RU2542926C1 - Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа - Google Patents

Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа Download PDF

Info

Publication number
RU2542926C1
RU2542926C1 RU2014114746/08A RU2014114746A RU2542926C1 RU 2542926 C1 RU2542926 C1 RU 2542926C1 RU 2014114746/08 A RU2014114746/08 A RU 2014114746/08A RU 2014114746 A RU2014114746 A RU 2014114746A RU 2542926 C1 RU2542926 C1 RU 2542926C1
Authority
RU
Russia
Prior art keywords
message
mod
mdc
cryptogram
binary number
Prior art date
Application number
RU2014114746/08A
Other languages
English (en)
Inventor
Александр Андреевич Молдовян
Дмитрий Николаевич Молдовян
Мария Александровна Вайчикаускас
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority to RU2014114746/08A priority Critical patent/RU2542926C1/ru
Application granted granted Critical
Publication of RU2542926C1 publication Critical patent/RU2542926C1/ru

Links

Abstract

Способ шифрования блока данных, представленного в виде битовой строки, относится к области электросвязи, а именно к области криптографических устройств и способов. Технический результат - повышение уровня защищенности шифруемой информации. Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа, заключающийся в том, что генерируют секретный ключ (p, q) в виде двух простых многоразрядных двоичных чисел p и q, генерируют открытый ключ в виде многоразрядного двоичного числа n=pq, формируют криптограмму C в зависимости от сообщения M и открытого ключа n и восстанавливают сообщение M из криптограммы C по секретному ключу (p, q), отличающийся тем, что дополнительно генерируют вспомогательное многоразрядное двоичное число R<n, криптограмму C формируют в виде пары (A, B) многоразрядных двоичных чисел A и B в зависимости от сообщения M, открытого ключа n и многоразрядного двоичного числа R, а восстанавливают сообщение M путем решения уравнения x2-Ax+B=0 mod n относительно неизвестного x и вычисления сообщения M из одного из решений указанного уравнения. 3 з.п. ф-лы.

