RU2544948C1 - Способ контроля за освоением месторождения углеводородов - Google Patents

Способ контроля за освоением месторождения углеводородов Download PDF

Info

Publication number
RU2544948C1
RU2544948C1 RU2014105719/03A RU2014105719A RU2544948C1 RU 2544948 C1 RU2544948 C1 RU 2544948C1 RU 2014105719/03 A RU2014105719/03 A RU 2014105719/03A RU 2014105719 A RU2014105719 A RU 2014105719A RU 2544948 C1 RU2544948 C1 RU 2544948C1
Authority
RU
Russia
Prior art keywords
field
wells
deposit
identified
development
Prior art date
Application number
RU2014105719/03A
Other languages
English (en)
Inventor
Василий Игоревич Богоявленский
Михаил Константинович Тупысев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН
Priority to RU2014105719/03A priority Critical patent/RU2544948C1/ru
Application granted granted Critical
Publication of RU2544948C1 publication Critical patent/RU2544948C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области освоения месторождений углеводородов и может быть использовано для контроля за перетоками углеводородов из осваиваемого месторождения в вышележащие пласты-коллекторы. Технический результат - сокращение времени выявления возможных перетоков углеводородов из месторождения в вышележащие пласты-коллекторы из-за нарушения герметичности его покрышки и заколонных пространств скважин для принятия мер по их ликвидации и предотвращению возможных выбросов на поверхность земли. По способу определяют геологическое строение среды в районе месторождения. Выявляют потенциальные пласты-коллекторы в разрезе горных пород выше месторождения, направления их поднятия - восстания и пространственной ориентации систем субвертикальных трещин. Сооружают эксплуатационные и наблюдательные скважины со вскрытием последними пластов-коллекторов выше месторождения. Проводят термобарические исследования в эксплуатационных скважинах и определяют состав пластовых флюидов во всех скважинах. Фиксируют разгерметизацию месторождения по результатам данных исследований. Наблюдательные скважины сооружают вблизи от скважин, предназначенных для контроля за герметичностью их заколонных пространств и месторождения, в направлении ориентации субвертикальных трещин и восстания потенциальных пластов-коллекторов выше месторождения. В этих скважинах определяют изменение термобарических параметров в интервалах глубин залегания пластов-коллекторов в режиме реального времени. 1 пр., 1 ил.

