool
RU2545958C2 (en) Method to produce multi-layer coating for cutting tool
RU2548863C2 (en) Method of sandwiched coating obtainment for cutting tool
RU2553775C1 (en) Method for multi-layer coating obtaining for cutting tool
RU2464348C1 (en) Method for obtaining multi-layered coating for cutting tool

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150724