Description

Изобретение относится к области электросвязи и вычислительной техники, а конкретнее к области информационной безопасности телекоммуникационных систем и, в частности, может быть использовано в криптографических системах, обеспечивающих конфиденциальность сообщений, передаваемых по открытым каналам связи.
Известен способ шифрования путем формирования секретного ключа, генерации ключевого потока в виде последовательности битов, зависящих от секретного ключа, и сложения текущих битов ключевого потока с текущими битами передаваемого сообщения [Молдовян А.А., Молдовян Н.А., Советов Б.Я. Криптография. С.-Петербург, Лань, 2000. - 218 с.; см. с.88-89]. Недостатком этого способа шифрования является необходимость синхронизации ключевого потока и потока данных.
Также известен способ шифрования, включающий генерацию 56-битового секретного ключа, формирование сообщения M в виде 64-битовой строки, генерацию криптограммы, представляющей собой 64-битовую строку, в зависимости от секретного ключа [Молдовян А.А., Молдовян Н.А., Советов Б.Я. Криптография. С.-Петербург, Лань, 2000. - 218 с.; см. с.68-73]. При этом генерация криптограммы осуществляется путем разбиения сообщения M на две 32-битовые строки и поочередное преобразование 32-битовых строк в зависимости от секретного ключа. Недостатком этого способа является малый размер секретного ключа, что не обеспечивает криптостойкости, соответствующей современным требованиям.
Толкование терминов, используемых в описании, приведено в Приложении 1
Также известен способ шифрования сообщения M, представленного в виде битовой строки, описанный в патенте США №4424414 [Hellman M.E., Pohlig S.C. Exponentiation Cryptographic Apparatus and Method // U.S. Patent #4,424,414. Jan.3, 1984] и в книге [Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си. - М:. Издательство ТРИУМФ, 2002. - 815 с.; см. с.577-578]. Ближайший способ-аналог (прототип) включает следующие действия:
1. Генерируют простое многоразрядное двоичное число (МДЧ) p.
2. Генерируют секретный ключ в в виде двух МДЧ e и d, удовлетворяющих условию ed≡1 mod p-1
3. Формируют криптограмму в виде МДЧ C по формуле C=Me mod p.
4. Восстанавливают сообщение M из криптограммы C по формуле M=Cd mod p.
Наиболее близким по своей технической сущности к заявленному способу шифрования сообщения M, представленного в виде МДЧ, является известный способ шифрования, включающий генерацию секретного ключа в виде двух больших простых МДЧ p и q, генерацию открытого ключа в виде МДЧ n, формирование криптограммы в виде МДЧ C по формуле C=M2 mod n [Молдовян Н.А. Теоретический минимум и алгоритмы цифровой подписи. - С.-Петербург. Петербург - БХВ, 2010. - 304 с.; см. с.78] и восстановление сообщения M из криптограммы C путем вычисления квадратных корней из криптограммы по модулю n, а именно по формуле M = C mod n
Figure 00000001
, из которой вычисляются четыре различных корня, одним из которых является сообщение M. Недостатком этого способа шифрования является то, что данный способ шифрования не обеспечивает достаточной стойкости при шифровании сравнительно коротких сообщений, например сообщений, размер которых не превышает половины размера МДЧ n. Этот недостаток связан с тем, что извлечение квадратных корней из криптограмм, полученных путем возведения коротких сообщений в квадрат, может быть выполнен сравнительно легко без знания разложения МДЧ n на простые множители p и q, являющиеся элементами секретного ключа.
Задачей заявленного нового технического решения является разработка способа шифрования, в котором устраняется возможности восстановления сообщения из криптограмм, полученных путем шифрования коротких сообщений, без знания разложения МДЧ n на простые множители p и q.
Техническим результатом нового способа шифрования сообщения M, представленного в виде МДЧ, является повышение уровня защищенности информации при шифровании коротких сообщений.
Указанный технический результат достигается тем, что в способе шифрования сообщения M, представленного в виде МДЧ, заключающемся в том, что генерируют секретный ключ (p, q) в виде двух простых многоразрядных двоичных чисел p и q, генерируют открытый ключ в виде многоразрядного двоичного числа n=pq, формируют криптограмму С в зависимости от сообщения M и открытого ключа n и восстанавливают сообщение M из криптограммы C по секретному ключу (p, q),
новым является то, что дополнительно генерируют вспомогательное МДЧ R<n, криптограмму C формируют в виде пары (A, B) многоразрядных двоичных чисел A и B в зависимости от сообщения M, открытого ключа n и МДЧ R, а восстанавливают сообщение M путем решения уравнения x2-Ax+B=0 mod n относительно неизвестного x и вычисления сообщения M из одного из решений указанного уравнения.
