RU2544104C2 - Ракетный двигатель староверова (варианты) - Google Patents

Ракетный двигатель староверова (варианты) Download PDF

Info

Publication number
RU2544104C2
RU2544104C2 RU2012148058/06A RU2012148058A RU2544104C2 RU 2544104 C2 RU2544104 C2 RU 2544104C2 RU 2012148058/06 A RU2012148058/06 A RU 2012148058/06A RU 2012148058 A RU2012148058 A RU 2012148058A RU 2544104 C2 RU2544104 C2 RU 2544104C2
Authority
RU
Russia
Prior art keywords
combustion chamber
fuel
solid
engine
rocket
Prior art date
Application number
RU2012148058/06A
Other languages
English (en)
Other versions
RU2012148058A (ru
Inventor
Николай Евгеньевич Староверов
Original Assignee
Николай Евгеньевич Староверов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Евгеньевич Староверов filed Critical Николай Евгеньевич Староверов
Priority to RU2012148058/06A priority Critical patent/RU2544104C2/ru
Publication of RU2012148058A publication Critical patent/RU2012148058A/ru
Application granted granted Critical
Publication of RU2544104C2 publication Critical patent/RU2544104C2/ru

Links

Abstract

Ракетный двигатель содержит камеру сгорания, в которую подают боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь. Указанные выше вещества подают при температуре, обеспечивающей самоподдерживающийся характер реакции их термического разложения за счет тепла экзотермической реакции. Другое изобретение группы относится к ракетному двигателю на жидком или твердом ракетном топливе, в котором в камеру сгорания дополнительно к стехиометрическому составу основного топлива подается боран, или силан, или фосфин, или герман, или другие гидриды, или метан. Еще одно изобретение группы относится к ракетному двигателю на твердом топливе, в котором твердые гидриды дополнительно к стехиометрическому составу основного топлива входят в состав твердого ракетного топлива. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 3 н. и 6 з.п. ф-лы.