Description

Изобретение относится к области освоения месторождений углеводородов и может быть использовано для контроля за перетоками углеводородов из осваиваемого месторождения в вышележащие пласты-коллекторы с возможным их последующим аварийным или катастрофическим выходом (выбросом) на поверхность земли (суши или моря).
Согласно действующим правилам разработки нефтяных и газовых месторождений (Национальный стандарт Российской Федерации, ГОСТ Р 53713-2009) в процессе их освоения осуществляется контроль, основной задачей которого является оценка эффективности реализуемой системы разработки, применяемых технологий и реализация мероприятий по добыче углеводородов. При контроле за освоением месторождения изучают в том числе состояние герметичности эксплуатационных колонн, взаимодействие продуктивного горизонта с соседними по разрезу горизонтами и наличие перетоков жидкости и газа между пластами разрабатываемого объекта (залежи) и соседними объектами. Герметичность эксплуатационных колонн, например, определяется в результате геофизических исследований ствола скважины при остановке добычи углеводородов, поэтому такие исследования проводятся нерегулярно и, как правило, они связаны с капитальными ремонтами скважин.
Известен способ контроля за разработкой газовой залежи, включающий замер текущего пластового давления в эксплуатационных и наблюдательных скважинах, количества и состава добываемых пластовых флюидов, определение положения газоводяного контакта и исследование технического состояния скважин, а также сооружение сети дополнительных наблюдательных скважин на водоносные отложения выше покрышки газовой залежи, периодический отбор из дополнительных наблюдательных скважин проб пластовой воды, определение в пробах содержания газа или компонентов газа из разрабатываемой залежи и фиксацию разгерметизации газовой залежи по изменению измеряемого содержания (объема и состава) (Авторское свидетельство СССР №1640377, кл. Е21В 43/00, приоритет 28.04.89). Поскольку способ контроля реализуется на разрабатываемом месторождении, то можно считать, что перед его разработкой в результате геолого-геофизических исследований, включая детальную сейсморазведку 2D и/или 3D, было определено геологическое строение среды в районе месторождения, выявлены потенциальные пласты-коллекторы (водоносные отложения) в разрезе горных пород выше месторождения, направление их поднятия (восстания) и пространственной ориентации систем субвертикальных трещин.
Недостатком этого известного способа контроля является то, что при его реализации фиксируется разгерметизация покрышки разрабатываемой залежи только по истечении некоторого времени до момента появления и фиксирования пластовых флюидов разрабатываемой залежи в пробах флюидов наблюдательных скважин.
Технической задачей описываемого изобретения является сокращение времени выявления возможных перетоков углеводородов из месторождения в вышележащие пласты-коллекторы из-за нарушения герметичности его покрышки и заколонных пространств скважин для принятия мер по их ликвидации и предотвращению возможных выбросов на поверхность земли.
Поставленная техническая задача решается за счет того, что в способе контроля за освоением месторождения углеводородов, включающем определение геологического строения среды в районе месторождения, выявление потенциальных пластов-коллекторов в разрезе горных пород выше месторождения, направления их поднятия (восстания) и пространственной ориентации систем субвертикальных трещин, сооружение эксплуатационных и наблюдательных скважин, проведение термобарических исследований в эксплуатационных скважинах и состава пластовых флюидов во всех скважинах и фиксирование разгерметизации месторождения по результатам данных исследований, наблюдательные скважины сооружают вблизи от скважин, предназначенных для контроля за герметичностью их заколонных пространств и месторождения, в направлении ориентации субвертикальных трещин с учетом восстания потенциальных пластов-коллекторов и определяют в них изменение термобарических параметров в интервалах глубин залегания пластов-коллекторов.
Сущность изобретения заключается в следующем.
При освоении месторождений нефти и газа возникает потребность в контроле за герметичностью залежей начиная со стадии сооружения поисковых и разведочных скважин (которые впоследствии могут быть переведены в разряд эксплуатационных), поскольку при бурении скважин из-за нарушения герметичности их заколонных пространств возможна разгерметизация покрышки месторождения (залежи) и перетоки пластового флюида месторождения (в первую очередь природного газа как наименее вязкого углеводорода) в вышележащие пласты-коллекторы с возможным аварийным или катастрофическими выбросом на поверхность земли. В большинстве случаев геологическая среда обладает системами трещин, включая субвертикальные, по которым горные породы имеют повышенную проницаемость. Поэтому при наличии в разрезе горных пород с осваиваемым месторождением системы субвертикальных трещин над месторождением (а также и в продуктивной залежи самого месторождения) в случае нарушения герметичности сооружаемых скважин пластовый флюид из месторождения будет фильтроваться с наибольшей интенсивностью в плоскости распространения систем трещин в горизонтальном и вертикальном направлениях в вышележащие пласты-коллекторы, далее по этим пластам в сторону их восстания (поднятия), скапливаясь в их купольной части с образованием так называемых техногенных залежей. По предлагаемому способу контроля наблюдательная скважина сооружается в непосредственной близости от скважины, выбранной для контроля за герметичностью заколонного пространства скважины и месторождения. При этом наблюдательную скважину сооружают в направлении от контролируемой скважины, совпадающем с ориентацией субвертикальных трещин, а также с учетом восстания имеющихся пластов-коллекторов, расположенных выше покрышки месторождения. Сам контроль заключается в следующем: в контролируемой скважине, вскрывающей месторождение, замеряют пластовое давление и температуру, а также состав пластовых углеводородов, в наблюдательной скважине постоянно регистрируют давление, температуру и состав пластового флюида в интервалах вскрытия скважиной пластов-коллекторов (в результате установки в указанных интервалах соответствующих приборов), при этом о перетоках пластового флюида из месторождения (его разгерметизации) судят по изменению фиксируемых параметров, например по появлению природного газа, которое кроме изменения первоначального состава пластового флюида может сопровождаться изменением его термобарических параметров (обычно рост давления и температуры). Таким образом, наблюдательная скважина сооружается по отношению к контролируемой таким образом, чтобы с максимальной вероятностью зафиксировать перетоки пластового флюида из осваиваемого месторождения в вышележащие пласты-коллекторы в случае его разгерметизации. Фиксация разгерметизации месторождения позволяет своевременно принимать меры по предотвращению загрязнения недр и окружающей среды в связи с опасностью межпластовых перетоков пластовых флюидов и выхода их на земную поверхность. Фиксация разгерметизации месторождения и ее своевременная ликвидация являются особенно важными (необходимыми) операциями при освоении месторождений с агрессивными компонентами в составе пластовых флюидов.
Предлагаемый способ применим при освоении месторождений как на суше, так и на море, причем в последнем случае он имеет наиболее важное значение, поскольку при разгерметизации месторождения с выходом пластового флюида в водную среду углеводороды могут быстро распространяться в ней с загрязнением окружающей среды, а в условиях арктических и субарктических морей, покрытых льдом, контроль за освоением месторождения дополнительно усложняется. Особенно важно применение предлагаемого способа в случае, если месторождение (залежь) характеризуется аномально высокими пластовыми давлениями (АВПД), повышающими вероятность его разгерметизации и мощность заколонных перетоков и выбросов углеводородов на поверхность земли.
На чертеже показан пример реализации описываемого способа контроля за освоением месторождения углеводородов, на котором схематично изображен разрез геологической среды, заданный по ориентации превалирующей системы субвертикальных трещин, где: Скв.Р - контролируемая (разведочная) скважина, Скв.Н - наблюдательная скважина, Скв.Э - запроектированные эксплуатационные скважины, 1 - месторождение углеводородов, 2 - покрышка месторождения, 3 - пласты-коллекторы выше месторождения по горному разрезу, 4 - ствол контролируемой скважины, 5 - ствол наблюдательной скважины, 6 - датчики давления, температуры и состава пластового флюида. Стрелками показаны направления возможных перетоков пластового флюида из месторождения в вышележащие пласты-коллекторы.
Пример реализации способа
Для контроля за освоением месторождения 1, имеющего покрышку 2, после бурения разведочной скважины (Скв.Р) была пробурена наблюдательная скважина (Скв.Н) со вскрытием пластов-коллекторов 3 выше покрышки месторождения. Причем наблюдательная скважина пробурена в непосредственной близости от разведочной скважины в плоскости выявленных в процессе разведки месторождения субвертикальных трещин в интервале от покрышки месторождения 2 до вышележащих пластов-коллекторов 3. Наблюдательная скважина сооружена также по отношению к разведочной в сторону восстания (поднятия) указанных пластов-коллекторов. В интервалы вскрытия наблюдательной скважиной пластов-коллекторов спущены внутрискважинные приборы на кабеле 6 (см., например, устройство и способ по патенту РФ №2404362, кл. Е21В 49/08, G01N 30/02), позволяющие непрерывно вести регистрацию давления, температуры и состава пластового флюида в местах установки приборов. В сооруженной скважине (Скв.Р) после вскрытия месторождения 1 были замерены пластовые давление и температура, а также определен состав пластового флюида. Скважина была пущена в пробную эксплуатацию для уточнения параметров месторождения. После сооружения наблюдательной скважины в ней были начаты работы по контролю за освоением месторождения. В процессе контроля за параметрами пластового флюида в интервалах вскрытых пластов-коллекторов было зафиксировано появление в пласте-коллекторе над покрышкой месторождения пластового флюида из месторождения, в результате был сделан вывод о нарушении герметичности заколонного пространства разведочной скважины в интервале покрышки месторождения (например, в результате произошедших на территории месторождения сейсмических явлений), а также о необходимости проведения изоляционных работ в этом интервале.
При использовании предлагаемого способа контроля за освоением месторождения углеводородов возможная разгерметизация месторождения фиксируется в наблюдательных скважинах в режиме реального времени, т.е. непрерывно, поэтому имеется возможность своевременно принимать меры по ликвидации негативных последствий разгерметизации.