Генерация вспомогательного МДЧ R<n, имеющего разрядность, примерно равную разрядности МДЧ n, устраняет возможность нахождения решений уравнения X2-Ax+B=0 mod n без знания разложения МДЧ n на простые множители p и q для сообщений M, представленных в виде МДЧ любого размера, включая короткие сообщения, например размером от 1 до 500 бит.
Новым также является то, что криптограмму C формируют в виде пары (A, B) МДЧ A и B, генерируемых по формулам A=(R+n-M-1) mod n и B=R(n-M-1) mod n.
Генерация МДЧ A и B по формулам A=(R+n-M-1) mod n и B=R(n-M-1) mod n обеспечивает то, что уравнение x2-Ax+B=0 mod n в качестве своих решений имеет МДЧ x1=R и МДЧ x2=n-M-1 mod n, и сообщение вычисляется по формуле M=n-x2-1 mod n.
Новым также является и то, что криптограмму C формируют в виде пары (A, B) МДЧ A и B, генерируемых по формулам A=(2R-M) mod n и B=R(R-M) mod n.
Генерация МДЧ A и B по формулам A=(2R-M) mod n и B=R(R-M) mod n обеспечивает то, что уравнение x2-Ax+B=0 mod n в качестве своих решений имеет МДЧ x1=R и МДЧ x2=R-M mod n и сообщение вычисляется по формуле M=R-x2 mod n.
Новым является и то, что дополнительно генерируют вспомогательное МДЧ R<n путем генерации вспомогательного сообщения T и вычисления R по формуле R=(n-T) mod n.
Генерация вспомогательного МДЧ R<n путем генерации вспомогательного сообщения T и вычисления R по формуле R=(n-T)2 mod n позволяет осуществить совместное шифрование двух сообщений, которые восстанавливаются из криптограммы C=(A, B) путем решения уравнения x2-Ax+B=0 mod n относительно неизвестного x и вычисления сообщения M из одного из решений, а сообщения T - из другого решения. Эта возможность реализуется путем генерации МДЧ A и B по формулам A=(R+M) mod n и В=RM mod n. В случае таких значений МДЧ A и B уравнение x2-Ax+B=0 mod n в качестве своих решений имеет МДЧ x1=R и МДЧ x2=M и сообщение T вычисляется по формуле T = n x 1 mod n
Figure 00000002
, а сообщение M - по формуле M=x2.
Изобретательский замысел заявленного нового технического решения состоит в дополнительной генерации вспомогательного МДЧ R<n достаточно большого размера и формировании криптограммы C в виде пары МДЧ A и B, являющихся коэффициентами уравнения x2-Ax+B=0 mod n и зависящих как от сообщения M, так и от МДЧ R. Это позволяет восстановить сообщение M путем решения указанного уравнения и вычисления сообщения M из одного из его решений. Зависимость решений от МДЧ R устраняет возможность восстановления сообщений M малого размера без знания разложении числа n. Благодаря указанной новой совокупности существенных признаков достигнут сформулированный изобретательский замысел.
Проведенный анализ уровня техники позволил установить, что в известных источниках информации аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного изобретения условию патентоспособности «новизна». Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Корректность заявленного способа шифрования сообщения M, представленного в виде МДЧ, обеспечивается тем, что многочлен второй степени x2-Ax+B (mod n), корнями которого являются МДЧ x1 и x2, может быть представлен в виде произведения (x-x1)(x-x2), т.е. имеет место
x2-Ax+B=(x-x1)(x-x2)=x2-(x1+x2)x+x1x2 (mod n)
следовательно, A=(x1+x2) mod n и B=x1x2 mod n. Поэтому, если встроить сообщение M и дополнительно генерируемое МДЧ R в корни уравнения x2-Ax+B=0 mod n таким образом, что из корней x1 и x2 легко можно вычислить M и R, то восстановление сообщения M из криптограммы можно выполнить путем решения указанного уравнения и вычисления M из одного из корней. Таким образом, корни x1 и x2 вычисляются по значениям M и R, а криптограмма C формируется в виде пары МДЧ (A, B) по формулам A=(x1+x2) mod n и B=x1x2 mod n. Криптограмма задает такие коэффициенты указанного уравнения второй степени, при которых МДЧ x1 и x2 являются решениями этого уравнения. Решение уравнения с коэффициентами, заданными криптограммой, позволит найти МДЧ x1 и x2 и вычислить из последних сообщение M и МДЧ R.
Решение уравнения x2-Ax+B=0 mod n выполняется по секретному ключу (p, q) следующим путем. Решаются следующие два уравнения: x2-Ax+B=0 mod p и x2-Ax+B=0 mod q, каждое из которых имеет два корня. Пусть корнями первого уравнения являются следующие два значения:
Figure 00000003
а корнями второго - следующие:
Figure 00000004
Вычислительно эффективные алгоритмы извлечения квадратных корней по простому модулю описаны, например, в книге [Молдовян Н.А. Теоретический минимум и алгоритмы цифровой подписи. - С.-Петербург. Петербург - БХВ, 2010. - 304 с.; см. с.25-29]. Четыре корня X1, X2, X3 и X4 уравнения x2-Ax+B=0 mod n находятся как решения следующих четырех систем линейных сравнений
Figure 00000005