Description

Изобретение относится к ракетным двигателям жидкого и твердого топлива. Известны ракетные двигатели, см. например мой «Бескорпусный двигатель с самоподачей», пат. №2431052. Все существующие химические ракетные двигатели используют принцип высокотемпературного нагрева газа или газопылевого рабочего тела (пыль - это твердые фракции разложившегося твердого ракетного топлива). Делается это для того, чтобы повысить скорость истечения рабочего тела из реактивного сопла. Эта скорость определяется, во-первых, скоростью звука в газе, и, во-вторых, степенью расширения газа в расширяющемся сверхзвуковом реактивном сопле, и достигает в лучших двигателях 4000 м/сек. Причем детали двигателя работают в очень напряженном тепловом режиме, даже с учетом их охлаждения.
Между тем скорость звука в водороде даже при нормальных температуре и давлении 1330 м/сек. А если еще и немного повысить температуру водорода, то скорость звука в нем и скорость истечения его из сопла резко возрастут. Например, водород с температурой всего 650 градусов С (это ниже температуры его воспламенения) будет иметь скорость звука 2360 м/сек и сможет в реактивном сопле разогнаться сам и разогнать пылевые частицы до скорости около 4300 м/сек. То есть получится «холодный ракетный двигатель», в котором из-за адиабатического расширения газ на выходе из реактивного сопла может иметь приблизительно температуру окружающей среды.
На этом и основана идея данного изобретения. Цель изобретения - повышение скорости реактивной струи и удельного импульса ракетного двигателя. А также в некоторых случаях снижение демаскирующего инфракрасного излучения. А также в одном из вариантов получение термобарического оружия.
ВАРИАНТ 1. Данный двигатель жидкостного типа (скорее - газового) и имеет камеру сгорания (будем ее так называть, хотя никакого процесса «сгорания» в ней не происходит), в которую подается боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ (далее «энтальпия»), или их смесь при температуре, обеспечивающей самоподдерживающийся характер реакции термического разложения указанных веществ за счет тепла экзотермической реакции (любой из альтернативных признаков, включая смесь веществ, обладает положительной энтальпией образования, и обеспечивает заданный технический результат - саморазложение гидридов, а совокупляться с «другими» признаками изобретения альтернативные признаки не могут, так как других признаков нет). То есть в результате лавинообразной химической реакции получится водород и твердый ингредиент (кроме фосфина). Так как скорость звука в нагретом до одинаковой температуры водороде будет намного выше скорости звука в газах обычных ракетных двигателей (примерно в 4 раза), то скорость истечения реактивной струи и удельный импульс могут быть больше.
Рабочая температура должна быть такой, чтобы выделившееся в результате экзотермической реакции разложения таких гидридов тепло могло с учетом теплоемкости исходного и получившихся веществ и тепловых потерь нагреть само себя выше температуры разложения. То есть тогда лавинообразная реакция получится энергетически цепной (цепной не в ядерном смысле этого слова, когда выделяется одна или несколько частиц, вызывающих продолжение реакции, а в энергетическом смысле, когда выделяется энергия, вызывающая продолжение реакции). Собственно, в этом нет ничего нового - так работают все ракетные топлива.
Гидриды могут быть в ракете и подаваться к двигателю в криогенном жидком или в сжатом газообразном состоянии (достижения в нанотехнологии материалов позволяют создать легкий корпус из титана или композитных материалов нужной прочности).
Кроме бора, кремния и фосфора положительной энтальпией обладает гидрид германия, однако процентное содержание водорода в нем невелико, а стоимость германия высока, поэтому он представляет лишь теоретический интерес.
Положительные энтальпии некоторых веществ таковы: диборан - 1,39 кДж/г, моносилан - 1,08 кдж/г, фосфин - 0,16 кДж/г, монгогерман - 1,185 кДж/г.
Процентное содержание водорода в указанных веществах: диборан - 21,86%, моносилан - 12,55%, фосфин - 8,88%, моногерман - 5,26%.
Из этих данных ясно, что из доступных веществ практический интерес представляют диборан, имеющий все наивысшие показатели, и моносилан, который значительно «слабее», но, возможно, будет в массовом производстве дешевле диборана. А кроме того, как будет показано ниже, у силанового заряда более высокая температура реакции.
Чтобы такой двигатель запустился, ему необходим начальный источник тепла. Им может быть установленная на пусковой установке горелка или пиротехническая шашка, которая направлена внутрь камеры сгорания. В течение некоторого времени она прогревает камеру, а затем, после подачи гидрида, инициирует начало реакции его разложения.
Более интересен вариант, в котором шашка быстрогорящего твердого ракетного топлива установлена в самой камере сгорания - по центру и/или на стенках ее. Такая шашка при правильном расчете ее мощности сразу начинает двигать ракету, прогревает камеру сгорания и в конце работы (примерно на 25-10% мощности) инициирует реакцию разложения гидрида. Возможно плавное замещение производительности шашки плавной подачей гидрида в камеру сгорания. Время работы такой шашки невелико - секунды или даже доли секунды. Так как желательно прогреть стенки камеры сгорания, то, если шашек две - в центре и по краям камеры сгорания, то центральная шашка должна работать несколько дольше, чтобы прогреть стенки, открывшиеся после полного выгорания боковой шашки.
Процесс разложения гидрида может быть катализирован, например, окисью алюминия, нанесенной на стенки камеры сгорания.