Claims (1)

  1. Способ контроля за освоением месторождения углеводородов, включающий определение геологического строения среды в районе месторождения, выявление потенциальных пластов-коллекторов в разрезе горных пород выше месторождения, направления их поднятия - восстания и пространственной ориентации систем субвертикальных трещин, сооружение эксплуатационных и наблюдательных скважин со вскрытием последними пластов-коллекторов выше месторождения, проведение термобарических исследований в эксплуатационных скважинах и определение состава пластовых флюидов во всех скважинах и фиксирование разгерметизации месторождения по результатам данных исследований, отличающийся тем, что наблюдательные скважины сооружают вблизи от скважин, предназначенных для контроля за герметичностью их заколонных пространств и месторождения, в направлении ориентации субвертикальных трещин и восстания потенциальных пластов-коллекторов выше месторождения и определяют в них изменение термобарических параметров в интервалах глубин залегания этих пластов-коллекторов в режиме реального времени.
RU2014105719/03A 2014-02-18 2014-02-18 Способ контроля за освоением месторождения углеводородов RU2544948C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014105719/03A RU2544948C1 (ru) 2014-02-18 2014-02-18 Способ контроля за освоением месторождения углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014105719/03A RU2544948C1 (ru) 2014-02-18 2014-02-18 Способ контроля за освоением месторождения углеводородов

Publications (1)

Publication Number Publication Date
RU2544948C1 true RU2544948C1 (ru) 2015-03-20

Family

ID=53290814

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014105719/03A RU2544948C1 (ru) 2014-02-18 2014-02-18 Способ контроля за освоением месторождения углеводородов

Country Status (1)