В соответствии с китайской теоремой об остатках [Молдовян Н.А. Теоретический минимум и алгоритмы цифровой подписи. - С.-Петербург. Петербург - БХВ, 2010. - 304 с.; см. с.15-16] решениями этих четырех систем сравнений являются следующие четыре МДЧ:
X1=(xp1q(q-1 mod p)+xq1p(p-1 mod q))mod n;
X2=(xp1q(q-1 mod p)+xq2p(p-1 mod q))mod n;
X3=(xp2q(q-1 mod p)+xq1p(p-1 mod q))mod n;
X4=(xp2q(q-1 mod p)+xq2p(p-1 mod q))mod n.
По значениям корней X1, X2, X3, и X4 вычисляются четыре различных МДЧ M1, M2, M3 и M4, соответственно. При этом одно из МДЧ M1, M2, M3, и M4, например M4, соответствует осмысленному сообщению M, представленному в виде МДЧ, т.е. из криптограммы (A, B) восстанавливается сообщение M=M4.
Рассмотрим частные примеры реализации заявленного способа шифрования сообщения M, представленного в виде МДЧ.
Пример 1
Данный пример иллюстрирует реализацию заявленного способа по п.2 формулы изобретения. В данном частном варианте реализации способа выполняются следующие действия:
1. Генерируют секретный ключ (p, q) в виде двух простых 512-разрядных двоичных чисел p и q.
2. Генерируют открытый ключ в виде МДЧ n=pq.
3. Формируют криптограмму C в виде пары (A, B) МДЧ A и B в зависимости от сообщения M и открытого ключа n путем выполнения следующих действий:
3.1. Генерируют вспомогательное МДЧ R<n в виде случайного 1022-разрядного двоичного числа R.
3.2. Генерируют МДЧ A по формуле A=(R+n-M-1) mod n.
3.3. Генерируют МДЧ В по формуле B=R(n-M-1) mod n.
4. Восстанавливают сообщение M из криптограммы C по секретному ключу (p, q) путем выполнения следующих действий:
4.1. Вычисляют четыре решения уравнения второй степени x2-Ax+B=0 mod n в виде МДЧ X1, X2, X3 и X4.
4.2. Вычисляют четыре МДЧ M1, M2, M3, и M4 по формуле
Mi=(n-Xi-1) mod n, где i=1, 2, 3 и 4.
4.3. Отбрасывают три случайных МДЧ, например МДЧ M1, M2 и M3, и в качестве восстановленного сообщения M берут осмысленное сообщение, представленное МДЧ M4, т.е. M=M4.
Пример 2
Данный пример иллюстрирует реализацию заявленного способа по п.3 формулы изобретения. В данном частном варианте реализации способа выполняются следующие действия:
1. Генерируют секретный ключ (p, q) в виде двух простых 768-разрядных двоичных чисел p и q.
2. Генерируют открытый ключ в виде МДЧ n=pq.
3. Формируют криптограмму C=(A, B) в виде пары МДЧ A и B в зависимости от сообщения M и открытого ключа n путем выполнения следующих действий:
3.1. Генерируют вспомогательное МДЧ R<n в виде случайного 1534-разрядного двоичного числа R.
3.2. Генерируют МДЧ A по формуле A=(2R-M) mod n.
3.3. Генерируют МДЧ В по формуле В=R(R-M) mod n.
4. Восстанавливают сообщение M из криптограммы C по секретному ключу (p, q) путем выполнения следующих действий:
4.1. Вычисляют четыре решения уравнения второй степени x2-Ax+B=0 mod n в виде МДЧ X1, X2, X3 и X4.
4.2. Вычисляют четыре МДЧ M1, M2, M3, и M4 по формуле
M=(2Xi-A) mod n, где i=1, 2, 3 и 4.
4.3. Отбрасывают три случайных МДЧ, например МДЧ M1, M3, и M4, и в качестве восстановленного сообщения M берут осмысленное сообщение, представленное МДЧ M3, т.е. M=M4.
Пример 3
Данный пример иллюстрирует реализацию заявленного способа по п. 4 формулы изобретения. B данном частном варианте реализации способа криптограмма формируется в зависимости от двух независимых сообщений - сообщения M и вспомогательного сообщения T, которые восстанавливаются из криптограммы. В данном примере выполняются следующие действия:
1. Генерируют секретный ключ (p, q) в виде двух простых 1024-разрядных двоичных чисел p и q.
2. Генерируют открытый ключ в виде МДЧ n=pq.
3. Формируют криптограмму C=(A, B) в виде пары МДЧ A и B в зависимости от сообщения M и открытого ключа n путем выполнения следующих действий:
3.1. Генерируют вспомогательное МДЧ R<n в виде случайного 2046-разрядного двоичного числа R, для чего
3.1.1. Генерируют вспомогательное сообщение T.
3.1.2. Вычисляют МДЧ R по формуле R=(n-T)2 mod n.
3.2. Генерируют МДЧ A по формуле A=(2R-M) mod n.
3.3. Генерируют МДЧ B по формуле B=R(R-M) mod n.
4. Восстанавливают сообщение M из криптограммы C по секретному ключу (p, q) путем выполнения следующих действий:
4.1. Вычисляют четыре решения уравнения второй степени x2-Ax+B=0 mod n в виде МДЧ X1, X2, X3, и X4.
4.2. Вычисляют четыре МДЧ M1, M2, M3, и M4, по формуле
Mi=(2Xi-A) mod n, где i=1, 2, 3 и 4.
4.3. Отбрасывают три случайных МДЧ, например МДЧ M1, M3, и M4, и в качестве восстановленного сообщения M берут осмысленное сообщение, представленное МДЧ M3, т.е. M=M3.
5. Восстанавливают вспомогательное сообщение T из криптограммы C по секретному ключу (p, q) путем выполнения следующих действий:
4.1. Вычисляют значение МДЧ R=(M+A)/2 mod n 0 mod n.
4.2. Вычисляют четыре МДЧ U1, U2, U3 и U4, являющихся корнями второй степени из МДЧ R, после чего вычисляют МДЧ T1, T2, T3, и T4 по следующей формуле
Ti=n-Ui mod n, где i=1, 2, 3 и 4.