ВАРИАНТ 1-А. Если в камеру сгорания подается смесь гидридов, то возможна вторичная реакция образовавшихся в результате их разложения веществ (кроме водорода). Например, образовавшиеся бор и кремний, или бор и фосфор, или фосфор и кремний и т.п. И если эта реакция будет экзотермической, то удельное тепловыделение увеличится. Но важно, чтобы образовавшиеся соединения при данной температуре не были газообразными, иначе из-за их присутствия скорость звука в образовавшейся смеси газов может резко уменьшиться.
Пример 1. Определим практическую температуру в результате применения двух наиболее перспективных указанных двигателей: диборанного и моносиланового. Важно, чтобы она оказалась выше температуры разложения гидрида, иначе реакция не будет лавинообразная.
ДИБОРАНОВЫЙ. Мольная энтальпия - 38,5 кДж/моль, мольная теплоемкость - 56,9 кДж/моль, то есть выделившееся тепло способно нагреть вещество на 677°, что гораздо выше температуры разложения, даже если считать от абсолютного нуля. Но, кстати, ниже температуры воспламенения водорода - 700°С. Однако с учетом теплоемкости водорода реальная температура будет ниже - около 440°С. Скорость звука в таком водороде будет 2075 м/сек, а возможная скорость струи - 3800 м/сек. Однако слишком малое количество выделившегося водорода внушает сомнения - сможет ли он разогнать всю первоначальную массу до такой скорости. Проверочный расчет по закону сохранения энергии показал, что максимальная скорость газопылевой струи даже при 100% КПД будет всего 1180 м/сек. Реально - еще меньше.
МОНОСИЛАНОВЫЙ. Мольная энтальпия - 34,7 кДж/моль, мольная теплоемкость -42,89 Дж/моль. То есть выделившееся тепло способно нагреть вещество на 809 градусов, что также значительно выше температуры разложения. Реальная температура будет около 635°С, скорость звука около 2340 м/сек, а скорость струи - 4270 м/сек. Проверочный расчет по закону сохранения энергии дал значение 1470 м/сек.
То есть такому двигателю не нужно расширяющееся сопло, достаточно сужающегося.
Двигатели, основанные только на реакции термического саморазложения гидридов с положительной энтальпией, не дадут высоких показателей. Но у них есть важная особенность - температура струи при большой степени расширения в сопле может не отличаться от температуры окружающей среды. То есть такой двигатель не видно в инфракрасном диапазоне, что в некоторых случаях может оказаться полезно. Кроме того, они не требуют тяжелых и дорогих полостных вольфрамовых конструкций. Ввиду низкой рабочей температуры для таких двигателей достаточно легких титановых конструкций, имеющих к тому же не охлаждение, а, наоборот, - наружную и/или внутреннюю теплоизоляцию для уменьшения тепловых потерь и для снижения демаскирующего инфракрасного излучения.
ВАРИАНТ 2. Более того, для снижения температуры отходящих газов возможна добавка в упомянутые гидриды с положительной энтальпией образования гидридов с отрицательной или малой положительной энтальпией образования. Например, моногермана, фосфида, гидрида бериллия, боргидрида бериллия, литий-алюминиевого гидрида (последние три гидрида - твердые вещества, поэтому их подача в камеру сгорания затруднена).
Для чего может быть применен такой низкотемпературный ракетный двигатель? Например, для противотанковых ПТУРов, чтобы нельзя было инфракрасной аппаратурой обнаружить пуск ПТУРа по танку.
Но особенно перспективно применение таких двигателей в качестве термобарического оружия. Пролетев над вражескими окопами и оставив после себя водородо-воздушную смесь (для чего вместо одного сопла двигатель может иметь направленный немного в стороны, а еще лучше - по горизонтали, многосопловой эжекторный аппарат), которая затем будет воспламенена, один такой двигатель может ударной волной уничтожить живую силу на дистанции около километра, даже в окопах.
ВАРИАНТ 3. Для повышения удельного тепловыделения двигатель может быть скомбинирован с классическим ракетным двигателем, жидкостным или твердотопливным. То есть такой двигатель содержит камеру сгорания или корпус с соплом, работает на жидком или твердом ракетном топливе и отличается тем, что в камеру сгорания или в корпус твердотопливного ракетного двигателя дополнительно (имеется ввиду - дополнительно к стехиометрическому составу основного двигателя) подается боран, или силан, или фосфин, или герман, или другие гидриды, или метан, или же твердые гидриды дополнительно входят в состав твердого ракетного топлива (любой из альтернативных признаков обеспечивает заданный технический результат - выделение водорода и повышение скорости звука в струе).
В результате горения обычного (окислительно-восстановительного) ракетного топлива и термического разложения гидридов получается газо-пылевая смесь, в которой скорость звука будет ниже, чем в водороде, но выше, чем в обычных ракетных газах. Суммарный импульс такого двигателя может оказаться и выше чисто гидридного двигателя, и выше окислительно-восстановительного двигателя (требуется серия экспериментов). Но даже, если импульс окажется примерно одинаковым, такой двигатель продолжает сохранять преимущество низкой температуры процесса, то есть будет иметь пониженную инфракрасную заметность и низкую тепловую напряженность конструкции двигателя, то есть ее малый вес и отсутствие охлаждения.
Пример 2. В классический жидкостный ракетный двигатель (например, кислородно-керосиновый) дополнительно подается диборан или тетраборан в количестве, например, 1:1 к топливу. Работает двигатель как обычно. Может подаваться метан, который экзотермически разлагается с выделением тепла 4,68 кДж/г, углерода в виде сажи или графита и двух молекул водорода.
Пример 3. В состав топлива классического твердотопливного ракетного двигателя (например, перхлорат аммония и полиуретан) дополнительно входит 10% боргидрида бериллия. Работает двигатель как обычно. Так как боргидрид бериллия может быть компонентом основного ракетного топлива, то следует обратить внимание на слово «дополнительно» в формуле изобретения. То есть в количестве, превышающем окислительные возможности окислителя (например, перхлората аммония).