Country Link
RU (1) RU2544948C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1640377A1 (ru) * 1989-04-28 1991-04-07 Московский Институт Нефти И Газа Им.И.М.Губкина Способ контрол за разработкой газовой залежи
RU2244823C1 (ru) * 2003-08-25 2005-01-20 Открытое акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" Открытого акционерного общества "Газпром" Способ мониторинга за подземным размещением жидких промышленных отходов в глубоких водоносных горизонтах
RU2423306C1 (ru) * 2010-02-24 2011-07-10 Открытое акционерное общество "Газпром" Способ оценки влияния геодинамических факторов на безопасность эксплуатации подземного хранилища газа в пористом пласте
RU2455665C2 (ru) * 2010-05-21 2012-07-10 Шлюмбергер Текнолоджи Б.В. Способ диагностики процессов гидроразрыва пласта в режиме реального времени с использованием комбинирования трубных волн и микросейсмического мониторинга
RU2468195C1 (ru) * 2011-04-08 2012-11-27 Открытое акционерное общество "Татнефть" им. В.Д Шашина Способ определения местоположения фронта внутрипластового горения в нефтяных залежах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1640377A1 (ru) * 1989-04-28 1991-04-07 Московский Институт Нефти И Газа Им.И.М.Губкина Способ контрол за разработкой газовой залежи
RU2244823C1 (ru) * 2003-08-25 2005-01-20 Открытое акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" Открытого акционерного общества "Газпром" Способ мониторинга за подземным размещением жидких промышленных отходов в глубоких водоносных горизонтах
RU2423306C1 (ru) * 2010-02-24 2011-07-10 Открытое акционерное общество "Газпром" Способ оценки влияния геодинамических факторов на безопасность эксплуатации подземного хранилища газа в пористом пласте
RU2455665C2 (ru) * 2010-05-21 2012-07-10 Шлюмбергер Текнолоджи Б.В. Способ диагностики процессов гидроразрыва пласта в режиме реального времени с использованием комбинирования трубных волн и микросейсмического мониторинга
RU2468195C1 (ru) * 2011-04-08 2012-11-27 Открытое акционерное общество "Татнефть" им. В.Д Шашина Способ определения местоположения фронта внутрипластового горения в нефтяных залежах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
РАССОХИН Г. В. и др., Контроль за разработкой газовых и газоконденсатных месторождений, Москва, Недра, 1972, с. 38-42 *

Similar Documents

Publication Publication Date Title
Böttner et al. Greenhouse gas emissions from marine decommissioned hydrocarbon wells: leakage detection, monitoring and mitigation strategies
McConnell et al. Review of progress in evaluating gas hydrate drilling hazards
Dusseault et al. Seepage pathway assessment for natural gas to shallow groundwater during well stimulation, in production, and after abandonment
Eiken et al. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit
Hansen et al. Snøhvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm
McMahon et al. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA
Sun et al. Using pulse testing for leakage detection in carbon storage reservoirs: A field demonstration
Lefebvre Mechanisms leading to potential impacts of shale gas development on groundwater quality
Dance et al. Illuminating the geology: Post-injection reservoir characterisation of the CO2CRC Otway site
Taherdangkoo et al. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells
Zhang et al. CO2 storage safety and leakage monitoring in the CCS demonstration project of Jilin oilfield, China
Lyman et al. Strong temporal variability in methane fluxes from natural gas well pad soils
Tiwari et al. Safeguarding CO2 Storage in a Depleted Offshore Gas Field with Adaptive Approach of Monitoring, Measurement and Verification MMV
Bakk et al. CO2 field lab at svelvik ridge: site suitability
Raynauld et al. Understanding shallow and deep flow for assessing the risk of hydrocarbon development to groundwater quality
Tiwari et al. Offshore MMV planning for sustainability of CO2 storage in a depleted carbonate reservoir, Malaysia
Merrell et al. Subsalt pressure prediction in the Miocene Mad Dog field, Gulf of Mexico
RU2661062C1 (ru) Способ выявления рапогазоносных структур с аномально высоким пластовым давлением флюидов
RU2544948C1 (ru) Способ контроля за освоением месторождения углеводородов
Mbia et al. Modeling of the pressure propagation due to CO2 injection and the effect of fault permeability in a case study of the Vedsted structure, Northern Denmark
Patel et al. Borehole microseismic, completion and production data analysis to determine future wellbore placement, spacing and vertical connectivity, Eagle Ford shale, South Texas
Romero et al. Single-well chemical tracer test experience in the gulf of guinea to determine remaining oil saturation
Anchliya Aquifer management for CO2 sequestration
Al Duhailan* et al. Potential for Basin-Centered Gas in Saudi Arabia: Southwest Ghawar Basin—A Case Study
Elrafie et al. Natural fracture detection, characterization and modeling in a tight oil carbonate resource enables thorough multi-disciplinary integration, targeted development and enhanced overall resource performance

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200219