4.3. Отбрасывают три случайных МДЧ, например МДЧ T1, T3, и T4, и в качестве восстановленного вспомогательного сообщения T берут осмысленное сообщение, представленное МДЧ T2, т.е. T=T2.
Производительность заявленного способа шифрования сообщения M, представленного в виде МДЧ, примерно равна производительности его ближайшего аналога, поскольку вычислительная сложность как первого, так и второго способа примерно равна вычислительной сложности операции извлечения квадратного корня по простому модулю p и операции извлечения квадратного корня по простому модулю q. Для уменьшения вычислительной сложности операции извлечения квадратных корней по простым модулям p и q можно выбирать в качестве секретного ключа МДЧ p и q, которые удовлетворяют условиям p≡3 mod 4 и q≡3 mod 4 [Молдовян Н.А. Теоретический минимум и алгоритмы цифровой подписи. - С.-Петербург. Петербург - БХВ, 2010. - 304 с.; см. с.25].
Таким образом, приведенные математические выкладки и конкретные примеры реализации показывают, что заявленный способ шифрования сообщения M, представленного в виде МДЧ, технически реализуем и позволяет достичь сформулированного технического результата.
Заявляемый способ шифрования сообщения M, представленного в виде МДЧ, может быть применен для разработки средств защиты информации, передаваемой по открытым телекоммуникационным каналам, от несанкционированного доступа.
Толкование терминов, используемых в описании изобретения
1. Двоичный цифровой электромагнитный сигнал - последовательность битов в виде нулей и единиц.
2. Параметры двоичного цифрового электромагнитного сигнала: разрядность и порядок следования единичных и нулевых битов.
3. Разрядность двоичного цифрового электромагнитного сигнала - общее число его единичных и нулевых битов, например число 10011 является 5-разрядным.
4. Битовая строка - двоичный цифровой электромагнитный сигнал, представляемый в виде конечной последовательности цифр «0» и «1».
5. Секретный ключ - двоичный цифровой электромагнитный сигнал, используемый для формирования подписи к заданному электронному документу. Секретный ключ представляется, например, в двоичном виде как последовательность цифр «0» и «1».
6. Открытый ключ - битовая строка, параметры которой зависят от секретного ключа. Открытый ключ вычисляется по секретному как значение функции, вычислимой в одну сторону, которая делает практически неосуществимым вычисление секретного ключа по открытому ключу.
7. Многоразрядное двоичное число (МДЧ) - двоичный цифровой электромагнитный сигнал, интерпретируемый как двоичное число и представляемый в виде последовательности цифр «0» и «1».
8. Разрядность МДЧ - это число двоичных разрядов (битов) в записи МДЧ по двоичному основанию.
9. Простое МДЧ - это МДЧ, которое делится только на единицу и на само себя.
10. Взаимно простые МДЧ - это МДЧ, наибольший общий делитель которых равен единице.
11. Сравнимость двух заданных значений по модулю некоторого числа m - это равенство остатков от деления заданных значений на m [Бухштаб А.А. Теория чисел. - М.: Просвещение, 1966. - 384 с.].
12. Сравнение - выражение, состоящее из правой и левой частей, такое, что значение левой части сравнимо со значением правой части по заданному модулю [Бухштаб А.А. Теория чисел. - М.: Просвещение, 1966. - 384 с.].
13. Обратный элемент по модулю n к числу a, являющемуся взаимно простым с n, есть натуральное число, обозначаемое как a-1, для которого выполняется условие a-1a=1; для любого числа, являющегося взаимно простым с модулем, существует элемент, обратный этому числу. Известны эффективные алгоритмы вычисления обратных элементов [Романец Ю.В., Тимофеев П.А., Шань-гин В.Ф. Защита информации в компьютерных системах и сетях. - М.: Радио и связь. - с.308-310].
14. Операция возведения числа S в дискретную степень A по модулю n - это операция, выполняемая над конечным множеством натуральных чисел {0, 1, 2, …, n-1}, включающем n чисел, являющихся остатками от деления всевозможных целых чисел на число n; результат выполнения операций сложения, вычитания и умножения по модулю n представляет собой число из этого же множества [Виноградов И.М. Основы теории чисел. - М.: Наука, 1972. - 167 с.];
операция возведения числа S в дискретную степень Z по модулю n определяется как Z-кратное последовательное умножение по модулю n числа S на себя, т.е. в результате этой операции также получается число W, которое меньше или равно числу n-1; даже для очень больших чисел S, Z и n существуют эффективные алгоритмы выполнения операции возведения в дискретную степень по модулю.
12. Сложность операции Oper - количество стандартных элементарных битовых операций (т.е. операций над битами), которые необходимо осуществить для выполнения операции Oper. Чем сложнее операция, тем больше время ее выполнения.