Claims (9)

1. Ракетный двигатель, содержащий камеру сгорания и отличающийся тем, что в камеру сгорания подается боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь при температуре, обеспечивающей самоподдерживающийся характер реакции термического разложения указанных веществ за счет тепла экзотермической реакции.
2. Двигатель по п.1, отличающийся тем, что в камеру сгорания подается диборан или моносилан, или их смесь.
3. Двигатель по п.1, отличающийся тем, что в камеру сгорания дополнительно подается гидрид с отрицательной энтальпией образования.
4. Двигатель по п.1, отличающийся тем, что в камеру сгорания направлена горелка или пиротехническая шашка, установленная на пусковой установке.
5. Двигатель по п.1, отличающийся тем, что в центре и/или по краям камеры сгорания установлена шашка твердого ракетного топлива.
6. Ракетный двигатель, работающий на жидком или твердом ракетном топливе и отличающийся тем, что в камеру сгорания дополнительно к стехиометрическому составу основного топлива подается боран, или силан, или фосфин, или герман, или другие гидриды, или метан.
7. Двигатель по п.6, отличающийся тем, что в камеру сгорания дополнительно подается диборан, тетраборан или метан в количестве 1:1 к топливу.
8. Ракетный двигатель, работающий на твердом топливе, отличающийся тем, что твердые гидриды дополнительно к стехиометрическому составу основного топлива входят в состав твердого ракетного топлива.
9. Двигатель по п.8, отличающийся тем, что в состав твердого ракетного топлива дополнительно входит боргидрид бериллия, в количестве, превышающем окислительные возможности окислителя на 10%.
RU2012148058/06A 2012-11-12 2012-11-12 Ракетный двигатель староверова (варианты) RU2544104C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012148058/06A RU2544104C2 (ru) 2012-11-12 2012-11-12 Ракетный двигатель староверова (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012148058/06A RU2544104C2 (ru) 2012-11-12 2012-11-12 Ракетный двигатель староверова (варианты)

Publications (2)

Publication Number Publication Date
RU2012148058A RU2012148058A (ru) 2014-05-20
RU2544104C2 true RU2544104C2 (ru) 2015-03-10

Family

ID=50695505

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148058/06A RU2544104C2 (ru) 2012-11-12 2012-11-12 Ракетный двигатель староверова (варианты)

Country Status (1)

Country Link
RU (1) RU2544104C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950460A (en) * 1987-10-01 1990-08-21 Dowty Maritime Systems Limited Gas generating device
RU2099565C1 (ru) * 1996-03-20 1997-12-20 Мосесов Сергей Кимович Пароводяной ракетный двигатель (варианты)
RU2137225C1 (ru) * 1997-07-08 1999-09-10 Государственное предприятие "Красная звезда" Способ изготовления многокомпонентной радиационной защиты с гидридом лития
RU2182163C2 (ru) * 1995-06-07 2002-05-10 Уильям К. Орр Состав топлива
RU2328519C2 (ru) * 1994-05-31 2008-07-10 Уильям К. Орр Усовершенствованное сгорание в паровой фазе

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950460A (en) * 1987-10-01 1990-08-21 Dowty Maritime Systems Limited Gas generating device
RU2328519C2 (ru) * 1994-05-31 2008-07-10 Уильям К. Орр Усовершенствованное сгорание в паровой фазе
RU2182163C2 (ru) * 1995-06-07 2002-05-10 Уильям К. Орр Состав топлива
RU2099565C1 (ru) * 1996-03-20 1997-12-20 Мосесов Сергей Кимович Пароводяной ракетный двигатель (варианты)
RU2137225C1 (ru) * 1997-07-08 1999-09-10 Государственное предприятие "Красная звезда" Способ изготовления многокомпонентной радиационной защиты с гидридом лития

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
М.В.ДОБРОВОЛЬСКИЙ, Жидкостные ракетные двигатели, Москва, "Оборонгиз", 1957, стр. 209-214. *

Also Published As

Publication number Publication date
RU2012148058A (ru) 2014-05-20

Similar Documents

Publication Publication Date Title
Bergthorson et al. Metal-water combustion for clean propulsion and power generation
Shafirovich et al. Metal-CO2 propulsion for mars missions: current status and opportunities
US20080223047A1 (en) Xplogen TM: a system, method, and apparatus for generating energy from a series of dissociation reactions
Jeong et al. Ultrafast igniting, low toxicity hypergolic hybrid solid fuels and hydrogen peroxide oxidizer
Xiang et al. Research progress on solid-fueled Scramjet
US6849247B1 (en) Gas generating process for propulsion and hydrogen production
Luo et al. Progress and challenges in exploration of powder fueled ramjets
RU2490244C1 (ru) Пороховой заряд к легкогазовому орудию или огнестрельному оружию (варианты)
Yang et al. Thermodynamic cycle analysis of ramjet engines using magnesium-based fuel
Benhidjeb-Carayon et al. Hypergolic ignition and relights of a paraffin-based hybrid grain
RU2544104C2 (ru) Ракетный двигатель староверова (варианты)
RU2601820C1 (ru) Ракетный двигатель староверова (варианты)
RU2516711C1 (ru) Ракетное топливо староверова - 15 (варианты)
Palmer et al. Low-Toxicity Reactive Hypergolic Fuels for Use with Hydrogen Peroxide
RU2586442C2 (ru) Ракетный двигатель староверова - 5 /варианты/
RU2485341C1 (ru) Ракетный двигатель староверова - 7
RU2586211C2 (ru) Ракетный двигатель староверова - 4 /варианты/
RU2500659C2 (ru) Порох староверова - 2
RU2570010C2 (ru) Ракетное топливо староверова - 6
RU2582712C2 (ru) Ракетное топливо /варианты/
JP5674810B2 (ja) 液体酸化剤と固体化合物を用いて生成した水素との燃焼工程を含む推進方法、推進デバイスおよび推進ユニット
RU2482313C1 (ru) Ракетный двигатель староверова - 3 (варианты)
RU2570913C2 (ru) Ракетный двигатель староверова-6 /варианты/
RU2570910C2 (ru) Ракетный двигатель староверова -9 /варианты/
RU2570911C2 (ru) Ракетный двигатель староверова - 2 /варианты/