Claims (4)

1. Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа, заключающийся в том, что генерируют секретный ключ (p, q) в виде двух простых многоразрядных двоичных чисел p и q, генерируют открытый ключ в виде многоразрядного двоичного числа n=pq, формируют криптограмму C в зависимости от сообщения M и открытого ключа n и восстанавливают сообщение M из криптограммы C по секретному ключу (p, q), отличающийся тем, что дополнительно генерируют вспомогательное многоразрядное двоичное число R<n, криптограмму C формируют в виде пары (A, B) многоразрядных двоичных чисел A и B в зависимости от сообщения M, открытого ключа n и многоразрядного двоичного числа R, а восстанавливают сообщение M путем решения уравнения x2-Ax+B=0 mod n относительно неизвестного x и вычисления сообщения M из одного из решений указанного уравнения.
2. Способ по п.1, отличающийся тем, что криптограмму C формируют в виде пары (A, B) многоразрядных двоичных чисел A и B, генерируемых по формулам A=(R+n-M-1) mod n и B=R(n-M-1) mod n.
3. Способ по п.1, отличающийся тем, что криптограмму C формируют в виде пары (A, B) многоразрядных двоичных чисел A и B, генерируемых по формулам A=(2R-M) mod n и B=R(R-M) mod n.
4. Способ по п.1, отличающийся тем, что дополнительно генерируют вспомогательное многоразрядное двоичное число R<n путем генерации вспомогательного сообщения T и вычисления R по формуле R=(n-T)2 mod n.
RU2014114746/08A 2014-04-14 2014-04-14 Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа RU2542926C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014114746/08A RU2542926C1 (ru) 2014-04-14 2014-04-14 Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014114746/08A RU2542926C1 (ru) 2014-04-14 2014-04-14 Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа

Publications (1)

Publication Number Publication Date
RU2542926C1 true RU2542926C1 (ru) 2015-02-27

Family

ID=53290015

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014114746/08A RU2542926C1 (ru) 2014-04-14 2014-04-14 Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа

Country Status (1)

Country Link
RU (1) RU2542926C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620730C1 (ru) * 2015-12-07 2017-05-29 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ защищенной передачи шифрованной информации по каналам связи

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2103828C1 (ru) * 1997-02-10 1998-01-27 Управление Федеральной службы безопасности России по Санкт-Петербургу и Ленинградской области Способ блочного шифрования данных
US7397916B2 (en) * 2000-12-08 2008-07-08 Cloakware Corporation System and method for protecting computer software from a white box attack
US7831827B2 (en) * 2002-12-02 2010-11-09 Silverbrook Research Pty Ltd Authenticated communication between multiple entities
RU2411666C1 (ru) * 2009-08-26 2011-02-10 Николай Андреевич Молдовян Способ шифрования
RU2459275C1 (ru) * 2011-08-02 2012-08-20 Николай Андреевич Молдовян Способ блочного шифрования сообщения м, представленного в двоичном виде
RU2459276C1 (ru) * 2011-08-12 2012-08-20 Николай Андреевич Молдовян Способ шифрования сообщения м, представленного в виде многоразрядного двоичного числа
RU2459367C2 (ru) * 2010-07-16 2012-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Способ формирования переменного ключа для блочного шифрования и передачи шифрованных данных

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2103828C1 (ru) * 1997-02-10 1998-01-27 Управление Федеральной службы безопасности России по Санкт-Петербургу и Ленинградской области Способ блочного шифрования данных
US7397916B2 (en) * 2000-12-08 2008-07-08 Cloakware Corporation System and method for protecting computer software from a white box attack
US7831827B2 (en) * 2002-12-02 2010-11-09 Silverbrook Research Pty Ltd Authenticated communication between multiple entities
RU2411666C1 (ru) * 2009-08-26 2011-02-10 Николай Андреевич Молдовян Способ шифрования
RU2459367C2 (ru) * 2010-07-16 2012-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Способ формирования переменного ключа для блочного шифрования и передачи шифрованных данных
RU2459275C1 (ru) * 2011-08-02 2012-08-20 Николай Андреевич Молдовян Способ блочного шифрования сообщения м, представленного в двоичном виде
RU2459276C1 (ru) * 2011-08-12 2012-08-20 Николай Андреевич Молдовян Способ шифрования сообщения м, представленного в виде многоразрядного двоичного числа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620730C1 (ru) * 2015-12-07 2017-05-29 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ защищенной передачи шифрованной информации по каналам связи

Similar Documents

Publication Publication Date Title
EP3459203B1 (en) Method and device to protect a cryptographic exponent
KR102154164B1 (ko) 의사 랜덤 시퀀스 생성 방법 및 데이터 스트림의 코딩 또는 디코딩 방법
EP2742644B1 (en) Encryption and decryption method
RU2459275C1 (ru) Способ блочного шифрования сообщения м, представленного в двоичном виде
RU2459276C1 (ru) Способ шифрования сообщения м, представленного в виде многоразрядного двоичного числа
Agrawal et al. Elliptic curve cryptography with hill cipher generation for secure text cryptosystem
Boruah et al. Implementation of ElGamal Elliptic Curve Cryptography over prime field using C
CN101911009B (zh) 用于以签名方案进行非对称加密的对策方法和设备
Rososhek Modified matrix modular cryptosystems
Abdullah et al. Security improvement in elliptic curve cryptography
RU2411666C1 (ru) Способ шифрования
RU2542926C1 (ru) Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа
JP2007187908A (ja) サイドチャネル攻撃に耐性を有するモジュラーべき乗算計算装置及びモジュラーべき乗算計算方法
Babenko et al. Algebraic analysis of GOST encryption algorithm
Cheon et al. Faster Bootstrapping of FHE over the Integers
JP2020052215A (ja) 公開鍵暗号システム、公開鍵暗号方法、公開鍵暗号プログラム
Vasco et al. Cryptanalysis of a key exchange scheme based on block matrices
Rao et al. VLSI realization of a secure cryptosystem for image encryption and decryption
RU2580060C1 (ru) Способ шифрования сообщения, представленного в виде многоразрядного двоичного числа
Faraoun A novel verifiable and unconditionally secure (m, t, n)-threshold multi-secret sharing scheme using overdetermined systems of linear equations over finite Galois fields
Skuratovskii et al. An application of Miller Moreno groups to establishment protocol Non commutative cryptography
RU2518950C9 (ru) Способ шифрования n-битового блока данных м
RU2734324C1 (ru) Способ формирования общего секретного ключа двух удаленных абонентов телекоммуникационной системы
Aïssa et al. Security analysis of image cryptosystem using stream cipher algorithm with nonlinear filtering function
Chhotaray et al. Encryption by Hill cipher and by a novel method using Chinese remainder theorem in Galois field

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210415